蓄电器加温装置的制作方法

文档序号:3993203阅读:168来源:国知局
专利名称:蓄电器加温装置的制作方法
技术领域
本发明涉及一种对应于在搭载有电动机以及内燃机的车辆上设定的模式,进行该车辆所具有的蓄电器的加温控制的蓄电器加温装置。
背景技术
在EV (Electric Vehicle 电动汽车)或 HEV (Hybrid Electrical Vehicle 混合动力电动汽车)等车辆上搭载有向作为驱动源的电动机等供应电力的蓄电器。蓄电器由串联连接的多个蓄电元件构成。蓄电元件采用镍氢电池或锂离子电池等二次电池。这些二次电池的输出性能依存于温度,在高温时以及低温时下降。例如,在搭载有由二次电池构成的蓄电器的EV或HEV等车辆在寒冷地带尤其在冬季使用时,要考虑由于未从蓄电器向电动机供应足够的电力而无法得到希望的输出的情况。因此,希望在车辆上搭载对蓄电器进行冷却或加温的装置。专利文献1公开的车辆用电装单元的加温冷却装置如图10所示,具备在主空气通路14收容蓄电池21和逆变器单元22而成的车辆用电装单元10 ;可向主空气通路14导入车室6内的空气的吸气口 44 ;可将在主空气通路14流通的空气排出向电装单元10之外的排气口 46 ;可与主空气通路14连接/断开且在连接于主空气通路14时构成闭回路60的副空气通路30 ;以及在主空气通路14产生空气的气流的风扇40。在蓄电池21的冷却时, 如图10 (a)所示,车室6内的空气从吸气口 44被导入主空气通路14,在从蓄电池21流向逆变器单元22之后,从排气口 46被排出。另一方面,在蓄电池21加温时,如图10(b)所示, 使空气在将副空气通路30连接于主空气通路14而构成的闭回路60循环。在该加温冷却装置中,当在主空气通路14流动规定流量以上的风量时,第一开闭器51关闭,第二开闭器52打开。另一方面,当在主空气通路14流动少于规定流量的风量时,第一开闭器51打开,第二开闭器52关闭。如此,利用基于在主空气通路14流通的空气的气流的力以及各开闭器的自重或弹性体的弹性力,使第一开闭器51以及第二开闭器52 开闭。现有技术文献专利文献专利文献1 日本国特开2005-47489号公报EV的驱动源仅仅是电动机,在HEV上搭载有电动机以及内燃机这两个驱动源。因此,在HEV中,通过对应于行驶状态或模式而驱动至少一个驱动源,可得到行驶所需的能量。例如,在起动时或急加速时,驱动电动机和内燃机双方,在低速巡航(cruise)时仅驱动电动机,在高速巡航时仅驱动内燃机,得到必要的能量。另外,也可以考虑对应于从多个模式中选择的模式而改变电动机和内燃机的驱动比率的HEV。多个模式中的一个可考虑比内燃机更积极地利用电动机的燃费优先模式(燃費優先 一 K )。关于燃费而言,与内燃机相比,一般来说电动机更好。因此,设定为燃费优先模式的HEV能够以低燃费行驶。
但是,如上所述,向电动机供应电力的蓄电器的输出性能依存于温度。因此,在蓄电器的温度低的状态下即使设定为燃费优先模式,也可能产生无法从电动机得到行驶所需的希望的能量的状况。此时,需要对蓄电器进行加温。专利文献1的加温冷却装置根据蓄电池21的温度,判定是否需要对蓄电池21进行加温,在判定为需要加温的情况下,以低转速运转风扇40。此时,由于空气在不存在相对于车室6的空气出入的闭回路60中循环,因此逆变器单元22产生的热量通过空气对蓄电池21进行加温。该加温冷却装置并不进行与在HEV设定的模式对应的风扇40的控制。也就是说, 即使在可设定为多个模式的HEV上搭载该加温冷却装置,该加温冷却装置在上述说明的燃费优先模式与其他模式无区别的情况下,也基于蓄电池21的温度对蓄电池21进行加温。因此,希望有一种对应于在HEV设定的模式来进行蓄电器的加温控制的装置。另外,在专利文献1的加温冷却装置中,蓄电池21的加温时的热源是逆变器单元 22。考虑到由逆变器单元22产生的热对空气进行加温,由变暖的空气将蓄电池21提高到规定的温度需要花费相当多的时间。

发明内容
本发明的目的在于提供一种对应于在搭载有电动机以及内燃机的车辆上设定的模式,进行该车辆所具有的蓄电器的加温控制的蓄电器加温装置。为了解决上述问题,达成所述目的,技术方案1记载的发明的蓄电器加温装置,其搭载在利用来自内燃机(例如,实施方式中的内燃机E)以及以蓄电器(例如,实施方式中的蓄电器101)作为电源驱动的电动机(例如,实施方式中的电动机M)中的至少一方的动力而可以行驶的车辆上,其特征在于,所述蓄电器加温装置具备吸气部(例如,实施方式中的吸气风扇115)和吸气控制部(例如,实施方式中的控制部125),所述吸气部吸引用于对所述蓄电器进行加温的空气,所述吸气控制部控制所述吸气部,使得在所述蓄电器的温度(例如,实施方式中的蓄电池温度Tb)小于第一规定值(例如,实施方式中的第二阈值Th2)时,在将所述车辆设定为两个模式之中相比于所述内燃机更积极利用所述电动机的一方模式(例如,实施方式中的燃费优先模式)的状态下,产生比将所述车辆设定为另一方模式(例如,实施方式中的通常模式)时的吸引力大的吸引力,其中所述两个模式是所述车辆行驶时所述内燃机和所述电动机的驱动比率不同的两个模式。进而,在技术方案2记载的发明的蓄电器加温装置中,其特征在于,当所述蓄电器的温度大于等于比所述第一规定值高的第二规定值(例如,实施方式中的第一阈值Thi) 时,所述吸气控制部控制所述吸气部,不吸引用于对所述蓄电器进行加温的空气。进而,在技术方案3记载的发明的蓄电器加温装置中,其特征在于,当所述蓄电器的温度大于等于所述第一规定值且小于所述第二规定值时,所述吸气控制部控制所述吸气部,使得即使在设定为所述一方模式的状态下,也产生与设定为所述另一方模式时的吸引力相同的吸引力。进而,在技术方案4记载的发明的蓄电器加温装置中,其特征在于,所述蓄电器加温装置具备由在所述内燃机产生的热量对所述车内的室内空间进行加温的车室加温部(例如,实施方式中的空调109),所述吸气部从所述车辆的室内空间吸引用于对所述蓄电器进行加温的空气。进而,在技术方案5记载的发明的蓄电器加温装置中,其特征在于,所述蓄电器加温装置具备检测所述内燃机的冷却水的温度的冷却水温检测部(例如,实施方式中的冷却水温传感器121)以及检测所述车辆的行驶速度的车速检测部(例如,实施方式中的车速传感器119),当所述冷却水温检测部检测出的所述内燃机的冷却水的温度(例如,实施方式中的冷却水温传感器121)大于等于规定值(例如,实施方式中的规定值ThO)时,所述吸气控制部不管将所述车辆设定为所述两个模式中的哪一个模式,都根据对应于所述车辆的行驶速度而设定了不同的吸引力的映射图,导出与由所述车速检测部检测出的所述车辆的行驶速度相对应的吸引力,并且控制所述吸气部以产生该导出的吸引力。进而,在技术方案6记载的发明的蓄电器加温装置中,其特征在于,所述蓄电器加温装置具备检测所述车辆的行驶速度的车速检测部(例如,实施方式中的车速传感器 119),所述吸气控制部不管将所述车辆设定为所述两个模式中的哪一个模式,都根据对应于所述车辆的行驶速度而设定了不同的吸引力的映射图,导出与由所述车速检测部检测出的所述车辆的行驶速度相对应的吸引力,并且控制所述吸气部以产生该导出的吸引力以下的吸引力。进而,在技术方案7记载的发明的蓄电器加温装置中,其特征在于,所述一方模式或所述另一方模式由所述车辆的驾驶员的操作来设定。进而,在技术方案8记载的发明的蓄电器加温装置中,其特征在于,所述车辆具备具有与所述电动机的驱动轴直接连结的驱动轴的内燃机。发明效果根据技术方案1-8记载的发明的蓄电器加温装置,当蓄电器的温度小于第一规定值、并设定为相比于内燃机更积极利用电动机的模式时,利用由吸气部吸引的空气在比其他的通常模式时短的时间内加温到希望的温度(第二规定值)。如此,可以对应于在车辆设定的模制来进行蓄电器的加温控制。


图1是表示包括本发明的一实施方式的蓄电器加温装置的车辆的内部构成的一例的框图;图2是表示吸气管以及单元的车辆内的配置的图;图3是表示吸气管以及单元的车辆内的配置的图;图4是表示吸气管以及单元的车辆内的配置的图;图5是表示基于车速/占空比映射图(〒^■一〒4比^ 的车速和占空比的关系的一例的图;图6是表示与蓄电池温度Tb和第一阈值Thl的大小关系相对应的加温要求占空比的一例的图;图7是与冷却水温Tc以及蓄电池温度Tb相对应的模式区别占空比的一例的图;图8是表示一实施方式的车辆具备的控制部的动作的流程图;图9是表示一实施方式的车辆的状态以及各占空比的经时变化的一例的图10是专利文献1公开的车辆用电装单元的加温冷却装置的冷却时(a)以及加温时(b)的横截面图。
具体实施例方式以下,参考

本发明的实施方式。以下说明的实施方式的蓄电器加温装置搭载在HEV (Hybrid Electrical Vehicle 混合动力电动汽车)上,该HEV设有作为驱动源的电动机,以内燃机以及蓄电器作为电源来驱动该电动机。图1是表示包括本发明的一实施方式的蓄电器加温装置的车辆的内部构成的一例的框图。图1所示的车辆主要具备内燃机E、电动机M、变速机构T、驱动轮W、蓄电器101、 逆变器(INV) 103、蓄电池温度传感器(Sb) 105、吸气管107、空调109、DC-DC转换器111、辅机用蓄电器113、吸气风扇115、指令部117、车速传感器119、冷却水温传感器(Sc) 121、存储部123以及控制部125。此外,蓄电器101的输出电压是高电压(例如是100 200V),辅机用蓄电器113的输出电压是低电压(例如是12V)。图1所示的车辆是将内燃机E和电动机M和变速机构T串联连接的构造的并行式混合动力车辆(以下,仅称为“车辆”)。在这种车辆中,内燃机E以及电动机M双方的驱动力经变速机构T传递给驱动轮W。此外,电动机M经逆变器103由蓄电器101供给的电力驱动。蓄电器101由串联连接的多个蓄电元件(cell)构成。蓄电元件采用镍氢电池或锂离子电池等二次电池。逆变器103将来自蓄电器101的直流电压转换为交流电压,并将三相电流供应给电动机M。蓄电池温度传感器105检测蓄电器101的温度(以下,称为“蓄电器温度”)Tb。表示由蓄电池温度传感器105检测出的蓄电池温度Tb的信号被输入给控制部125。蓄电器101、逆变器103、蓄电器温度传感器105以及DC-DC转换器111被一体化为一个单元151。吸气管107形成从吸气口 153吸入的空气的通气路。如图2 图4所示,吸气口 153被设置于车辆的后座的侧面(脇)。因此,车室内的空气被吸入吸气管107。此外,车辆的室内空间155的温度由车辆上设置的空调109调整。因此,当外部气体温度低时,由空调109对室内空间155进行采暖。此外,从空调109输出的暖风将内燃机E的冷却水作为热源。因此,在本实施方式中,禁止怠速熄火(idling stop)。在吸气管107的中途部设有由蓄电器101、逆变器103以及蓄电池温度传感器105 构成的单元151。从吸气口 153吸入的空气经单元151的内部空间流向吸气管107的排气口。吸气管107内以及单元151内的空气流通过后述的吸气风扇115的驱动而产生。DC-DC转换器111使蓄电器101的输出电压降压而对辅机用蓄电器113充电。吸气风扇115设置于吸气管107的排气口。吸气风扇115具有风扇161以及用于驱动风扇 161旋转的马达163。通过从辅机用蓄电器113向马达163供给电力来驱动吸气风扇115。 当驱动吸气风扇115时,车室内的空气被吸引到吸气管107,在吸气管107内以及单元151 内产生空气流动。吸气风扇115的马达163由控制部125进行PWM(Pulse Width Modulation)控制。 即,控制部125通过调整占空比来控制马达163的转速。若马达163的转速提高,则吸气风扇115的吸引力也提高。因此,控制部125通过改变占空比来控制吸气风扇115的吸引力,
6可以调整吸气风扇107内以及单元151内的空气流量。指令部117将信号输出给控制部125,所述信号是与车辆加速时或者巡航行驶时内燃机E和电动机M的驱动比率不同的两个模式之中、由车辆驾驶员选择的模式的设定相关的信号。在本实施方式中,驾驶员可以选择“燃费优先模式”或“通常模式”中的任一个模式,其中“燃费优先模式”是相比于内燃机E更积极利用电动机M的模式,“通常模式”是相比于燃费优先模式电动机M的驱动率低的模式。车速传感器119检测出车辆的行驶速度(车速)。表示由车速传感器119检测出的车速的信号被输入给控制部125。冷却水温传感器121检测内燃机E的冷却水的温度(以下称为“冷却水温”)Tc。表示由车速传感器119检测出的冷却水温Tc的信号被输入给控制部125。存储部123存储表示相对于车速的占空比(duty ratio)的映射图(map)(以下称为“车速/占空比映射图”)。在车速/占空比映射图设定的占空比(以下称为“限界占空比”)被设定为用于使对于驾驶员及同乘者而言的车辆的舒适性的评价基准即NV(Noise Vibration)性能满足规定等级的值。图5表示基于车速/占空比映射图的车速和限界占空比的关系的一个例子。吸气风扇115的风扇161的风笛噪音以及马达163的驱动音可以是使车辆的NV性能下降的一个要因。但是,随着车速提高,噪音也变大。因此,如图5所示, 随着车速提高,设定高的占空比。另外,存储部123存储与蓄电池温度Tb和第一阈值Thl的大小关系相应的占空比 (以下称为“加温要求占空比”)。图6表示与蓄电池温度Tb和第一阈值Thl的大小关系相应的加温要求占空比的一个例子。如图6所示,加温要求占空比(A)在小于第一阈值Thl (Tb < Thl)时为Da%、⑶在蓄电池温度Tb大于等于第一阈值Thl (Tb彡Thl)时为Db% (= 0%)o此外,加温要求占空比Da、Db的关系是“Da > Db”。另外,加温要求占空比不会根据模式的不同而改变。另外,存储部123对应于燃费优先模式以及通常模式这样的模式的不同而存储与冷却水温Tc以及蓄电池温度Tb相对应的占空比(以下称为“模式区别占空比”)。图7表示与冷却水温Tc以及蓄电池温度Tb相对应的模式区别占空比的一个例子。如图7所示, 模式区别占空比(C)在通常模式时当冷却水温Tc小于规定值ThO (Tc < ThO)时为Dc%、 (D)在燃费优先模式时当冷却水温Tc小于规定值ThO (Tc < ThO)且蓄电池温度Tb小于第二阈值(Tb < Th2)时为Dd% (Dd > Dc)、(E)在燃费优先模式时当冷却水温Tc小于规定值ThO (Tc < ThO)且蓄电池温度Tb大于等于第二阈值(Tb彡Th2)时为De% ( = Dc% (F)在燃费优先模式时当冷却水温Tc大于等于规定值ThO (Tc彡ThO)时为Df% (Df > Dd) 0 此外,第二阈值Th2低于第一阈值Thl(Th2 < Thl)。如此,相对于通常模式设定与冷却水温 Tc相应的模式区别占空比,相对于燃费优先模式设定与冷却水温Tc以及蓄电池温度Tb双方相应的模式区别占空比。控制部125根据在存储部123储存的车速/占空比映射图,导出与车速传感器119 检测出的车速相对应的限界占空比。进而,控制部125根据与指令部117发送的模式的设定相关的信号、表示从蓄电池温度传感器105发送的蓄电池温度Tb的信号以及表示从冷却水温传感器121发送的冷却水温Tc的信号,判别加温要求占空比以及模式区别占空比。控制部125根据导出的三个占空比即限界占空比、加温要求占空比以及模式区别占空比之中的最低的占空比,控制从辅机用蓄电器113供应给吸气风扇115的马达163的电力。图8是表示本实施方式的车辆具备的控制部的动作的流程图。如图8所示,控制部125基于车速/占空比映射图,导出与车速对应的限界占空比(步骤S101)。接着,控制部125从蓄电池温度Tb判别加温要求占空比(步骤S103)。接着,控制部125判别车辆设定的模式是否是燃费优先模式(步骤S105),在是燃费优先模式时进入步骤S107,在是通常模式时进入步骤S109。在步骤S107中,控制部125从冷却水温Tc以及蓄电池温度Tb判别模式区别占空比。另一方面,在步骤S109中,控制部125从冷却水温Tc判别模式区别占空比。在进行了步骤S107或步骤S109之后,控制部125根据在步骤SlOl导出的限界占空比、在步骤S103 判别的加温要求占空比以及在步骤S107或步骤S109判别的模式区别占空比之中最低的占空比,进行吸气风扇115的控制(步骤S111)。图9表示上述说明的本实施方式的车辆的状态以及各占空比的经时变化的一个例子。图9所示的例子是示出了 点火为OFF的状态的期间(期间0);点火起动(IG ON) 后,到车辆开始行驶为止的期间(期间1);从车辆的行驶开始到将模式从通常模式切换为燃费优先模式为止的期间(期间2);蓄电池温度Tb到达第二阈值Th2为止的期间(期间 3);冷却水温Tc到达规定值ThO为止的期间(期间4);蓄电池温度Tb到达第一阈值Thl 为止的期间(期间5);以及此后的期间(期间6)。在期间1以及期间2中,车辆被设定为通常模式,在三个模式中根据最小的模式区别占空比来控制吸气风扇115。期间3以后,车辆被设定为燃费优先模式,在期间3中,在三个模式中根据最小的限界占空比来控制吸气风扇115。假如,若在期间3将车辆设定为通常模式,则最小的占空比是模式区别占空比。在期间4,在三个模式中根据最小的模式区别占空比来控制吸气风扇115。在期间5,在三个模式中根据最小的限界占空比来控制吸气风扇 115。在期间6,在三个模式中根据最小的加温要求占空比来控制吸气风扇115。如以上说明的那样,在包括本实施方式的蓄电器加温装置的车辆中,在设定燃费优先模式的状态、且蓄电池温度Tb小于第二阈值Th2时,如图9中的向上箭头表示的那样, 相比于设定通常模式的情况而言,占空比增加。若占空比提高,则吸气风扇115的吸引力也提高,因此,在吸气管107内以及包括蓄电器101的单元151内,由空调109加温的室内空间155的空气大多被吸引。因此,蓄电器101由该被吸引的空气在比通常模式时短的时间内被加温到希望的温度。结果是,蓄电器可以将在燃费优先模式下的车辆行驶所需的电力供应给电动机。参考特定实施方式详细说明了本发明,但在不脱离本发明的精神以及范围的情况可以施加各种变更或修正,这对于本领域技术人员来说是不言而喻的。本申请基于2008年12月3日申请的日本专利申请(特愿2008-308691)号,其内容作为参考引用于此。符号说明E内燃机M电动机T变速机构W驱动轮
101蓄电器
103逆变器(INV)
105蓄电池温度传感器
107吸气管
109空调
IllD C-DC转换器
113辅机用蓄电器
115吸气风扇
161风扇
163马达
117指令部
119车速传感器
121冷却水温传感器
123存储部
125控制部
151单元
权利要求
1.一种蓄电器加温装置,其搭载在利用来自内燃机以及以蓄电器作为电源驱动的电动机中的至少一方的动力而可以行驶的车辆上,其特征在于,所述蓄电器加温装置具备吸气部和吸气控制部,所述吸气部吸引用于对所述蓄电器进行加温的空气,所述吸气控制部控制所述吸气部,使得在所述蓄电器的温度小于第一规定值时,在将所述车辆设定为两个模式之中相比于所述内燃机更积极利用所述电动机的一方模式的状态下,产生比将所述车辆设定为另一方模式时的吸引力大的吸引力,其中所述两个模式是所述车辆行驶时所述内燃机和所述电动机的驱动比率不同的两个模式。
2.如权利要求1所述的蓄电器加温装置,其特征在于,当所述蓄电器的温度大于等于比所述第一规定值高的第二规定值时,所述吸气控制部控制所述吸气部,不吸引用于对所述蓄电器进行加温的空气。
3.如权利要求2所述的蓄电器加温装置,其特征在于,当所述蓄电器的温度大于等于所述第一规定值且小于所述第二规定值时,所述吸气控制部控制所述吸气部,使得即使在设定为所述一方模式的状态下,也产生与设定为所述另一方模式时的吸引力相同的吸引力。
4.如权利要求1所述的蓄电器加温装置,其特征在于,所述蓄电器加温装置具备由在所述内燃机产生的热量对所述车内的室内空间进行加温的车室加温部,所述吸气部从所述车辆的室内空间吸引用于对所述蓄电器进行加温的空气。
5.如权利要求4所述的蓄电器加温装置,其特征在于,所述蓄电器加温装置具备检测所述内燃机的冷却水的温度的冷却水温检测部以及检测所述车辆的行驶速度的车速检测部,当所述冷却水温检测部检测出的所述内燃机的冷却水的温度大于等于规定值时,所述吸气控制部不管将所述车辆设定为所述两个模式中的哪一个模式,都根据对应于所述车辆的行驶速度而设定了不同的吸引力的映射图,导出与由所述车速检测部检测出的所述车辆的行驶速度相对应的吸引力,并且控制所述吸气部以产生该导出的吸引力。
6.如权利要求1所述的蓄电器加温装置,其特征在于,所述蓄电器加温装置具备检测所述车辆的行驶速度的车速检测部,所述吸气控制部不管将所述车辆设定为所述两个模式中的哪一个模式,都根据对应于所述车辆的行驶速度而设定了不同的吸引力的映射图,导出与由所述车速检测部检测出的所述车辆的行驶速度相对应的吸引力,并且控制所述吸气部以产生该导出的吸引力以下的吸引力。
7.如权利要求1所述的蓄电器加温装置,其特征在于,所述一方模式或所述另一方模式由所述车辆的驾驶员的操作来设定。
8.如权利要求1所述的蓄电器加温装置,其特征在于,所述车辆具备具有与所述电动机的驱动轴直接连结的驱动轴的内燃机。
全文摘要
提供一种蓄电器加温装置,其搭载在利用来自内燃机以及以蓄电器作为电源驱动的电动机中的至少一方的动力而可以行驶的车辆上,所述蓄电器加温装置具备吸气部和吸气控制部,所述吸气部吸引用于对蓄电器进行加温的空气,吸气控制部控制吸气部,使得在蓄电器的温度小于第一规定值时,在将车辆设定为两个模式之中相比于内燃机更积极利用电动机的一方模式的状态下,产生比将车辆设定为另一方模式时的吸引力大的吸引力,其中两个模式是车辆行驶时内燃机和电动机的驱动比率不同的两个模式。因此,可以对应于在搭载有电动机及内燃机的车辆上设定的模式,来进行该车辆所具有的蓄电器的加温控制。
文档编号B60W10/30GK102224049SQ20098014728
公开日2011年10月19日 申请日期2009年10月29日 优先权日2008年12月3日
发明者上远野义久, 大金崇, 藤田裕二 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1