选择范围状态及输入速度提供输出转矩储备的方法和装置的制作方法

文档序号:3904269阅读:174来源:国知局

专利名称::选择范围状态及输入速度提供输出转矩储备的方法和装置的制作方法
技术领域
:本发明--股涉及机电式变速器的控制系统。
背景技术
:该章节的描述仅用于提供关于本发明的背景信息,并不构成现有技术。公知的动力系统结构包括转矩产生装置,包括内燃机和电机,它们ilil变速器装置向输出元件传递转矩。一-种典型的动力系统包括双模式、复合分离、机电式变速器和输出元件,该变速器利用输入元件接收来自原动机动力源(优选为内燃机)的动力转矩。输出元件可操作地连接到机动车辆的传动系统上以向其传递牵引转矩。电机可作为电动机或发电机运转,其独立于来自内燃机的转矩输入产生至变速器的转矩输入。电机可以将通过车辆传动系统传递的车辆动能转变为可储存在电能储存装置中的电能。控制系统监测车辆和驾驶员的各种输入并提供动力系统的操作控制,包括控制器的操作状态和换档、控制转矩产生装置和调节电能储存装置与电机之间的电功率转换以管理变速器的输出,i^f俞出包括转矩和车键。
发明内容机动^的动力系统具有加ilT斜及,且包括与机电式器相连接的发动机,该动力系统选择性地在多个变速器操作范围状态之一和多个发动机状态之一下工作。控制动力系统的方法包括确定当前的变速器操作范围状态和发动机状态;确定至少一个潜在的变速器操作范围状态和发动机状态;提供至少一个驾驶员转矩要求;确定与当前的变速器操作范围状态和发动机状态以及与潜在的器操作范围状态和发动机状态相关的优选因子,其中确定与潜在的变速器操作范围状态相关的优选因子包括给驾驶员转矩要求分配偏置成本(biasingcost),该驾驶员转矩要求位于用于至少其中两个潜在的变速器操作范围状态的可能驾驶员转矩要求的预定范围内;对当前的变速器操作范围状态和发动机状态的伏选因子进行优先性加权;以及基于所述优选因子和驾驶员转矩要求选择性地命令改^Fr述变速器操作范围状态和发动机状态。现在ilil辨仿式参考附图介绍一个或多个实施例,其中图1是根据本发明的典型动力系统的示意图2是根据本发明的控制系统和动力系统的典型结构的示意图3示出了与根据本发明的方法相关的第一组多个^^因子的布置;图4示出了根据本发明的多个it^因子的组合;图5A提供了根据本发明的机电式混合变速器的操作范围变化稳定性的示意图5B示出了根据本发明的机电式混合变速器的操作范围变化稳定性的另一示意图6示出了根据本发明的用来实现机电式混合变速器操作范围变化的结构;图7示出了根据本发明的从一个潜在的作范围状态至(」另一个的变化过程中^I器输A3I度的变化路线;图8示出了根据本发明,对于机电式混合变速器的各种潜在操作范围状态,变速器输A3I度值作为时间函数的变化;图9示出了根据本发明,在机电式混合变速器的各种潜在操作范围状态之间的一选定时间点,不同的变速器输Aili变值之间rpm值的差;图10示出了根据本发明,在滤波器重置期间机电式混合^3I器的输A3I度在模式变化时的变化曲线;图ll示出了根据本发明,对于给定的驾驶员转矩要求,用于偏置潜在的变速器操作范围状^i忠性的一个偏置成本函数-,图12是根据本发明,对于典型的M器操作范围状态,驾驶员转矩要求和所需器總薛俞出之间的差值随时间的变化的一个实施例;图13是根据本发明,对于连续可速器模式,搜索引擎在其中选择用于估算转矩输出的值的空间的定义图表;图14示意性地示出了根据本发明,使用开关来选择第一转矩储备范围大小、第二车统储备范围大小、和零转矩储备中的一个;图15和图16共同地示出了根据本发明,驾驶员转矩要求的范围大小与偏置成本函数的比较,该偏置成本函数确定对于配备有变速器的机动车辆的不同工作模式的转矩储备;和图17示出了根据本发明的没有转矩储备的偏置成本函数。具体实施例方式现在参考附图,其中附图仅用于示出某些典型实施例而非对其的限制,图1示出了--个典型的机电式混合动力系统。图1所示的该典型机电式混合动力系统包括双模式、复合分离、机电式混合M器IO,其可操作ite接到发动机14、第一电机("MG-A")56和第二电机("MG-B")72。该发动机14、第一电机56和第二电机72均产生可以传递至变速器10的动力。由发动机14、第一电机56和第二电机72产生并传iHS变速器10的动力被描述为输入转矩(在这里分别标记为T!、Ta和Tb)和速度(在这里分别标记为N、Na禾PNb)。在一实施例中,该典型发动机14包括多缸式内燃机,其可选择在几种状态下运转以iiil输入轴12传递车转臣至变速器10,并可以是点燃式或者压燃式发动机。该发动机14包括可操作连接至变速器10的输入轴12的曲轴(未示出)。优选设置$传感器11来监测输入轴12的转速。从发动机14输出的动力包含车魏和输出转矩,可以不同于至^I器10的输Ail度N!和输入车魏力,因为存在有在发动机14和变速器10之间的输入轴12上或与该输入轴操作地机械接触的转矩消耗组件,例如,液压泵(未示出)禾n/或转矩管理装置(未示出)。在一个实施例中,该典型变速器10包含三个行星齿轮组24、26和28,以及四个可以选择性接合的转矩传递装置,即,离合H70、C262、C373、和C475。在本文中,离合器指的是任何类型的摩擦转矩传递装置,包括例如单片或者多片离合器或者离合器组、带式离合器和制动器。优选由器控制模块(下文为"TCM')17控制的舰控制回路42用于控制离合微态。在一个实施例中,离合^C262和C475tM包含液压作用的旋转摩擦离合器。在一个实施例中,离合l!C170和C373iM包含液压控制的固定装置,其可以选择性地接地到变速箱壳体68上。在一优选实施例中,每个离合就170、C262、C373、和C475优选为液压作用的,M液压控制回路42选择性地接收加压液压流体。在一实施例中,第一电机56和第二电机72包括三相交流电机和各自的解析器80和82,*电机包括定子(未示出)和转子(未示出)。用于每-个电机的电动机定子接地至变速箱壳体68的外部,并包括带有从该处延伸的电绕组的定子铁芯。用于第一电机56的转子支承在毂衬齿轮(hubplategear)上,该毂衬齿过第二行星齿轮组26可操作地附接于轴60上。用于第二电机72的转子固定地附接到套轴毂(sleeveshafthub)66上。每一,析器80和82包含可变磁阻装置,其包括解析器定子(未示出)禾口解析器转子(未示出)。解析器80和82被适当布置并装配在第一电机56和第二电机72中相应的一个上。解析器80和82中相应一个的定子可操作地连接到用于该第一电机56和第二电机72的其中一个定子。解析器转子可操作i,接到用于相应的第一电机56和第二电机72的转子上。每--W科斤器80和82M;信号并可操作;t鹏接到,器功率逆变器控制模块(下文为"TPiivr)19,并且^H莫块均感知和监观摘科斤器转子相对于解析器定子的旋转位置,从而监测第一电机56和第二电机72中相应一个的旋转位置。另外,对从解析器80和82输出的信号进fi^军释,从而为第一电机56和第二电机72分别提供转速,即Na禾附b。变速器10包括输出部件64,例如轴,其可操作地连接到车辆(未示出)的传动系统90,以给例如93提供输出动力,图1示出了其中一个。输出动力被表征为输出转^No和输出餘矩To。器输出速度传感器84监测输出部件64的转动速度和转动方向。每一个车轮93优选配备传感器94,该传感器适于监测,转速,V払whl,且其输出由图2所示的分布式控制模块系统的控制模块监测,以确定用于制动控制、牵引控制、和车辆加速度管理的车^I度、绝对和相对的车轮转速。来自发动机14以及第一电机56和第二电机72的输入$魏(分别为T!、TA、禾口Tb)由燃料或者储存在电能存储装置(下文为"ESD")74中的电势通过能量转换而产生。ESD74ilil直流导线27高压直流耦合到TPIM19。导线27包括接触器开关38。当接触器幵关38闭合时,在正常操作条件下,电流可以在ESD74禾口TPIM19之间流动。当该接触器开关38打开时,电流彼SD74和TPIM19之间的流动被切断。TPIM193I31导线29传送电力往返于第一电机56,并类似土过导线31传送电力往返于第二电机72,响应于第一电机56和第二电机72的转矩命令以获得输入^^ta和tb。电流根据提供给TPIM的命令而被送到ESD74或从其返回,该命令从例如包括驾驶员傲巨要求、当前工作条件和状态等的因子中得出,且这M令决叙SD74是否正在充电、放电或者在任意给定时刻处于停滞状态。TPM19包括一对功率逆变器(未示出)和相应的电动机控制模块(未示出),被设置为接收转矩命令并依此控制逆变器状态,以提供电动机驱动或者再化:功能来获得输入转矢HTA和TB。功率逆变器包括公知的互补三相电力电子器件,每个电力电子器件均包括多个绝缘栅双极晶体管(未示出),用于通过高频切换将ESD74的直流电功率转换为交流电功率,从而给相应的第一电机56和第二电机72供电。该绝缘栅双极晶体管为设置成接收控制命令的开关式电源。通常为每个三相电机的每一相都设有一对绝缘栅双极晶体管。该绝缘栅双极晶体管的状态被控制为提供电动机驱动机械动力产生或者电力再生功能。三相逆变器ilil直流导线27接收或者提供直流电力并将其转换为三相交流电力或从三相交流电力转换,三相交流电力ilii导线29和31往返于第--电机56和第二电机72被传导,使第一电机56和第二电机72可作为电动机或者发电杉返转,这取决于所接收到的命令,所述命令通常基于包括当前操作状态以及驾驶员转矩要求的因子。图2是分布式控制模块系统的示意方框图。以下描述的元件包含整个控制结构的一个子集,并提供图1所示的典型混合动力系统的协调系统控制。分布式控制模块系统综合相关信息和输入,^l行算法控制各个致动器以实现控制目标,这些目标包括与燃料经济性、排放物、性能、操控性、和硬件保护相关的目标,所述硬件包括ESD74和第一电机56、第二电机72的电池。分布式控娜莫块系统包括发动机控制模土央(下文为"ECM")23、TCM17、电池组控制模块(下文为"BPCM")21,和TPM19。混合控制模块(下文为"HCP")5提供对ECM23、TCM17、BPCM21、和TPM19的监控和协调。用户接口("UT)13操作性地连接到多个装置,车辆驾驶员由此可选择地控制或者指引机电式混合动力系统的操作。UH3中的装置通常包括确定驾驶员转矩要求的加3I^板113("AP")、驾驶员制动踏板112("BP")、变速器档位选择器114("PRNDL")、和车M航控制(未示出)。该皿器档位选择器114可以具有多个离散的驾驶员可选位置,包括该输出部件64的转动方向以实5见前进方向和后退方向之一。上述控制模块与其他控律诉莫块、传感器、和致动器通过局域网(下文为"LAN")总线6进^il信。饥AN总线6允许在各控制模块之间进行工作参数状态和致动器命令信号的结构4W1信。所采用的特定通信协议是专用的。LAN总线6和相应的协议用于加强在战控制模块与其他提供例如防抱死制动、牵引控制和辆稳定性功能的控制模块之间的信息传递和多控制模块接口。可以采用多条通信总线来提高通信iM和提供一定程度的信号冗余度和完整度。在各控制模i央之间的通信还可以用直接链路来实现,例如,串行外围接口("SPI")总线(未示出)。HCP5提供对动力系统的监督控制,用来协调ECM23、TCM17、TPM19禾口BPCM21的操作。根据来自用户接口13和包括ESD74的动力系统的各种输入信号,HCP5生成各种命令,包括驾驶员l魏要求("To—,")、给传动系统90的命令输出转矩命令("TcMD")、发动机输入$,命令、用于变速器10的转矩传递离合驟3170、C262、C373、C475的离合器转矩,以及分别用于第一电机56和第二电机72的,命令。TCM17操作性地连接到液压控制回路42^!供各种功能,包括监测各种压力传感器(未示出)和生成并发送控制i言号到各种电磁线圈(未示出),从而控制包含在液压控制回路42之中的压力开关和控制阀。ECM23操作i魁至接到发动机U,并用来j虽过多条离散的线路获取来自传感器的数据并控制发动机14的致动器,为简单起见,这些离散线路被示出为集合的双向接口线缆35。ECM23AAHCP5接收发动机输入转矩命令。ECM23基于监测到的发动机〗fil和负载来确定此时提供给^S器10的发动机实际输入转矢印,该输入转矩被传递给HCP5。ECM23监测车键传感器11的输入以确定给输入轴12的发动机输A3I度,输入轴将发动机输入速度转变为变速器输A3I度Nj。ECM23监测传感器(未示出)的输入以确定其他发动i;u:作参数的状态,所述工作参数包括但不限制于歧管压力、发动机冷却液温度、节气门位置、环境气温、及环境压力。发动机负载可以根据例如歧管压力或者可替换地根据监湖ij驾驶员对加i!i沓板113的输入来确定。ECM23产生^f专送命令信号来控制发动+鹏动器,包括但不限于例如燃料喷嘴、点火模±夫、节气门控制模块(均未示出)等致动器。TCM17操作itt接到^器10并监测传感器(未示出)的输入以确定变速器操作参数的状态。TCM17产生并传送命令信号以控制变速器10,包括控制液压控制回路42。从TCM17至IJHCP5的输入包括为每一个离合器,即C170、C262、C373禾QC475,估算的离合器转矩,以及输出部件64的输出车,0。为了进行控制,其他致动器和传感器可以用来从TCM17向HCP5提供附加信息。TCM17监测压力开关(未示出)的输入并选择性i:鹏动液压控制回路42的压力控制电磁线圈(未示出)和换档电磁线圈(未示出),来选择性地致动不同的离合徵3170、C262、C373、和C475,以实现不同的器操作范围状态,如下文所述。BPCM21ilil信号连接至帷感器(未示出)以监泖JESD74,包括电流和电压参数的状态,以提供指示ESD74的电池参数状态的信息至HCP5。电池的参数状^^,包括电池荷电状态、电池电压、电池^Jt和称为范围PBM,JvlIN到PBALMAX的可用电池电力。每--个控制模块ECM23、TCM17、TPIM19禾口BPCM21雌为通用数字计算机,包括微处理器或者中央处理单元、存储介质(包含只读存储器("ROM")、随机存取存储器("RAM")、电可编程序只读存储器("EPROM"))、高速时钟、模数转换("A/D")和数模转换("D/A")电路、以及输A/输出电路和装置("I/O")和适当的信号调节和缓冲电路。每一个控制模块具有一套控制算法,包含储存在存储介质之一中并被执行以提供每一计算机的相应功能的驻留程序指令和标定值。在控制模i央之间的信息传输im采用LAN总线6和串行外围接口总线完成。控制算法在预设的循环周期期间执行,使得各个算法在各循环周期至少执行一次。储存在非易失性存储装置中的算法由中央处理单元之一执行,以监测传感装置的输入并4OT预设的标定值执行控制和诊断禾g^,从而控制致动器的操作。在正在进行的动力系统工作期间,循环周期优选以规律间隔执行,例如每3.125、6.25、12.5、25和100毫秒。但是,在大约2毫秒到大约300毫秒内的任意时间间隔可被选择。可替换地,算法可以响应于任意选定事项的发生而执4亍。参考图1所示的典型动力系统肖嫩选择性地以若干操作范围状态中的任意--个操作,所述操作范围状态可以描述为包含发动机运转状态('ON1)和发动机停止('OFF')中的一个的发动机状态,和包含多个固定档位和连续可鄉作模式的器状态,参见以下的表l。__^发动机状态^BI器操作范围状态所用的离合器Ml—Eng—OffOFFEVT模式1CI70MlEng_QnONEVT模式1CI70GlON固定传动比1CI70C475G2ON固定传动比2CI70C262M2一Eng一OffOFFEVT模式2C262M2—Eng—OnONEVT模式2C262G3ON固定传动比3C262C475G4ON固定传动比4C262C373每一个变速器操作范围状态如表中所述并表示相对于各操作范围状态所用的具体的离合^C170、C262、C373、禾口C475。例如,Mii仅应用离合m:i70选择第一连续可变模式,即EVT模式1或者M1,以使第三行星齿轮组28的外齿轮部件"接地'。发动机状态可以是ON("Ml_Eng_On")或都FF("Ml—Eng—Off')中的一个。M仅应用离合tlC262选择第二连续可变模式,即EVT模式2或者M2,以将轴60连接到第三行星齿轮组28的行星架。发动机状态可以是ON("M2__Eng—On")或者OFF("M2—Eng—Off')中的--个。为了进ffi兑明,当发动机状态为OFF时,发动机输A3I^相当于零转/併中(TIPM),即发动机曲轴没有旋转。可以实现提供变速器10的输入-输出速度(即N/No)为间定比值的操作的固定档位操作。例如,第一固定档位操作("G1")ifi力、V:用离合H70和C475来选中。第二固定档位操作("G2")通过应用离合H70和C2625te中。第三固定档位操作("G3")通过应用离合m:262和C475鄉中。第四固定档位操作("G4")舰应用离合^IC262和C373鄉中。输入-输出速度为固定比值的操作由于行星齿轮24、26和28中齿轮比的降低而随固定档位操作的增加而增加。第一电机56和第二电机72的皿分别为NA禾眼B,取决于通过离合作用确定的机构的内部旋转并与在输入轴12上测量得到的输入速度成正比。响应于用户接口13获得的驾驶员对加3im板113和制动踏板112的输入,HCP5和一个或多个其他控制模块确定在输出元件64处所要执行的并传递给传动系统90的命令的输出转矩TcMD,以满足驾驶员转矩要求To一,。所得到的车辆加速度受到其他因子影响,包括例如道路载荷、路面坡度和车辆重量。基于包括动力系统的各种操作特性的输入来确定变速器10的操作范围状态。这些操作特性包括M加3I1^板113和制动踏板112传送给用户接口13的驾驶员转矩要求。在一些实施例中,操作范围状态可以根据动力系统转矩要求来预测,该动力系统转矩要求由指示第一电机56、第二电机72以电能产生模式或转矩产生模式操作的指令产生。在--'些实施例屮,操作范闱状态可以由优化算法或程序来确定,该算法或程序基于一些输入来确定操作状态范围的优i^择,这些输入包括驾驶员功率需要、电池荷电状态、发动机14以及第一和第二电机56和72的操作效率。控制系统基于所执行的选择程序中嵌入的预先选定的结果基准(criteria)来管理发动机14和第一、第二电机56和72的转矩输入,且由此控制系统操作以有效管理与所需程度的ESD荷电状态和燃料输送相匹配的资源。而且,可以基于一个或多个组件或者子系统中故障的检测来确定操作,包括具有任意所需特征的基本操作(over-riding)。HCP5监测转矩生成装置,并确定为实现满足驾驶员转矩要求的必要输出转矩所需的来自变速器10的动力输出。ESD74和第一电机56、第二电机72电操作地连接以允许动力在其间流动。另夕卜,发动机14、第一电机56、第二电机72、和机电式^I器10机械可操作地连接以在其间传递动力,产生至输出部件64的动力流。给定配备有机电式混合变速器的机动车辆的各种可能操作状况,包括变化的环境及道路状况,例如路面坡度和驾驶员转矩要求,对于机电式混合变速器而言,通常可以用来在其操作过程中的--个给定时亥似可能多于一个的变速器操作范围状态操作性接合,包括表1所列出的范围状态。另外,对于具有机电式混合变速器的机动车辆在其通常行进过程中遇到的路面坡度、节气门幵度、和制动踏板压下的每个改变,都可能是这样的,在任意时刻不同的变速器操作范围状态以及发动机的发动机状态在考虑到诸如包括燃料经济性、所需的变速器转矩输出和ESD74的荷电状态的因子之间的整体平衡时被认为是有利的。在任一瞬时,特定的变速器操作范围状态和发动机状态可能是合乎需要的、有利的或优选的,而在下一时亥唭他的变速器操作范围状态和发动机状态可能是合乎需要的、有利的或的,因此即使经过一个相对较短的操作时间跨度,例如5^H中,也会在该时间跨度内存在形成几打(dozens)甚至更多的合乎需要的、有利的或优选的变速器操作范围状态及发动机状态的状况。然而,本发明使得具有机电式混合变速器的机动车辆不必-免要改变变速器操作范围状态和发动机状态以响应所遇到的操作条件的每个^^虫变化。根据本发明的一个实施例,图3示出了第一组多个数值,每个数值f^于机电式混合变速器的每个潜在操作范围状态以及发动机的潜在发动机状态(包括表1给出的操作范围状态和发动机状态)的tm因子。在图3中,标记Ml和M2指的是机电式混合变速器的模式1和模式2。标记Gl、G2、G3和G4分另鹏代档位l、档位2、档位3和档位4,HEOff指的是发动机状态,其中发动机状态是运转状态或停.lh状态。在本发明的一个实施例中,仟-个或多个这样的优选因子可以被任意地分配。在另--实施例中,任-一个或多个这样的优选因子可以包括作为任意算法或其他数据处理方法的结果所生成的输出,所述算法或方法将由任意一个或多个传感器提供的信息作为输入或基础,所述传感器配置于配备有这种机电式混合变速器的机动车辆上的任意位置,或者配置于其传动系统的在该处可获取数据的任意部分之上、之处或附近。这种传感器可以包括但不局限于速度传感器94、输出速度传麟84和车f3I传繊11。所期望的是提供给图3中示出的每一个器操作范围状态和发动机状态的优选因子与它们各自的变速器操作范围状态和发动机状态保持相关,并且根据本发明一个实施例这样的优选因子以阵列的形式列出,如图3中所示。这样的排列并不是严格必须的,而是为了在执行根据本发明的方法时方便,就图4而论。本发明同样提供多个数值,每个数值与机电式混合变速器当在机动车辆中使用的同时在任意选定时亥啲可能操作范围状态和发动机状态的其中之一相关联,例如在当车辆行驶在路面上时的操作过程中,该多个数值可被认为是当前的操作范围状态值。优选实施例包括与发动机状态相关的数值。图4中以阵列布置示出的这个第二组多个数值标记为"当前操作范围因子",包含用于变速器操作范围状态和发动机状态的数值。图4示出了如何将图3的第一组多个因子的数值与根据当前的操作范围状态和发动机状态的第二组多个优选因子相结合。在一个实施例中,所述结合是通过将每列中的每个相应的操作范围状态和发动机状态的数值相加完成的,以得到第三列,该第三列包括用于每个可能的变速器操作范围状态和发动机状态的优选因子,被标记为"新的期望操作范围因子"。正如本文所用的,期望的操作范围状态指的是由于一个或其他原因而比当前变速器操作范围状态和/或发动机状态更合乎需要的器操作范围状态或发动机状态,这些原因通常涉及驾驶性能,但也可以是关于发动机经济性、排放物或电池寿命。出现在第三列中的数值可以相互比较,且在一个实施例中,在第三歹l」中存在的最小数值表示所要选择的或所要评价的变速器操作范围状态或发动机状态,该变速器操作范围状态或发动机状态选择作为改变机电式混合变速器在包含有该机电式混合变速器的机动,正在运行时的操作状态的基础。例如,在图4中的第三列中,最小的数值是7,对应于机电式混合变速器的操作模式1,而变速器的当前操作范围状态是模式2,因为当前的操作范围列中O为最小的数值。在一个用于说明、但非限制性的典型实施例中,可以纟^A在TCM17中的换档执行模块发送信号,建议变速作范围状态从模式2变到模式1,这可由TCM来实现。在可替换的实施例中,TCM可能提供有附加的决策数据和算法,用于或者接受^t丸行根据本发明方法产生的建议命令改变,或者根据编程在TCM17中的其他因子来拒绝这样的执行,这些因子在--个实施例中可以是任意的,而在其他实施例中是基于由车载传感器提供输入的一个或多个算法的输出。在本发明的一个实施例中,TCM17提供当前操作范围因子,它们可与第二组多,选因子的数值具有相同的格式。在其他实施例中,TCM17提供釆用不同于与第二组多个1因子相关的数值的任意格式的当作范围因子。在另一实施例中,参照附图3中所描述的第--组多个优选因子可以与图4中标示为"期望的操作范围因子"(包括变速器操作范围状态和发动机状态的数值)的列中描述的可替换的多个优选因子相结合,从而得到包括-一组被认为是"新的期望操作范围因子"的ttl^因子的第三列。包含期望操作范围因子的因子可以是由任意算法或其他数据处理方法所生成的输出,所述算法或方法具有由任意一个或多个传感器提供的信息,所述传感器配置于配备有这种机电式混合变速器的机动车辆上的任意位置,或者配置于其传动系统的在该处可获取数据的任意部分之上、之处或附近。这种传感器包括但不限于雜速度传感器94、输出速度传感器84和转速传感器11。在另一实施例中,参照图3中描述的第一组多个优选因子可以与来自当前操作范围因子的和来自期望操作范围因子的优选因子二者相结合,从而得到包含新的期望操作范围因子的第三列。通常,在期望操作范围因子之中的-一个或多个优选因子会随时间变化,响应于配备有机电式混合变速器的机动所遇到的操作状况的变化,这些因子的值可以在车辆运行过程中增大或减小。例如,当驾驶员在低速行驶期间遇到上坡的情况下做出转矩要刺寸,会弓胞与档位1操作相关联的4m因子的值响应于此而减小。类似地,当车辆驾驶员在常速行驶期间遇到下坡的情况下做出制动转矩要求时,会引起与档位1操作相关的优选因子的值显著增大,从而基本上排除了选择档位1操作范围的可能性。在图4中,仅仅是为了说明的目的,在包括当前操作范围因子和期望操作范围因子的阵列中的数值是相同的,而实际中这,选因子组的数值可以是彼此不同的。对于图3中的第一组多个i^因子与期望操作范围因子的l^因子相结合的实施例,给出了包含用于新的期望操作范围因子的优选因子的第三列,其中至少一个因子随后提供给嵌入在TCM17中的换档控制模块。对于其中换档控制模±央命令执行^1器操作范围状态、或发动机状态或二者的变化的情况,包括新的期望操作范围因子的优选因子作为输入被传送给本发明的方法,作为本文所述方法的下一循环中的期望操作范围因子,因为在该实施例中希望以任意所需的或所选的时间间隔重复执行本文所述的方法,该时间间隔可以是约2毫秒到约300毫秒之间的任意时间间隔,包括其间所有的时间间隔和时间间隔范围。在根据本发明的,因子的伏选组合中,只将相似类型的因子彼此组合是可取的,即,与Ml相关的tm因子可以只和与Ml相关的其他tM因子组合,与G2相关的优选因子可以只和与G2相关的其他优选因子组合,等等。尽管每一个均包括根据本发明一个实施例的多个优选因子的阵列的组合已经被示出,并描述为包括这些阵列的累加,以及选择阵列中的最小值作为在使机电式混合变速器操作范围改变的过程中需要考虑的值,但是本发明也包括以选择最大数值作为选择基准的实施例。在其他实施例中,两个或更多阵列的组合可以包括这样组合的阵列中对应于各操作范围的数值的减法、除法、或乘法,以使其中一个值成为唯一的或可区分于作为这种组合结果而存在的其余数值,每一个数值标发动机状态救速器范围状态的相对雌性。在每一个这样的实施例中,随后基于存在的最大或最小数值、或任何其他可区分的数值属性做出选择。对于其中按照如本文所述的优选因子的组合得出的一组或阵列中,有两个或多个优选因子彼此相同或不可区分的情况,根据这些不可区分的值进行的变速器操作范围的选择可以是任意的,或可以设定为任何所需的默认选择。在本发明的一个实施例中,图3所示的阵列中第一组多个im因子的数值大小可这样选择,从而当与图4所述的期望操作范围因子或当前操作范围因子的任一中存在的数值相组合时,足以形成偏置效应(biasingeffect)。根据一个实施例,为方便起见,图3中这些优选因子组可以被布置并排列成一个矩阵,如下表II和表III所示表n用于稳定当作范围的偏置补偿矩阵<table>tableseeoriginaldocumentpage18</column></row><table>从而,可以利用该矩阵给出当前操作范围因子的多个优选因子。在这样的排列下,如果机电式混合变速器的当前操作范围是模式1,另I3么第一行数值被选择作为将用在本文所述的阵列组合中的阵列的数值。用于期望操作范围因子的阵列可以从诸如表m所恭巨阵中选择,表示与机电式混合变速器的期望操作范围状态和发动机状态相关联的优选因子值。表m用于稳定之前选定的期望操作范围的偏置补偿矩阵<table>tableseeoriginaldocumentpage19</column></row><table>当根据本发明,将包括参照图4所述的当前操作范围因子和期望操作范围因子的阵列与如图3给出的多个优选因子相组合时,净效果就是由于包含根据图3中给出的优选因子,使得变速器至期望操作范围和当前操作范围的换档稳定。舰合理选择上述表n和表in中的数值,由于可以选择禁止机电式混合变速器的操作范围状态产生特殊变化的值,可以产生意想不到的益处。例如,允许进行从模式2至鹏位4的操作范围变化,而禁止从模式2到档位3的操作范围变化,由本文方法的用户通过合理地选择优选因子的数值来控制对允许变化或禁止变化的选择。通常,需要避免选择不允许的档位状态,无论是基于变速器的输出速度或是基于用户选择的其他任意基准。在一个实施例中,考虑变速器操作模式1和模式2相对于时间的不同的可能输AiI度,以在第一组多个数值中提供用于这些状态的相应数值,这与期望的器操作范围状态无关。根据一个实施例,选择过程涉及只考虑与选择的期望变速器操作状态相关联的输入速度。在一个优选实施例中,代表当前变速器操作范围状态的数值具有零偏置值。在另外的实施例中,代表当前器操作范围状态的数值具有相对小的偏置值,并且可以是正的或负的。尽管给出的是正的数值,但由于为了特定结果而组合不同优选因子的方法其实际效果通常取决于这,选因子相对于彼此的相对值大小,因此根据本发明的伏选因子可以是负的。在图5A中示出了稳定根据本发明的机电式混合器的换档动作或操作范围变化的净效果,该图采用功率损耗作为纵坐标;然而,根据需要也可以采用其他的纵坐标单元。在图5A中以波纹状的虚线示出了与档位1的车辆操作相关的相对于操作状况改变时间的功率损耗。当该功率损耗沿标记为模式1的时间横坐标而变化时,也可采用机电式混合变速器的其他操作范围状态,以有利于燃料的经济性、电池荷电状态、总的转矩输出等等。然而,当驾驶员给出的转矩要求相对于时间存在通常较大变化时,多次换档或变速器模式改变会对这样装备的车辆的操纵性能造成不利影响。因此,由于当前结合的偏置,考虑所述的优选因子,与档位1的操作相关的相对于操作状况改变时间的功率损耗可以沿纵坐标刻度上升到相应的波纹状实线,偏置的量通过分别为表n和表m中第一行的因子A和B之和来表示。参照图5A所示,这么做的结果为,器操作范围保持在模式1,直到与以该模式操作相关的功率损耗加上所述偏置量超出在另一操作范围状态(在这种情况下为档位l)下操作时的功率损耗,此时实现操作范围状态的变化,其中在所示整个时间段中的功率损耗按照实心圆标记的路线变化。因此,将其中机电式混合变速器的操作范围状态发生过度变化的情况,保持在由所选的优选因子决定的任意期望水平,这表示上述情况被最小化以及基本或完全消除。这种结果同样也在图5B中示出,其中变速器期望操作范围状态为纵坐标,表示消除由于的某些最终用途而被认为是非期望的操作范围状态,该,配备有根据本发明的机电式混合器。在一个实施例中,本文所述的^i^因子的矩阵、阵列或其他排列存在于微处理器、硬件或软件存储器中,或者对于它们而言是可读取的,且本文所述的组合优选采用这样的处理设备来执行,该设备随后发出输出到TCM17,而TCM17采用这样的输出作为其自身决策程序的输入。然而,除了本文描述的这种矩阵或阵列以外,在存储器中可以采用任意的因子排列以便于计算。各优选因子可以涉及、或基于与车辆操作有关的任意数量的潜在变量,包括但不限于涉及能耗、操纵性能、燃料经济性、尾气排放、和电池荷电状态的变量,在一个实施例中由传提供关于这些变量的信息。在另外的实施例中,所述优选因子可基于整个机械传动系统的损耗或从中推导得出,所述损耗包括由于气门、链条弓胞的损耗以及电气系统的损耗、热损耗、电机功率损耗、内部电池损耗、或车辆系统的其他任意附加损耗,这些损耗可为单独的形式、或与其他任意一个或多个损耗相结合的形式。图6示出了包括微处理器的结构,所述微处理器肖嫩执行根据本发明一个实施例的机电式混合变速器的操作范围状态的变化。图6示出了微处理器MP,其具有当前期望的范围优选因子和参照图3所描述的优选因子。微处理器具有输入到变速器控讳鹏块TCM17的输出,所述变速器控审鹏i娥供形式为多个当!^作范围状态4,因子的反微合微处理器。TCM17育,提供建议换档执行命令到器10。配备有本文所述的机电式混合变速器(包括功能等效的设备)的车辆的操作还包括变速器输AiI度H,其自身也随机动在行驶过程中遇到的操作状况变化而改变。在经历操作状况变化后,在许多情况下比起目前或当前变速器操作范围状态可能更加需要采用不同的变速器操作范围状态。通常,当不同的操作模式或变速器操作状态被期望为用作在一相同给定速度下运行的替换工作模式时,当机动行驶在该相同给定速度时,对于不同的变速器操作范围状态有不同的,器输AiI度Nt。因此,变速器操作状态和/或发动机状态的变化理想地伴随着变速器输入速度N!的变化。图7图示了一个示例,说明当配备有本文所述的机电式混合^I器的车辆经历典型的操作范围状态变化,从M1变化到M2时,变速器输入速度N!随时间的变化。所述M1的^表示当前的变速器操作范围状态是M1时的当前Nj。G2N!和M2H,的是对于相应的,器操作范围状态,择的(期望的)Nj。因为禁止操作范围状态从M1直接变到M2,所以变速器必须先经过G2。在该变换过程中,可以看到当从M1到G2时,必要的变速器输AiI度H首先下降,然后在短暂的G2运行过程中随时间略微地增加,在ltdt后M会有一个急剧的增加来达到M2操作。因此,变速器输入速度H所要经过的路径或'衍呈"由下式给出(MW,-G2;V,)+(M2〃,-G27V,)[1]其中MlH是器Ml操作时变速器的输AiI度,G2N!是变速器G2操作时皿器的输A3I度,M2H是变SI器M2操作时,器的输AM,而G2M是^I器G2操作时^il器的输入速度。通舰^的方向变化加权,魏器输入速度所要经过的行程的全部"成本"可以由下面的计算提供7T=[(A/T^—G2;V,)*fl+(M2/V,—G27V,)*6]*jc[2]其中符号"*"表示乘法运算,a和b为常数,a用来表示N,的负变化而b用棘示N,的正变化。在可选实施例中,a和b是变化的参数,它们为相应的N^f^.距离或相应的期望器操作范围状态的函数。'遞x,衍呈方向加权常数,是可以由车辆工程师设定或决定的主观数值。所述x的确定考虑到变速器操作范围状态的潜在改变是否首先需要调高档随后调低档,或者是否首先需要先调低档随后调高档,如图7中所示。如果所需的jl,是调低档,然后调高档,那么x设为主观确定值c。如果所需的顺序是调高挡,然后调低档,那么x设为主观确定值d。如图7中所示瞎况,决定TC的公式为7T=[(M-G27V,)*a+(M2iV,-)"]*c[3]通过考虑在车辆行驶的任意时间点对于给定的变速器操作范围状态和发动机状态的潜在变化^所必须要经过的行程,通过模拟运算可以容易地给出对于变速器操作范围状态禾拨动机状态中的每个潜在变化的行程成本因子(TC)。尽管为了说明的目的,图7中所示的N!变化遵循直线路径,但在实际操作中,所述Nj的变化在整个或--部分的转变过程中也可以遵循曲线路径,其中所述路径可能是上凹的或下凹的。如图7所示的发生在不同时间点,Ml的N!值的计算(在本例中行程的起点作为所监测的当前N!值的起点)和G2和M2运行时H值的计算(表示行程中间和终点),可同时进行。图8图示了在配备有本文所述的机电式混合器的机动车辆运行期间,所示的每个变速器操作范围状态的所选择的N:值是如何随时间而变化的。当前的NT曲线表示所监测的当前H值,在本例中为当当前变速器操作范围状态为Ml时。在一个实施例中,在不同时间点的选定N!值(在可选实施例中可为期望的H值或要求的^值)被任意定以生^^示曲线。在另外的实施例中,在不同时间点的选定NH直是基于由车载传感器提供输入的一个或多个算法的输出的,在经过如微处理器的处理后可以提供對1M不同于图8中所示的那些曲线。重要的是,如图9中所示,对于所考虑的齡时间点Tx,存在与齡这样的曲线相关联的单独一个点,所述点可以用作计算每射中转数(ipm)的差值(标示为"Arpm")的基础,该每射巾转数差值用来确定在任意期望时间点与变速器操作范围状态中的每个潜在改变相关的行程成本因子。尽管这里采用rpm来举例说明一种实施方式,但其他的转速单位也同样适用。在一个实施例中,Arpm值可方便地如下表rv中的阵列给出表IV与变速器操作范围状态中的潜在变化相关的ipm差值MM2GlG2G3G4HEOff0Arpm3Arpm2Arpm1Arpm3Arpm4Arpm5Arpm6其中与M2相关联的rpm差值包括如前面所述的Ml到G2和G2到M2的rpm差值。用于计算Arpm的MlNj直是当前MlNf值,而不是选定的MH值。表TV中的Aipm值是当^3I器目前在Ml操作时遇到的典型值,当Ml的Arpm值是0时,具有倾向于将变速鹏作范围状劍呆持在Ml的偏置效应,从而使得魏器操作范围状态就Ml操作而言稳定。在一个实施例中,与器操作范围状态中^潜在的变化相关联的Aipm值,如表IV提供的那些值,接下来均乘以上文相对于^3I器操作范围状态中每个相关的潜在变化限定TC的等式中的fi^呈方向加权常数a,b,c,d(它们在可选实施例中可以是变化的参数,为相应的行程距离、Arpm、或相应的期齊范围的函数),从而得到包含多个^l呈成本因子(TripsCostingfactors,TC)的新阵列,所述fff呈成本因子表示用于每一个变速器操作范围状态的优选因子,所述每一个变速器操作范围状态有效地基于与变速器操作范围状态中每一个潜在变化相关的输入速度行程或曲线,为了示例性说明的目的而不是为了限制本发明,表V中提供了所述ifc^因子的数值:表V基于变速器输入i^t^f呈的im因子MlM2GlG2G3G4HEOff00.60.30.40.50.70.8表V中所列的与^^潜在的变速器操作范围状态相关的、基于输AiI度行程或曲线的优选因子("变速器输A3I度行程优选因子"),可如本文中详细说明地与其它组的优选因子相结合,包括在图4中示出并参照图4描述的用于生成新的期望操作范围因子的-一组或多组的4雄因子。如图8中所示的在不同时间点的选定N,值可基于由微处理器执行的一个或多个算法的输出,该微处理器具有一个或多个由车载传感器提供的输入,所述传感器包括但不限于本文所提到的传感器。在一些实施例中,对于期望的变速器操作范围状态,以选定的时间间隔提供M1操作和M2操作的变速器输A3I度H。在一实施例中,Ml的Nj值由搜寻并选择与劇氐功率耗损相关的NT值的微处理器絲定,^S本实施例中可用作或作为从图3中确定M1操作的雌因子的基础。同时或几乎同时,M2操作的H值由搜寻并选择与最低功率耗损相关的H值的微处理器,定,其在本实施例中可用作或作为从图3中确定M2操作的优选因子的基础。操作条件的轻微改变可以显著改变优选因子,从而可能导致变速器操作试图过于频繁地改变档位或模式,而本文所描述的优选因子的偏置或加权减缓了不期望的频繁换档。对于响应于车辆操作状况变化而在毫秒级的短时间间隔中连续给出Ml和M2的NT值的实施例,假设操作状况的轻微变化会显著改变优选因子,会发生这样的情况,Ml和M2的H值在从一个时间间隔到下一个时间间隔过程中可能发生很大的波动。为每次行驶斜牛轻微改变的情况而改变操作范围状态将实质上导致变速器近似于不断地试图改变档位或模式,而本文所述的,因子的偏置或加权减缓了不期望的频繁换档。在产生新的期望操作范围因子和选择期望操作范围之后,估算期望操作范围的N!值以进纟m择,并且通常为这样的情况,NH皿一个时间间隔到下一个时间间隔发生显著变化。因此需要"过滤'W值来去除噪音,该干扰中包含由于在--个或多个短时间间隔中NH直的瞬间波动所导致的明显高于或低于平均N值的值。在-'个实施例中,Ml操作、M2操作和空档操作的N!值均被过滤,即使在给定的时间点仅Ml或M2之-的值实际被4OT,艮P,系统连续提供M1或M2操作的Nj值。在这样的实施例中,尽管连续地或以选定的时间间隔提供M1或M2操作的输入速度^,但只有与期望模式(Ml或M2)相关联的输Ail度^会被用来基于当前的车辆操作状况fi^呈期望的变速器输A3I度曲线。在选择了期望的范围状态之后,Ml和M2的选定Nz值被过滤以减少噪音,皿行过滤时,此时期望的范围变化重新设置了其将要转换到的期望范围模式的滤波器,以使初始输出值与输入值相等,如图10所示。其中示出的建议N!值将最终被用来基于所期望的范围形成期望输入il度的曲线。例如,当M1被选为期望范围时,NtM1用作期望NT曲线,一旦M2变为期望范围时,曲线会切换为建议的N!M2。进纟,种选择性的重设使得当系统从一个曲线切换到另一个时,未过滤的建议N,用作初始值。当为了减少噪音而过滤建议的输入速度时,只过滤期望模式的建议输入速度。这就允许所述建议输入3I^在其模式被选择时重设。对于操作配备了如本文所述的机电式混合变速器的机动车辆的一种考虑是:这种机动车辆的驾驶员会在不同的时间从传动系统做出不同的糊要求(如通过踩下车辆的加速或制动踏板)。然而,在很多驾驶员转矩要求的例子中,4^两的传动系统和/或制动系统可能无法传递驾驶员所要求的转矩量,即,制动或加速踏板可能被压下超出系统所能完成的传递要求转矩的能力的点。对于变速器的潜在操作范围状态中不同的发动机工作点,假设驾驶员转矩要求相同,驾驶员要求的转矩与传动系统能力之间的差值通常相互不同。在本发明的一个实施例中,在一给定时间点驾驶员要求的转矩量和系统在潜在的发动机工作点操作时可传递的转矩之间的差值对于每个发动机工作点都要被考虑,以在驾驶员作出转矩要求的基本同时相对于*发动机工作点产生多个转矩差值。在一个实施例中,偏置"成本"值按比例被分配给每一转矩差值,即与在潜在的变速器操作范围状态下对于给定的发动机工作点可传递的转矩相对于驾驶员转矩要求的转矩量所不足的大小成比例。当这种偏置成本相互比较并用来作为评价在车辆运转的一个许寺定时间点时对于给定的驾驶员转矩要求哪个发动机工作点最合适或符合需要的基础时,对于给定的驾驶员转矩要求具有,文高偏置成本的发动机工作点而言,这种偏置成本值通常反映对这种发动机工作点的需要程度较低。在一实施例中,表示各传动系统组件功率损耗的所有组分之和与在最接近车辆驾驶员要求的可传递转矩下的^潜在发动机工作点的这个偏置成本(包括总的功率损耗)相互比较,当在最接近驾驶员要求的转矩下工作时具有最小的总功率损耗的潜在发动机工作点被选择作为期望的发动机工作点。图11示出了用来提供偏置成本的成本函数,表示潜在的发动机工作点和变速器操作范围状态的4继组分,其取决于驾驶员作出的转矩要求的大小。图11的偏置成本图的典型定义是一般抛物线形(generallyparabolic)的成本曲线,其横坐标为驾驶员转矩要求。该偏置成本曲线可以iiil车辆工程师所需的、选择的或创建的任意函数来确定,因此在确定不同的发动机工作点和潜在的变速器操作范围状态的优选性时可能具有主观性。在这点上,对于任意范围的所选或所需的驾驶员转矩要求值,所用的函数类型包括但不限于双曲线函数、线性函数、连续函数、非连续函数、常数函数、光滑曲线函数(smooth-curvedftmction)、圆函数、椭圆函数(ovoidfimction)以及前述函数的任意组合,这些函数单独组合或者相互数学地结合。因而,在一个实施例中,对于在具有本文所述传动系统的行进过程中任意选定的时间点所给定的驾驶员转矩要求,用于确定哪个发动机工作点和变速器操作范围状态是最合乎需要的基准就不必一定要使机动车量在燃料经济性、动力输出、操纵性等方面的操作最有效。对于^发动机工作点和潜在的变速器操作范围状态,都存在传动系统所能够传递的最小输出转矩(ToMui)和最大输出转矩(ToMax)。最大输出转矩通常用于使车辆加速,且包括以下组分,如发动机给变速器输入的转矩和电机给器提供的转矩。最小输出转矩通常用于使车辆减速,且包括以下组分,如在再生制动期间提供的制动转矩,包括当车载电池或多或少由一个或多个作为发电机使用的电机来完成充电的情况。参考图11,其表示了在潜在的变速器操作范围状态中的单个发动机工作点,显然对于ToMin和T0Max之间存在的可能驾驶员转矩要求值的主要范围内,并没有与之相关的偏置成本,即虚线表示的函数值为零。然而,当驾驶员转矩要求达到或超过ToMax值时,与驾驶员转矩要求相关的成本由沿着虚线曲线的对应于驾驶员转矩要求的纵坐标值给出。其他潜在的变速器操作范围状态可以根据需要具有相同、相<以皿、或不同形状的相关函数。在一个实施例中,如果驾驶员转矩要求在ToMin和T0Max之间的范围内,其中图ll的虚线曲线所表示的偏置成沐函数为常数(在该例中为零),则考虑到该范围内驾驶员转矩要求的水平(level)而没有偏置成本分配给操作范围状态中特定的发动机工作点。当驾驶员转矩要求大于ToMax的转矩时,确定与该转矩要求相关的偏置成本的函数由图ll中的虚线来表示。因而该偏置成本除了与在确定发动机工作点选择以及图3所示的第一组多个数值过程中的功率损耗相关的客观成本之外,还可能包括主观组分。因而,在一实施例中,只略微超过ToMax(例如10牛顿-米)的驾驶员转矩要求将被分配的偏置成本小于SMToMax多于10牛顿-米的驾驶员$转巨要求所将分配的偏置成本。下表VI是一种方式的典型形式,用于相对于一种典型的潜在器操作范围状态,表达与车辆驾驶员转矩要求和传动系统可传递的最大转矩之间的差值有关的成本,其中ANfm是以牛顿一米为单位的差值,而kW是成本,在该例中用千瓦表示;然而也可以使用其他方便的单位、或无单位。这种阵列可以储存在计算机存储器中并在需要时由微处理器读取。表VI对于潜在的变速器操作范围状态分配给不同转矩要求的成本<table>tableseeoriginaldocumentpage27</column></row><table>与潜在的变速器操作范围状态有关的偏置成本的另一种表示方式在图12中示出。在图12中,值x表示驾驶员要求的转矩量和对于潜在的变速器操作范围状态所需的转矩输出("所需的To")之间的差值,这仅作为一示例。所需的To是最接近驾驶员转矩要求的转矩量,其可基于所选发动机工作点的输出转矩限制(ToMin和ToMax)以及所考虑的特定潜在变速器操作范围状态的转矩储备而获得。对于在车辆操作的同一给定时间点的相同驾驶员转矩要求,表示转矩差值(AN*m)的量x会根据所考虑的潜在变速器工作状态而改变。在一个实施例中,比较在相同的驾驶员转矩要求下不同潜在变速器操作范围状态的x值,可以选择具有最小x值的潜在器操作范围状态。在另一实施例中,偏置成本(加权因子)可以分配给具有最小x值的潜在变速器操作范围状态,其与表示不同传动系统组件的功率损耗的所有组分之和相结合,得到一个总共的功率损耗,该总共的功率损耗然后可以用来作为相对于其他择特定的潜在变速器操作范围状态的基准。fflil提供具有任意所需特征的函数,所述特征包括但不限于那些由图11的偏置成本曲线示出的特征,可以在特定的情况下甚至是驾驶员转矩要求中所要求的转矩小于最大系统输出转矩时,为给定的驾驶员转矩要求分配偏置成本。这在图ll中由具有点Q处大小的驾驶员转矩要求来表示,其小于ToMax,然而仍有分配给该潜在器操作范围状态及驾驶员转矩要求的成本。提供这种成本(或偏置)驾驶员转矩要求使得可以在一定范围的驾驶员转矩要求内建立转矩储备,该一定范围的驾驶员车转巨要求位于ToMax与一驾驶员转矩要求之间,该驾驶员转矩要求为在T0Min和T0Max之间的范围内没有分li偏置成本的具有最大转矩值的驾驶员转矩要求。提供包含这种转矩储备的-一定范围的驾驶员转矩要求,可以有效地偏置^I器控伟係统的4纖性,以防止选择具有丁OMax的系统执行部件工作点和变速器操作范围状态,该T0Max大于但仍接近于驾驶员转矩要求,超出的量与驾驶员转矩要求和所考虑的变速器操作范围状态下的特定发动机工作点的T0Max之间的差值成比例。包括转矩储备可以具有使偏置基准点T0Max减小为T0Max减去该转矩储备的效果,而不是为了选择能产生最高T0Max和最低T0Min的系统致动器工作点而进行偏置。这不仅会影响到超出最大可传递的输出转矩的驾驶员转矩要求,还会影响到小于并貼妾近最大可传递的输出转矩的驾驶员转矩要求。这在驾驶员转矩要求的大小接近于当前选择的(即,当前使用的)变速器操作范围状态可传递的最大值时,通过降低器系统弓胞多次换档或改变模式的趋势,改善了机动^^'的驾驶性能。在下面的实施例中,没有转矩储备此外,当驾驶员转矩要求超出ToMax(或小于ToMin)时,对于未采用根据本发明的这样使用偏置成本的方法的情况,由于总的功率损耗估算是基于限于ToMax和ToMui之间的可传递输出转矩的这一事实,导致与驾驶员转矩要求超出ToMax(或小于ToMin)的量相关的信息丢失。根据本发明方法,获得超出ToMax(或小于ToMin)的驾驶员转矩要求的偏置成本值的步骤提供了与这样的争糊要求超出ToMax的量相关的信息,该信息结合在选择发动机工作点和潜在的变速器操作范围状态的整个选择处理过程中。在-一个实施例中,该信息有效地偏置駄在软件和/或硬件中搜索引擎,该搜索引擎用于提供图3中所示的多个数值,以定位旨潜在的变速器操作范围状态内的发动机工作点,所述旨潜在的变速器操作范围状态偏置以提供ToMax的最大值(ToMin的最小值)。在一个实施例中,基本驾驶员在车辆运行过程中作出转矩要求时,对于每个潜在的变速器操作范围状态,与驾驶员转矩要求相关的偏置成本是用于决定如图3所示的第一组多个数值的组分之一。在-个实施例屮,图3所示的第组多个数值中出现的每个数值的计算都包括与客观功率损耗相关的组分,所述客观功率损耗例如为发动机功率损耗、电池功率损耗、电机功率损耗以及变速器功率损耗。另一实施例提供了附加的损失成本,包括超过电池电力极限、发动机转矩极限、电机转矩极限的成本和其他可包括与输出辦巨要求有关的偏置成本的所期望的主观成本,如本文所述。还包括在一个实施例中采用基于微处理器的搜索引擎的迭代数据处理方法所产生的组分。在连续可变操作模式范围状态的情况下,对于每个潜在的变速器操作范围状态,适于这种方法的搜索引擎采用如图13所示的由坐标轴上P,Min、P,Max、HMin、^Max限定的区域所定义的空间,其中Pi表示输入给机电式混合变速器的功率,H表示相同的变速器输AiI度。搜索引擎随机或者按照任意所期望的算法选择在空间S中成对出现的M和&,并计算与选择的N!和P!相关的ToMin、ToMax和总功率损耗,该计算基于传动系统组件的功率损耗和工作条件限制,这些限制或者是系统中固有存在的或者是由车辆工程师设置的。对于大量不同的N和巧对重复该方法,以相对于给定的潜在变速器工作状态给出多个不同的ToMin、ToMax和总功率损耗。对于^h潜在的变速器操作范围状态重复该方法,从而在^潜在的变速器操作范围状态的空间S中产生用于该每个潜在的变速器操作范围状态的多个ToMin、T0Max和总功率损耗值,供N!和Pi对。对于给定的潜在,器操作范围状态,根据搜索引擎这样产生的多个这种不同的ToMin和ToMax值,当驾驶员转矩要求大于所产生的多个不同的TQMax值时,具有与每个潜在的变速器操作范围状态相关的最高T0Max值的^和&对被偏置从而被选择为伏选的N,和P!,减小与图ll中输出转矩要求相关的偏置成本,其是总功率损耗的多个组分之一。对于驾驶员转矩要求小于所产生的多个不同的T0Min时,与最低的T0Min值相关的^和Pt对被偏置从而被选择为优选NT和&来减小与图11中输出转矩要求相关的偏置成本,其是所考虑的特定潜在变速器操作范围状态的总功率损耗的多个组分之--。该混合的Engine-Off状态可以被看作是H和&为零的连续可变模式;从而无需搜索过程,就确定了T0Min、T0Max和总功率损耗。在固定档位范围状态的情况下,适于该方法的搜索弓l擎对于每个潜在的变速作范围状态都采用坐标轴上由Min、7\Max限定出的区域所定义的空间,其中T凍示输入给机电式混合魏器的转矩,其中变速器输A3US由潜在的变速器操作范围状态的硬件参数预先确定。搜索引擎随机或者根据任意所期望的算法选择在搜索范围中出现的Tt,并计算与所选T,相关的ToMin、T0Max和总功率损耗,该计算基于传动系统组件的功率损耗和工作条件限制,这些限制或者是系统中固有存在的或者是由工程师设置的。对于大量不同的Tj重复该方法,为给定的潜在器操作状皿供多个不同的T0Min、T0Max和总功率损耗值。对每个潜在的变速器操作范围状态重复该方法,从而在每个潜在变速器操作范围状态的搜索范围内产生该每个潜在变速器操作范围状态的多个T0Min、ToMax和总功率损耗并提供Tj。对于给定的潜在变速器操作范围状态,根据搜索弓l擎这样产生的多个这种不同的T0Min、T0Max值,当驾驶员转矩要求大于所产生的多个不同的T0Max时,具有与每个潜在变速器操作范围状态相关的最大ToMax值的Tj皮偏置从而被选择为优选的TT。这减小了与图ll中输出转矩要求相关的偏置成本,其是所考虑的特定潜在变速器操作范围状态的总功率损耗的组分之--。对于驾驶员转矩要求小于所产生的多个不同的T0Min时,与最低T0Min值相关的1被偏置从而被选择为i^^来减小与图11中输出转矩要求相关的偏置^,其是所考虑的特定潜在器操作范围状态的总功率损耗的组分之一。在一实施例中,包括当车辆驾驶员作出大于最大可传递的输出转矩的加速转矩要求时,在产生用于^潜在变速器操作范围状态的多个发动机工作点(连续可变模式时是Nt和p,对,固定档位时是Tp之后,该发动t;u:作点(连续可变模式时是H和&对,固定档位时是T,)均具有与其相关的ToMin、ToMax和总功率损耗值,通过相互比较每个潜在变速器操作范围状态的与所选发动机工作点(连续可变模式时是N!和P!对,固定档位时是Tf)有关的点和选择具有与其被偏置为最高T0Max值的点相关的最小总功率损耗的操作范围状态,该ToMax值对应于图12中最小的x值,这样来确定所需的变速器操作范围状态。在另--实施例中,包括当车辆驾驶员作出小于最小可传递的输出转矩的减速转矩要求时,在产生用于每个潜在变速器操作范围状态的多个发动机工作点(连续可变模式时是N:和&对,固定档位时是T!)之后,该发动tl工作点(连续可变模式时是M和&对,固定档位时是Tp均具有与其相关的T0Min、T0Max和总功率损耗值,通过相互比较与具有最低总功率损耗的每一潜在变速器操作范围状态的所选发动t;ix作点(连续可变模式时是NT和对,固定档位时是Tj)有关的点,和选择具有与其被偏置为具有最小ToMn值(对应于图12中最小的y值)的点相关的最小总功率损耗的操作范围状态,来确定所需的^3I器操作范围状态。在一实施例中,,器的潜在操作范围状态中在与发动机工作点(如这里连续可变模式具有与其相关的H和&沐而在固定档位的情况下具有与其相关的T!值)相关的或由其确定的点与车辆操作相关的总功率损耗的确定包括结合操作成本,该操作成本为能耗(kW)的形式,所述操作成本是基于与该操作范围状态下的车辆操纵性、燃料经济性、排放物、电力消耗以及电池寿命相关的因子给出的。低的操作成本通常与高转换效率下的低燃料消耗、低电池电力使用率、工作点的低排放相关,并考虑动力系统的当前操作范围状态。与在特定点下的操作相关的所有功率损耗之和(总功率损耗),其中该特定点与潜在变速器操作范围状态的发动机工作点相关,为在所考虑的该特定的潜在变速器操作范围状态中在该特定点下的操作提供了优选因子(如图3所示的那些因子)。在驾驶员转矩要求大于传动系统可传递的转矩时,在与潜在变速器操作范围状态有关的各搜索空间s或者范围中与发动l/l工作点(连续可变模式时是1^和&对,固定档位时是T。相关的点可被选择偏置为这样的点,在该点下所述潜在器操作范围状态产生变速器的最大输出转矩(ToMax)。根据与驾驶员转矩要求相关的偏置成本的大小(severity),所选的点可以是或者可以不是产生最大输出转矩的点。由于点的选择是基于使总功率损耗最小化而作出的,其中与输出转矩要求相关的偏置成本是该总功率损耗的一部分,则与输出转矩要求相关的偏置成本越大,选择产生变速器最大输出转矩的点就越有利。每个潜在变速器操作范围状态的搜索空间S或范闺可例如通过算法被检验,且为每个变速器可能操作范围状态识别出与发动机工作点相关的点,其中变速器的最大输出转邻(ToMax)在该发动机工作点下被偏置产生。每个潜在变速器操作范围状态的与在其下变速器最大输出转矩(ToMax)被偏置产生的发动机工作点相关的点被相互比较,来识别具有最低功率损耗的潜在变速器操作范围状态,其中该最低功率损耗可能导致最大的输出转矩(T0Max),该潜在变速器操作范围状态被选择作为当车辆驾驶员作出加速转矩要求时的优选变速器操作范围状态,该加速转矩要求是要向接触路面的车辆驱动轮输送更多转矩的转矩要求。类似地,在驾驶员转矩要求小于传动系统可传递的转矩的情况下,与和潜在变速器操作范围状态有关的发动机工作点相关的点被偏置为相对于该潜在变速器操作范围状态产生变速器的最小输出转矩(T0Min)的点。根据与驾驶员转矩要求相关的偏置成本的大小,所选的点可以是或者可以不是产生最小输出转矩的点。由于点的选择是基于使总功率损耗最小化而作出的,其中与输出转矩要求相关的偏置成本是该总功率损耗的一部分,则与输出转矩要求相关的偏置成本越大,选择产生变速器最小输出转矩的点就越有利。每个潜在变速器操作范围状态的搜索空间S或范围可例如通过微处理器用算法进行检验,且为每个潜在变速器操作范围状态识别出与H和巧对相关的点,其中变速器的最小输出转矩(ToMin)在该N,和&对下被偏置产生。*潜在器操作范围状态的与在其下变速器的最小输出转矩(ToMin)被偏置产生的发动机工作点相关的点被相互比较,来识别具有最低总功率损耗的潜在变速器操作范围状态,其中该最低总功率损耗可能导致最低ToMin,该潜在M器操作范围状态M^择作为当车辆驾驶员作出减速转矩要求时的,器操作范围状态,该减速转矩要求是要向接触路面的驱动轮输送更少转矩的转矩要求。根据本发明的一个实施例,对于命令较大1呈度的(heavy)车辆加速(驾驶员转矩要求的加速水平大于传动系统可传递的,且与该输出转矩要求相关的预定偏置成本足够大而足以忽视总功率损耗中的所有其他部分)的驾驶员转矩要求,确定具有与其相关的最小功率损耗的发动机工作点自然会导致确定具有ToMax的Nj和&沐因为具有与其相关的最高ToMax值的发动机工作点,也具有与其相关的最小功率损耗。对于命令车辆的驾驶员转矩要求则为相反的情况。因此,在根据本发明实施例的方法中,在配备由本文所述系统的操作期间作出驾驶员转矩要求。由车载微处理器执行的搜索弓l擎从与潜在变速器操作范围状态相关的搜索空间S或范围中选择第--发动机J1作点。计算搜索空间S或范围中与该发动机I:作点相关的ToMax和ToMin值。然后,计算在各搜索空间S或范围中与该发动机工作点相关的功率损耗。作为总功率损耗计算的--部分,驾驶员转矩要求和ToMax(或在要求鹏转矩的情况下可使用的T0Min)之间的差值被分配给偏置成本。对于与潜在变速器操作范围状态相关的通过搜索算法在搜索空间S或范围中选出的旨发动机工作点都重复该过程,得出与潜在^I器操作范围状态相关的在各搜索空间S或范围中选出的*发动机工作点所涉及的成本。具有最低偏置成本的点固有地倾向于具有最大的T0Max和最低ToMin值。因此,根据本发明的方法涉及,在各搜索空间S或范围中选择发动机工作点(连续可变模式时是^和&沐固定档位时是T^重点在于N:值,其如前文所述用于产生所需的变速器输入曲线)之间从-—组潜在的变速器操作范围状态中平衡地选择一个,器操作范围状态,其具有与每个潜在变速器操作范围状态相关的最低系统功率损耗,其包括将点选择偏置为具有最高ToMax(或最低ToMn)的点的偏置成本。在一些实施例中,优先考虑对于不同的潜在变速器操作范围状态在相应的搜索空间S或范围内的具有绝对劇氏总功率损耗的那些发动机工作点,该发动机工作点包括与输出转矩要求相关的较大偏置成本,在某些隖况下其更关注于满足驾驶员的极端转矩要求。在其他实施例中,可优选考虑对于不同的潜在变速器操作范围状态在相应的搜索空间S或范围内的具有绝对最低总功率损耗的那些发动机工作点(连续可变模式时是M和PT对,固定档位时是T,),该发动机工作点没有或者剤艮小的与输出转矩要求相关的偏置成本,因为在这种情况下期望的是较少集中于满足驾驶员的极端转矩要求,而更关注于整体的系统效率。这种在是^^考虑使系统性能尽可能地满足驾驶员极端转矩要求还是优选考虑使整体的系统效率最大化之间的选择,是通过改变确定图11所示的偏置成本曲线形状的函数,行控制的。当该函数限定的曲线斜率被选择为更陡峭时,则更偏重于满足高于或低于传动系统可传递的转矩输出的驾驶员转矩要求。如果本发明的方法用于识别要选择哪个潜在的变速器操作范围状态,贝IJ作为该特定器可能操作范围状态的选择基础的变速器输入速度Nj用作连续可变模式的^^器输A3I度。在另一实施例中,包括转矩储备在内,驾驶员转矩要求的范围是可变的,偏置成本函数基于该范围形成转矩储备。这是有利的,因为增加转矩储备可以降低变速器系统弓胞多次换档事件以及使输入速度曲线突然变化的可能性,否则前述瞎况在变速器工作点靠近对于潜在的变速器操作范围状态能产生最大可传递的输出转矩的点时频繁发生。降低转矩储备使得需要时,系统可以更靠近对于潜在的变速器操作范围状态所能产生的最大可传递输出转矩的点工作。因此,对于不同的行驶条件改变车统储备,能更灵活地加权在改善驾驶操纵性(减少变速器换档次数和稳定输入速度)和对于每个潜在变速器操作范围状态在不同的行驶斜牛下的高转矩要求下改善加速性能之间的雌性。在一个实施例中,形成转矩储备的偏置成本函数基于其而操作的驾驶员转矩要求范围的变化可以ffla椒拽模式开关(tow/haulmodeswitch)^it行选择,该开关可以由驾驶员手动切换,或者由电子控制模块响应于驾驶员的操作而自动切换,或者通过电子检测加速踏板的位置并适当地处理信号信息以在两种形式之间进行切换。这在图14中概略示出,其中该开关允许,选择在与撤拽操作中的次数有关的第-一转矩储备值(沿着横轴的宽度或跨度);选择与不包括敏拽的正常操作相关的第二转矩储备值;或者选择为零的第三转矩储备值,该第三转矩储备值与非常高的加3I1咨板位置(例如,,踏板范围的约95%)时的操作中的次数相关,表示不需要该转矩储备来改善性能以满足具有相对较高大小的转矩要求。在另一实施例中,当满足多个基准时根据转矩储备选择的不同优先级顺序可以预设切换算法,准确的优先级和基准的选取在,工程师的选择范围内。M比较图15和图16所示的偏置成本函数基于其形成转矩储备的驾驶员转矩要求范围,示出了作为一个实施例的形成转矩储备的偏置成本M数基于其而操作的驾驶员转矩要求范围的可变性。在图15中,形h站专矩储备的偏置成本函数基于其而操作的驾驶员转矩要求范围比图16所示的形成转矩储备的偏置成本函数基于其而操作的驾驶员车转E要求范围更宽。图n示出了转矩储备值为零的偏置成本函数,即没有转矩储备。在一个实施例中,用于撤拽工作的、形成车,储备的偏置函数基于其而操作的驾驶员车转E要求范围是大约100牛顿-米。在一个实施例中,用于非銜拽工作的、形成转矩储备的偏置^函数基于其而操作的驾驶员转矩要求范围是大约50牛顿-米。在一个实施例中,对于当监测到踏板位置很高时的状况,形成转矩储备的偏置成本函数基于其而操作的驾驶员转矩要求范围是0牛顿-米。在另一实施例中,形成转矩储备的偏置成本函数基于其而操作的驾驶员转矩要求范围根据,器输出速度No是可变的,且用于确定该可变性的函数可以是车辆工程师所选的任意函数。在一非限制性实施例中,该函数是线性的,采用"ax+b这样的形式。在另一实施例中,形成转矩储备的偏置成本函数基于其而操作的驾驶员转矩要求范围根据加速F射反的位置是可变的,以线性或者非线性的方式。在另一实施例中,形成转矩储备的偏置成本函数基于其而操作的驾驶员转矩要求范围根据加速踏板位置的变化率是可变的,以线性或者非线性的方式。34可以在机动车的车载计算机存储器中储存一个或多个偏置成本函数。在一个实施例中,用来提供与驾驶员转矩要求相关的偏置成本的函数对于所有的潜在变速器操作范围状态来说都是相同的。在另一实施例中,用来提供与驾驶员转矩要求相关的偏置成本的函数对于潜在变速器操作范围状态中的至少两个来说是不同的,当在车辆运行期间在给定时间被认为是需要的或要采用的操作范围状态之间进行选择时要对其进行考虑。在本发明的一个实施例中,在车辆运行期间的给定时间被认为是需要的或被采用的发动机工作点的选择过程中(特别是在连续可变模式下的输入速度选择),要考虑用来在变速器操作范围状态中提供与驾驶员转矩要求相关的偏置成本的函数。根据偏置成本函数和驾驶员转矩要求计算偏置成本值是一件容易的事,且在一个实施例中在车载微处理器中执行,计算结果存储在车载计算机的存储器中。应理解在本发明范围内允许进行修改。具体参考了本发明的tm实施例及其改进对本发明进行了说明。其他人通过阅读和理解本说明书可以作出进一步的改进和变更。所有的这种改进和变更均包括在本发明范围之内。权利要求1.一种用于控制机动车辆中的动力系统的方法,该机动车辆具有加速踏板且包括与机电式变速器相连的发动机,该动力系统选择性地在多个变速器操作范围状态之一和多个发动机状态之一下工作,所述方法包括确定当前变速器操作范围状态和发动机状态;确定至少一个潜在变速器操作范围状态和发动机状态;提供至少一个驾驶员转矩要求;确定与所述当前变速器操作范围状态和发动机状态、以及与所述潜在变速器操作范围状态和发动机状态相关的优选因子,其中确定与所述潜在变速器操作范围状态相关的优选因子包括给驾驶员转矩要求分配偏置成本,该驾驶员转矩要求位于用于至少其中两个所述潜在变速器操作范围状态的可能驾驶员转矩要求的预定范围内;对所述当前变速器操作范围状态和发动机状态的优选因子进行优先性加权;和基于所述优选因子和所述驾驶员转矩要求来选择性地命令改变所述变速器操作范围状态和发动机状态。2.根据权利要求1的方法,其特征在于所述预定范围在所述范围的端部之一处由转矩要求值限定,该转矩要求值大致对应于在所考虑的特定变速器操作范围状态下对于所选定的发动机工作点可能的最大转矩输出。3.根据权利要求1的方法,其特征在于所述预定范围在所述范围的端部之一处由转矩要求值限定,该转矩要求值大致对应于在所考虑的特定变速器操作范围状态下对于所选定的发动机工作点可能的最小转矩输出。4.根据权禾腰求1的方法,其特征在于所述预定范围的大小是可变的,所述偏置成本在该预定范围上被分配给驾驶员转矩要求。5.根据权利要求1的方法,其特征在于所述预定范围的大小是选择性可变的,所述偏置成本在该预定范围上被分配给驾驶员转矩要求。6.根据权利要求4的方法,其特征在于所述预定范围的大小取决于所述变速器的输出iM。7.根据权利要求4的方法,其特征在于所述预定范围的大小取决于加3^沓板的位置。8.根据权利要求4的方法,其特征在于所述预定范围的大小取决于加速足沓板位置的变im率。9.根据权利要求1的方法,其特征在于给位于可能的驾驶员转矩要求的预定范围内的驾驶员转矩要求分配偏置成本包括提供一函数,该函数限定与所述范围内的不同驾驶员转矩要求相关的偏置成本的值。10.根据权利要求9的方法,其特征在于所述函数是线性的。11.根据权利要求9的方法,其特征在于所述函数是非线性的。12.根据权利要求9的方法,其特征在于所述驾驶员转矩要求的预定范围的大小取决于所述器的输出速度,其中所述函数在该预定范围上操作。13.根据权利要求9的方法,其特征在于所述驾驶员转矩要求的预定范围的大小取决于所述加^F射及的位置,其中所述函数在该预定范围上操作。14.根据权利要求9的方法,其特征在于所述驾驶员转矩要求的预定范围的大小取决于所述加速踏板的位置变化速率,其中所述函数在该预定范围上操作。15.根据权利要求9的方法,其特征在于所述预定范围在所述范围的端部之一处由转矩要求值限定,对于该转矩要求值没有偏置成本值分配给所述驾驶员转矩要求。16.--种用于在动力系统中从多个潜在的变速器操作范围状态中选择变速器操作范围状态的方法,该动力系统包括与机电式变速器相连的发动机,该方雜括提供具有一定大小的驾驶员转矩要求;提供具有可由其执行的搜索弓l擎的车载微处理器;从包含与潜在的变速器操作范围状态相关的可能的发动机工作点的搜索区域空间,选择第一发动机工作点;计算动力系统能传递的与所述发动机工作点相关的最大和最小输出转矩(ToMax,ToMin);如果在可能的驾驶员转矩要求的预定范围上,以由所述第一发动丰/u:作点限定的参数运行所述器,将偏置成本分配给驾纟史员转矩要求的大小与所述^1器可传递的$转巨减去$魏储备之间的差值-,将与以所述第一发动机工作点限定的参数操作所述车辆变速器相关的功率损耗相加来得到总的功率损耗;对于所述搜索范围空间内的多个发动*0:作点重^^择、计算、分配和求和步骤,从而提供与所述多个发动初o:作点相关的总功率损耗;M^^赎范围空间内鹏具有最低的总功率损耗的至d^个发云MlI作点;对至少两个潜在的,器操作范围状态重复所,择、计算、分配、求和、重复和选择步骤;和基于与所选的发动机工作点相关的功率损耗的比较,选择性地命令改变所述,器操作范围状态。17.根据权利要求16的方法,其特征在于用在选择性命令中的所述发动机工作点包括变速器输AiI度,所述变速器输入速度与使该变速器输入速度用作所命令的特定变速器操作范围状态的选择基础的点相关。18.根据权利要求16的方法,其特征在于所分配的偏置]由取决于所述驾驶员转矩要求的函数来确定。19.根据权利要求16的方法,其特征在于所述可能的驾驶员转矩要求的预定范围的大小是选择性可变的。20.根据权利要求16的方法,其特征在于所述预定范围在所述范围的端部之一处由转矩要求值限定,对于该转矩要求值没有偏置成本值分配给所述驾驶员转矩要求。21.—种用于控制动力系统的系统,该动力系统包括与机电式变速器机械连接的发动机,所述动力系统可选择性地在多个变速器操作范围状态之一和多个发动机状态之一下工作,该系统包括微处理器,被配置为接收并提供输出,所述包括第一组it^因子,第二组tt^因子,与所述变速器的期望操作范围状态相关,第三组优选因子,与所述器的当前操作范围状态相关,第四组因子,所述第四组1^因子包括输A3I度fi^呈im因子;控制模块,被配置为控制在所述变速器中的换档事件,所述控制模块具有输入和输出,其中所述微处理器的输出被提供给所述控制模块作为输入,所述控制模块被配置为向所述微处理器提供所述第三组,因子,作为对其的输入;和机电式变速器,有效地与所述控制模块的输出进行电通信;所述系统被充分地配置为,基于至少一个驾驶员转矩要求,利用分配给所述变速器的潜在操作范围状态的偏置成本来执行所命令的变速器操作范围状态的改变,所述成本由提供在--定范围的驾驶员转矩要求内有效的转矩储备的偏置成本函数确定,其中所述驾驶员转矩要求范围的大小皿择性可变的。全文摘要本发明涉及选择范围状态及输入速度提供输出转矩储备的方法和装置。控制动力系统的方法包括确定当前变速器操作范围状态和发动机状态,确定至少一个潜在的变速器操作范围状态和发动机状态,提供至少一个驾驶员转矩要求,确定与当前变速器操作范围状态和发动机状态以及与潜在变速器操作范围状态和发动机状态相关的优选因子,其中确定优选因子包括给驾驶员转矩要求分配偏置成本,该驾驶员转矩要求位于用于至少两个潜在变速器操作范围状态的可能驾驶员转矩要求的预定范围内,对当前变速器操作范围状态和发动机状态的优选因子进行优先性加权,和基于所述优选因子和驾驶员转矩要求选择性地命令改变变速器操作范围状态和发动机状态。文档编号B60W10/06GK101513874SQ20081018958公开日2009年8月26日申请日期2008年11月4日优先权日2007年11月4日发明者A·H·希普,K·Y·金申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1