燃料电池车辆的制作方法

文档序号:19483383发布日期:2019-12-21 03:34阅读:136来源:国知局
燃料电池车辆的制作方法

本发明涉及燃料电池车辆。



背景技术:

例如,在日本特开2010-269760号公报公开了搭载燃料电池堆的燃料电池车辆。利用气泵向燃料电池堆供给作为氧化剂气体的空气。排气管与燃料电池堆的阴极出口侧连接,包含空气的阴极排气经由排气管向车外排出。典型的是,燃料电池堆搭载于车辆的前部,排气管沿着车辆的底面(日文:床面)配设并延伸到车辆后部,阴极排气从车辆后部向车外放出。



技术实现要素:

发明所要解决的问题

在气泵的周边,配设将气泵与燃料电池堆相连的配管、排气管等。从构造的合理化的观点来看,期望能够高效率地布局这些配管。

因而,本发明的目的在于,提供能够使与燃料电池堆随附设置的气泵周边的配管布局效率提高的燃料电池车辆。

用于解决问题的方案

为了实现上述的目的,本发明的一方式涉及燃料电池车辆,其具备燃料电池系统以及将从所述燃料电池系统流出的阴极排气向车辆外部排出的排气管,所述燃料电池车辆中,所述燃料电池系统具备:燃料电池堆;氧化剂气体供给线,其与所述燃料电池堆连接;氧化剂气体排出线,其与所述燃料电池堆连接;气泵,其具有在所述氧化剂气体供给线设置的压缩机、在所述氧化剂气体排出线设置的作为回收再利用机构(日文:回生機構)的扩展器(日文:エキスパンダ);以及空气净化器,其设置在所述压缩机的上游侧,其中,所述排气管与所述扩展器连接,所述压缩机配置在比所述扩展器靠所述空气净化器侧。

发明的效果

根据本发明的燃料电池车辆,压缩机配置于比扩展器靠空气净化器侧,因此能够提高将空气净化器与压缩机相连的配管的布局效率。另外,由于扩展器配置在距离空气净化器比压缩机远的位置,因此能够提高排气管的布局效率。因此,根据该燃料电池车辆,能够提高气泵周边的配管布局效率。

参照附图来说明以下的实施方式,从而能够容易地理解上述的目的、特征以及优点。

附图说明

图1是本发明的实施方式涉及的燃料电池车辆的前方部分的立体图。

图2是燃料电池车辆的整体概略图。

图3是燃料电池系统的概略图。

图4是其他的结构涉及的气泵的说明图。

具体实施方式

如图1所示,本发明的实施方式涉及的具备燃料电池系统12的燃料电池车辆10,例如是燃料电池电动汽车。在以下的说明中,上方(上部)是指铅垂方向的上方(上部)。下方(下部)是指铅垂方向的下方(下部)。在燃料电池车辆10中,收纳燃料电池堆20的堆壳体14配设在前室(电机室)内,该前室形成于仪表板16的前方(箭头符号af方向)。

燃料电池堆20具备在车辆宽度方向(箭头符号b方向)层叠多个发电单电池而形成的单电池层叠体21。也可以是,在铅垂方向层叠多个发电单电池。在单电池层叠体21的层叠方向一端(箭头符号bl方向侧),朝向外方依次配设第一端子板22a和第一绝缘板24a。在单电池层叠体21的层叠方向另一端(箭头符号br方向侧),朝向外方依次配设第二端子板22b和第二绝缘板24b。

燃料电池系统12具备收纳燃料电池堆20的堆壳体14、以及收纳燃料电池用辅助设备19的辅助设备壳体14a。由堆壳体14和辅助设备壳体14a构成壳体单元15。由堆壳体14和辅助设备壳体14a形成的壳体单元15在俯视观察时呈四边形(长边沿着车辆宽度方向延伸的长方形)。

辅助设备壳体14a是用于保护燃料电池用辅助设备19的保护壳体,在堆壳体14的水平方向邻接地与堆壳体14接合。在辅助设备壳体14a内,作为燃料电池用辅助设备19,收纳有燃料气体系统器件和氧化剂气体系统器件。在辅助设备壳体14a内收纳的燃料气体系统器件是喷射器32、引射器34、氢泵42、阀类(未图示)等。

而且,未图示的换气管道与壳体单元15的上部连接,在从燃料电池堆20或者燃料电池用辅助设备19漏出燃料气体的情况下,燃料气体经由换气管道被排出到车外。

如图2所示,燃料电池车辆10具备:燃料电池系统12,其具有使用燃料气体和氧化剂气体来进行发电的燃料电池堆20;以及排气管13,其将从燃料电池系统12流出的阴极排气向车辆外部排出。在设置于车辆前部的电机室(罩盖18的下方)配置燃料电池堆20。虽然省略了图示,但是燃料电池车辆10还具备将由燃料电池系统12发电产生的电力作为电源来进行动作的行驶用电动机、ecu(electroniccontrolunit:电子控制单元)等电气部件。

如图3所示,燃料电池系统12还具备将燃料气体(例如,氢气)供给至燃料电池堆20的燃料气体供给装置24、以及将作为氧化剂气体的空气供给至燃料电池堆20的氧化剂气体供给装置26。虽然省略了图示,但是燃料电池系统12还具备作为能量贮藏装置的蓄电池、以及将冷却介质供给至燃料电池堆20的冷却介质供给装置。

构成燃料电池堆20的各个发电单电池具有在电解质膜(例如,固体高分子电解质膜)的两面分别配置阳极电极和阴极电极而构成的电解质膜-电极结构体、以及从两侧夹持该电解质膜-电极结构体的一对的隔板。在阳极电极与一方的隔板之间形成燃料气体流路。在阴极电极与另一方的隔板之间形成氧化剂气体流路。

燃料气体供给装置24具有:贮存高压的燃料气体(高压氢)的燃料气体罐28、将燃料气体向燃料电池堆20引导的燃料气体供给线30、在燃料气体供给线30设置的喷射器32、以及在比喷射器32靠下游侧设置的引射器34。燃料气体供给线30与燃料电池堆20的燃料气体入口20a连接。由喷射器32与引射器34构成燃料气体喷射装置。

燃料气体排出线36与燃料电池堆20的燃料气体出口20b连接。燃料气体排出线36将阳极排气(燃料排气)从燃料电池堆20导出,该阳极排气是在燃料电池堆20的阳极至少被使用了一部分的燃料气体。在燃料气体排出线36设置气液分离器38。循环线40与燃料气体排出线36连结。循环线40将阳极排气引导至引射器34。在循环线40设置氢泵42(循环泵)。另外,也可以不设置氢泵42。

氧化剂气体供给装置26具有:与燃料电池堆20的氧化剂气体入口20c连接的氧化剂气体供给线44、与燃料电池堆20的氧化剂气体出口20d连接的氧化剂气体排出线46、朝向燃料电池堆20送给空气的气泵48、以及将供给至燃料电池堆20的空气加湿的加湿器50。

气泵48具有将空气压缩的压缩机48a、对压缩机48a进行旋转驱动的电机48b、与压缩机48a连结的扩展器(回收再利用机构)48c。在氧化剂气体供给线44设置压缩机48a。在氧化剂气体供给线44中,在比压缩机48a靠上游侧设置空气净化器52。空气经由空气净化器52被导入至压缩机48a。在氧化剂气体供给线44中,在比压缩机48a靠下游侧(具体来讲,比压缩机48a靠下游侧并且比加湿器50靠上游侧),设置将供给至燃料电池堆20的空气冷却的空气冷却式的中冷器54。

如图2所示,空气净化器52和中冷器54配置在燃料电池车辆10的前部。在罩盖18的下方处,在比气泵48靠上方并且比气泵48靠车辆前方侧(箭头符号af方向侧)配置空气净化器52。例如经由在罩盖18开口而设置的空气引入口,将空气导入至空气净化器52。

空气净化器52与压缩机48a经由配管60连通。配管60与压缩机48a的空气入口48f连接。空气净化器52内置过滤器,从被引入的空气去除尘埃、水分,并将空气送往气泵48。空气净化器52配置在比排气管13靠车辆前方侧。

中冷器54配置在比气泵48靠车辆前方侧。例如中冷器54构成为,配置在前杠62的内侧,经由了气泵48的压缩机48a的空气、与来自车辆前方的空气进行热交换,来将向燃料电池堆20供给的空气(氧化剂气体)冷却。压缩机48a的空气出口48g与中冷器54经由配管64连通。例如,中冷器54配置在比空气净化器52靠下方,并且配置在比空气净化器52靠车辆前方侧。

如图3所示,扩展器48c设置在氧化剂气体排出线46。构成氧化剂气体排出线46的配管46a与扩展器48c的入口48h连接。扩展器48c的叶轮经由连结轴48d来与压缩机48a的叶轮连结。压缩机48a的叶轮、连结轴48d以及扩展器48c的叶轮以旋转轴a为中心来一体地旋转。向扩展器48c的叶轮导入阴极排气,利用阴极排气来回收再利用流体能量。回收再利用能量(日文:回生エネルギ)提供一部分用于使压缩机48a旋转的驱动力。

加湿器50具有多个能够使水分透过的中空纤维膜,利用中空纤维膜,使朝向燃料电池堆20的空气与从燃料电池堆20排出的潮湿的阴极排气之间进行水分交换,来加湿朝向燃料电池堆20的空气。

如图1所示,气泵48配置在车身前部的下部(比燃料电池堆20靠下方)。气泵48配置在辅助设备壳体14a的下方。即,从铅垂方向(箭头符号c方向)观察时,气泵48配置在至少一部分与辅助设备壳体14a重叠的位置。另外,也可以是,在比燃料电池堆20靠车辆后方侧配置气泵48。也可以是,在铅垂方向上,气泵48配置在至少一部分与燃料电池堆20重叠的高度。

如图2所示,气泵48配置为其旋转轴a与车辆前后方向(箭头符号a方向)平行。气泵48配置为其旋转轴a相对于燃料电池堆20的层叠方向(图1的箭头符号b方向)正交。在本实施方式中,在压缩机48a与扩展器48c之间配置电机48b。在连结轴48d设置电机转子。

另外,如图4所示,也可以是,在电机48b的一端侧(车辆前方侧)配置压缩机48a和扩展器48c。该情况下,气泵48配置为,压缩机48a位于比扩展器48c靠车辆前方侧(箭头符号af方向侧)的位置。

如图2所示,压缩机48a配置在比扩展器48c靠车辆前方侧。压缩机48a配置在比扩展器48c靠空气净化器52侧。压缩机48a配置在比扩展器48c靠中冷器54侧。另外,也可以是,气泵48配置为其旋转轴a为铅垂方向,并且压缩机48a配置在比扩展器48c靠上方(在空气净化器52侧)。

排气管13与扩展器48c的出口48i连接。排气管13的前端部13a(与扩展器48c的连接部)位于比空气净化器52靠车辆后方侧并且下方的位置。排气管13的前端部13a位于比压缩机48a靠车辆后方侧的位置。排气管13的前端部13a位于比中冷器54靠车辆后方侧的位置。排气管13从扩展器48c的出口48i延伸出,沿着车身底部,延伸到车身后部。因此,排气管13的出口13b位于车身后部的位置。

然后,说明如上述那样构成的燃料电池车辆10的作用(主要是燃料电池系统12的作用)。

在图3中,在燃料气体供给装置24中,从燃料气体罐28向燃料气体供给线30供给燃料气体。此时,燃料气体被喷射器32朝向引射器34喷射,经由引射器34,从燃料气体入口20a向燃料电池堆20内的燃料气体流路导入,从而被供给至阳极。

另一方面,在氧化剂气体供给装置26中,在气泵48(压缩机48a)的旋转作用下,作为氧化剂气体的空气被送至氧化剂气体供给线44。空气在加湿器50处被加湿之后,从氧化剂气体入口20c被导入至燃料电池堆20内的氧化剂气体流路,从而被供给至阴极。在各个发电单电池中,被供给至阳极的燃料气体与被供给至阴极的空气中的氧气,在电极催化剂层内因电化学反应被消耗来进行发电。

在阳极没有被消耗的燃料气体作为阳极排气从燃料气体出口20b被排出到燃料气体排出线36。阳极排气从燃料气体排出线36经由循环线40被导入至引射器34。被导入至引射器34的阳极排气与由喷射器32喷射的燃料气体混合,并向燃料电池堆20供给。

从燃料电池堆20的氧化剂气体出口20d,向氧化剂气体排出线46排出包含在阴极未被消耗的氧气的潮湿的阴极排气以及作为在阴极的反应生成物的水。阴极排气在加湿器50处与朝向燃料电池堆20的空气进行水分交换之后,被导入至气泵48的扩展器48c。在扩展器48c中,从阴极排气进行能量回收(回收再利用),回收再利用能量成为压缩机48a的驱动力的一部分。阴极排气和水从扩展器48c向排气管13排出,并经由排气管13向车外放出。

该情况下,燃料电池车辆10实现以下的效果。

如图2所示,根据该燃料电池车辆10,压缩机48a配置在比扩展器48c靠空气净化器52侧,因此能够提高将空气净化器52与压缩机48a相连的配管60的布局效率。另外,扩展器48c配置在距离空气净化器52比压缩机48a远的位置,因此能够提高排气管13的布局效率。因此,根据该燃料电池车辆10,能够提高气泵48周边的配管布局效率。

空气净化器52配置在比排气管13靠车辆前方侧,压缩机48a配置在比扩展器48c靠车辆前方侧。利用该结构,将空气净化器52与压缩机48a相连的配管60相对于气泵48而被配置在车辆前方侧,排气管13相对于气泵48而被配置在车辆后方侧,因此能够提高布局效率。

在氧化剂气体供给线44的比压缩机48a靠下游侧,设置冷却氧化剂气体的中冷器54。而且,压缩机48a配置在比扩展器48c靠中冷器54侧。利用该结构,能够提高将压缩机48a与中冷器54相连的配管64的布局效率。

中冷器54配置在比气泵48靠车辆前方侧,压缩机48a配置在比扩展器48c靠车辆前方侧。利用该结构,将中冷器54与压缩机48a相连的配管64相对于气泵48而被配置在车辆前方侧,排气管13相对于气泵48而被配置在车辆后方侧,因此能够提高布局效率。

本发明不限定于上述的实施方式,在不脱离本发明的主旨的范围内能够进行各种的改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1