混合动力车辆中的电池充电策略的制作方法

文档序号:10546042阅读:191来源:国知局
混合动力车辆中的电池充电策略的制作方法
【专利摘要】公开了混合动力车辆中的电池充电策略。一种车辆包括发动机、选择性地连接至发动机的马达、选择性地连接至马达的变速器和控制器。马达能够运转为马达(以将扭矩提供至变速器)和发电机(以对电池充电)。在一种模式中,控制器可指令发动机推进车辆和将扭矩提供至马达以对电池充电。控制器估算当前挡位下的最大可用发动机扭矩并且使车辆保持在当前的变速器挡位下。并且,控制器指令马达以基于驾驶员需求的扭矩与变速器的当前挡位下的估算的最大可用发动机扭矩之间的差的幅值对电池充电。其允许发动机以(或接近)其最大扭矩输出运转以满足驾驶员需求并且对电池充电同时抑制降挡。
【专利说明】
混合动力车辆中的电池充电策略
技术领域
[0001]本公开涉及一种用于对混合动力车辆中的电池充电的控制策略。
【背景技术】
[0002]混合动力车辆包括发动机和至少一个电动马达以向车轮提供驱动扭矩。存在多种类型的混合动力电动车辆。例如,“并联式”混合动力车辆典型地包括选择性地启用发动机和马达中的一个或两个以提供驱动扭矩的离合器。“串联式”混合动力车辆典型地包括总是可驱动地连接至行走车轮的电动马达和未机械连接至车轮的发动机。换言之,发动机没有提供推进车辆所需的任何扭矩。相反,在“串联式”混合动力车辆中,发动机对发电机提供动力以产生存储在电池和/或由马达使用的电能。
[0003]混合动力车辆的发动机可运转以提供驱动扭矩同时对电池充电。为此,电机(比如电动马达/发电机)可将发动机的输出扭矩转化为电能以存储在电池中用于随后驱动电机。如果运转发动机推进车辆并且同时对电池充电,其必须具有足以进行两者的可用扭矩。在一些情况下,车辆可能必须降挡以允许发动机产生充足的驱动扭矩同时以充足的速率对电池充电。这可导致具有频繁降挡和升挡的换挡繁忙(shift busyness) ο

【发明内容】

[0004]根据一个实施例,一种车辆包括电池、电机和至少一个控制器。电机选择性地连接至变速器以选择性地提供驱动扭矩。该至少一个控制器配置用于指令来自电机的电流以基于驾驶员需求的扭矩与变速器的当前挡位下的估算的最大可用发动机扭矩之间的差的幅值对电池充电。控制器可指令发动机以处于或接近其最大扭矩输出容量来输出扭矩,一部分的总扭矩满足驾驶员扭矩需求,并且扭矩容量的剩余部分使电机对电池充电。控制器可基于当前选择的挡位估算发动机的最大可用扭矩输出,并且将基于该量减去用于推进所需的扭矩而对电池充电。
[0005]在另一实施例中,一种车辆中的控制系统包括具有基于变速器的当前挡位的最大可用扭矩的发动机。该控制系统包括至少一个控制器,该至少一个控制器配置用于指令来自电机的电流以基于驾驶员需求的扭矩与当前挡位下最大可用发动机扭矩之间的差的幅值对电池充电以抑制充电导致的降挡。
[0006]根据本申请的实施例,所述控制器进一步配置用于:基于所述驾驶员需求的扭矩超过所述当前挡位下的所述最大可用发动机扭矩,使所述变速器降挡。
[0007]根据本申请的实施例,所述控制器进一步配置用于:响应于所述电池的荷电状态小于电荷阈值,指令所述电流对所述电池充电。
[0008]根据本申请的实施例,所述控制器进一步配置用于:基于所述电池的荷电状态,改变所述变速器的换挡计划。
[0009]根据本申请的实施例,所述控制器进一步配置用于:指令所述发动机以超过所述驾驶员需求的扭矩的量输出发动机扭矩和指令所述电机将至少一部分所述发动机扭矩转化为待存储在所述电池中的电能。
[0010]在再另一实施例中,提供了一种用于在具有选择性地连接至发动机并且配置为将电能提供至电池的电机的车辆中抑制变速器换挡繁忙的方法。使变速器运转在多种挡位中的一种下。将电能从电机传递至电池以基于驾驶员需求的扭矩与多种挡位中的一种挡位下可用的最大发动机扭矩之间的差对电池充电。
[0011 ]根据本申请的实施例,所述方法进一步包括使所述变速器保持在所述多种挡位中的所述一种挡位下同时对所述电池充电。
[0012]根据本申请的实施例,所述方法进一步包括:响应于所述驾驶员需求的扭矩超过所述多种挡位中的所述一种挡位下可用的所述最大发动机扭矩,使所述变速器变换至所述多种挡位中的另一种挡位。
[0013]根据本申请的实施例,所述方法进一步包括:响应于所述电池的荷电状态小于电荷阈值,传输所述电能。
[0014]根据本申请的实施例,所述方法进一步包括:基于所述电池的荷电状态,改变所述变速器的换挡计划。
[0015]根据本申请的实施例,所述方法进一步包括:输出超过所述驾驶员需求的扭矩的量的发动机扭矩,和运转所述电机以将至少一部分所述发动机扭矩转化为待存储在所述电池中的电能。
【附图说明】
[0016]图1为根据本申请的一个实施例的混合动力车辆的示意图。
[0017]图2为示出了配置为由处理器执行以对混合动力车辆的电池充电同时减少变速器换挡繁忙的算法的一个实施例的流程图。
[0018]图3A为根据一个实施例的混合动力车辆的变速器中的挡位变化之前、期间和之后的马达速度与发动机速度的曲线图。
[0019]图3B为实际发动机扭矩、不导致降挡的可用发动机扭矩、驾驶员需求和电池充电幅值的曲线图;和
[0020]图3C为发动机扭矩、不导致降挡的可用发动机扭矩、驾驶员需求、和稍微减少的电池充电幅值的另一曲线图。
【具体实施方式】
[0021]本说明书中描述了本申请的多个实施例。然而,应当理解,公开的实施例仅仅为示例并且其它实施例可采取各种和可替代的形式。附图不需要按比例绘制;一些特征可被放大或缩小以显示特定部件的细节。因此,本说明书中公开的具体结构和功能细节不应被认为是限制,但仅仅认为是用于教导本领域技术人员以多种形式利用这些实施例的代表性基础。如本领域技术人员将理解的,参考任一【附图说明】和描述的各种特征可与一幅或更多其它附图中说明的特征结合以形成未明确说明或描述的实施例。说明的特征的组合提供了用于典型应用的代表性实施例。然而,可能需要与本申请的教导一致的特征的各种组合和变型以用于特定应用或实施。
[0022 ]参考图1,示出了根据本申请的实施例的混合动力电动车辆(HEV) 1的示意图。图1示出了多个部件之间的代表性关系。车辆内的部件的实体布局和定向可改变。HEV 10包括动力传动系统12。动力传动系统12包括驱动传动装置16的发动机14,传动装置16可被称为模块化混合动力传动装置(modular hybrid transmiss1n,MHT)。如下文将进一步详细描述地,传动装置16包括电机(比如电动马达/发电机(M/G)18)、相关联的牵引电池20、变矩器22和多阶梯传动比自动变速器、或齿轮箱24。
[0023]发动机14和M/G 18均为用于HEV 10的驱动源。发动机14通常表示可包括内燃发动机(比如由汽油、柴油或天然气提供动力的发动机)或燃料电池的动力源。发动机14产生发动机动力和对应的发动机扭矩,当发动机14与M/G 18之间的分离离合器26至少部分地接合时,该对应的发动机扭矩被供应至M/G 18oM/G 18可通过多种类型的电机中的任一种来实现。例如,M/G 18可为永磁体同步马达。如下文将描述地,电力电子设备根据M/G 18的需要调节电池20提供的直流(DC)电。例如,电力电子设备可向M/G 18提供三相交变电流(AC)。
[0024]当分离离合器26至少部分地接合时,从发动机14到M/G18或从M/G 18到发动机14的动力流是可能的。例如,分离离合器26可接合并且M/G 18可运转为发电机以将曲轴28和Μ/G轴30提供的转动能转化为电能以存储在电池20中。分离离合器26还可分离以将发动机14与动力传动系统12的剩余部件隔离,使得M/G 18可用作HEV 10的唯一驱动源。轴30延伸穿过M/G 18oM/G 18连续可驱动地连接至轴30,而仅当分离离合器26至少部分地接合时发动机14可驱动地连接至轴30。
[0025]M/G 18通过轴30连接至变矩器22。因此当分离离合器26至少部分地接合时,变矩器22连接至发动机14。变矩器22包括固定至Μ/G轴30的叶轮和固定至变速器输入轴32的涡轮。因此变矩器22在轴30与变速器输入轴32之间提供液压连接。当叶轮转得比涡轮更快时,变矩器22将动力从叶轮传递至涡轮。涡轮扭矩和叶轮扭矩的大小通常取决于相对速度。当叶轮速度与涡轮速度的比足够高时,涡轮扭矩为叶轮扭矩的倍数。还可设置变矩器旁通离合器34,变矩器旁通离合器34当被接合时摩擦或机械地连接变矩器22的叶轮和涡轮,允许更有效的动力传输。变矩器旁通离合器34可运转为起动离合器以提供平稳的车辆起动。可替代地,或组合地,可在M/G 18与齿轮箱24之间设置与分离离合器26类似的起动离合器用于不包括变矩器22或变矩器旁通离合器34的应用。在一些应用中,分离离合器26通常被称为上游离合器并且起动离合器34(其可为变矩器旁通离合器)通常被称为下游离合器。
[0026]齿轮箱24可包括齿轮组(未示出),该齿轮组通过选择性地接合摩擦元件(比如离合器和制动器(未示出))而选择性地置于不同齿轮比以建立期望的多离散或阶梯传动比。摩擦元件可通过连接和分离齿轮组的一些元件以控制变速器输出轴36与变速器输入轴32之间的比的换挡计划来控制。基于各种车辆和环境工况通过相关联的控制器(比如动力传动系统控制单元(PCU))使齿轮箱24从一个比自动变换为另一比。然后齿轮箱24将动力传动系统输出扭矩提供至输出轴36。
[0027]在一个实施例中,换挡计划可具有基于驾驶员需求和变速器输入轴32的转速的换挡点(即,指令换挡时所处的点)。取决于情况该换挡计划通常将扭矩产生装置(即,发动机14和/或M/G 18)驱动至最佳效率或功率的扭矩-速度运转点。
[0028]应当理解,与变矩器22—起使用的液压控制的齿轮箱24仅为齿轮箱或变速器装置的一个示例;任何接收来自发动机和/或马达的输入扭矩并且然后将扭矩以不同的传动比提供至输出轴的多比齿轮箱可接受用于本申请的实施例。例如,齿轮箱24可通过包括一个或多个伺服马达以使拨叉沿拨叉导轨平移/旋转以选择期望的齿轮比的自动机械(或手动)变速器(AMT)来实现。如本领域普通技术人员通常理解地,AMT可用于例如具有较高扭矩需求的应用。
[0029]如图1的代表性实施例所示,输出轴36连接至差速器40。差速器40通过连接至差速器40的各个轴44驱动一对车轮42。差速器将大约相同的扭矩传递给每个车轮42,同时允许轻微的速度差,比如当车辆转弯时。可使用不同类型的差速器或类似装置以将来自动力传动系统的扭矩分配至一个或多个车轮。在一些应用中,扭矩分配可取决于例如特定运转模式或条件而改变。
[0030]动力传动系统12进一步包括相关联的控制器5O,比如动力传动系统控制单元(P⑶)。虽然说明为一个控制器,但是控制器50可为更大控制系统的一部分并且可通过车辆10中的各种其它控制器(比如车辆系统控制器(VSC))来控制。因此应当理解,动力传动系统控制单元50和一个或多个其它控制器可被共同称为“控制器”,该“控制器”响应于来自各个传感器的信号而控制各个驱动器以控制功能,比如起动/停止发动机14、运转M/G 18以向车轮提供扭矩或对电池20充电、选择或计划变速器换挡等。换言之,“控制器”可参考配置为控制车辆中的独立系统的一个或多个控制器。控制器50可包括与各种类型的计算机可读存储装置或媒介通信的微处理器或中央处理单元(CPU)。计算机可读存储装置或媒介可包括例如只读存储器(R0M)、随机存取存储器(RAM)和保活存储器(KAM)中的易失性和非易失性存储器。KAM为当CPU掉电时可用于存储各种运转变量的持久或非易失性存储器。计算器可读存储装置或媒介可使用多种已知存储装置(比如PROM(可编程只读存储器)、EPR0M(电PROM),EEPROM(电可擦除PR0M)、闪速存储器、或能够存储数据(其中的一些表示控制发动机或车辆过程中控制器使用的可执行指令)的任何其它电、磁、光或组合存储装置)中的任一种来实现。
[0031]控制器通过输入/输出(I/O)接口与各个发动机/车辆传感器和驱动器通信,该I/O接口可实现为提供各种原始数据或信号调节、处理和/或转化、短路保护等的单个集成接口。可替代地,在特定信号被供应至CPU之前,可使用一个或多个专用硬件或固件芯片调节和处理特定信号。如图1的代表性实施例中总体示出地,控制器50可将信号通信至发动机
14、分离离合器26、M/G 18、起动离合器34、变速器齿轮箱24和电力电子设备56和/或与来自发动机14、分离离合器26、M/G 18、起动离合器34、变速器齿轮箱24和电力电子设备56的信号通信。尽管未明确说明,本领域普通技术人员将认识上文识别的每个子系统内可由控制器50控制的各种功能或部件。参数、系统和/或可使用控制器执行的控制逻辑直接或间接驱动的部件的代表性示例包括燃料注射正时、速率和持续时间、节气门位置、火花塞点火正时(对于火花点火发动机)、进气/排气阀正时和持续时间、前端附件驱动(FEAD)部件(比如交流发电机)、空调压缩机、电池充电、再生制动、Μ/G运转、分离离合器26的离合器压力、起动离合器34和变速器齿轮箱24等。通过I/O接口与输入通信的传感器可用于指示例如涡轮增压器增压压力、曲轴位置(PIP)、发动机转速(RPM)、车轮速度(WSl、WS2)、车辆速度(VSS)、冷却剂温度(ECT)、进气歧管压力(MAP)、加速器踏板位置(PPS)、点火开关位置(IGN)、节气门位置(TP)、空气温度(TMP)、排气氧(EGO)或其它排气组分浓度或存在、进气流率(MAF)、变速器挡位、比或模式、变速器油温度(TOT)、变速器涡轮速度(TS)、变矩器旁通离合器34状态(TCC)、减速或换挡模式(MDE)。
[0032]控制器50执行的控制逻辑或功能可由一幅或多幅附图中的流程图或类似图形来表示。这些附图提供了可使用一个或多个处理策略(比如事件驱动、中断驱动、多任务、多线程等)实现的代表性控制策略和/或逻辑。这样,可以按说明的顺序、并行地、或在省略一些步骤情况下执行说明的各个步骤或功能。尽管没有总是明确说明,本领域普通技术人员将认识到可取决于使用的特定处理策略而重复执行一个或多个说明的步骤或功能。类似地,该处理顺序不是实现本说明书描述的特征和优点所必须需要的,而是提供用于便于说明和描述。可主要以由基于微处理器的车辆、发动机和/或动力传动系统控制器(比如控制器50)执行的软件来实现控制逻辑。当然,可取决于特定应用而以一个或多个控制器中的软件、硬件、或软件与硬件的组合来实现控制逻辑。当以软件实现时,控制逻辑可设在一个或多个具有表示由计算机执行的码或指令的存储数据的计算机可读存储装置或介质中以控制车辆或其子系统。计算机可读存储装置或介质可包括多种利用电、磁、和/或光存储器的已知物理装置中的一种或多种以保存可执行指令和相关联的校准信息、运转变量等。
[0033]车辆的驾驶员使用加速器踏板52提供需求的扭矩、动力或驱动指令以推进车辆。通常,压低和释放踏板52产生加速器踏板位置信号,该加速器踏板位置信号可被控制器50解释为分别需要增加的动力和减少的动力。至少基于来自踏板的输入,控制器50指令来自发动机14和/或M/G 18的扭矩。控制器50还控制齿轮箱24内换挡的正时、以及分离离合器26和变矩器旁通离合器34的接合和分离。与分离离合器26类似,变矩器旁通离合器34可在接合位置与分离位置之间的跨度范围内调节。除了叶轮与涡轮之间的液压动力连接产生的可变滑动之外,其还产生了变矩器22的可变滑动。可替代地,变矩器旁通离合器34可取决于特定应用不使用调节的运转模式而运转为锁止的或打开的。
[0034]为了用发动机14驱动车辆,使分离离合器26至少部分地接合以将至少一部分发动机扭矩传输通过分离离合器26到达M/G 18,并且然后从M/G 18通过变矩器22和齿轮箱24。M/G 18可通过提供额外动力以转动轴30来辅助发动机14。这种运转模式可被称为“混合动力模式”或“电动辅助模式”。
[0035]为了用M/G18作为唯一动力源驱动车辆,动力流保持相同,除了分离离合器26将发动机14与动力传动系统12的剩余部件隔离之外。这段时间期间发动机14中的燃烧可被停用或关闭以节省燃料。牵引电池20将存储的电能通过线路54传递至可包括例如逆变器的电力电子设备56。电力电子设备56将来自电池20的DC电压转化为待被M/G 18使用的AC电压。控制器50指令电力电子设备56将来自电池20的电压转化为提供至M/G 18的AC电压以向轴30提供正或负扭矩。这种运转模式可被称为“纯电动”运转模式。
[0036]在任一运转模式中,M/G18可用作马达并且向动力传动系统12提供驱动力。可替代地,M/G 18可用作发电机并且将来自动力传动系统12的动能转化为电能以存储在电池20中。例如M/G 18可用作发电机,同时发动机14对车辆10提供推进动力。在再生制动的时间期间,M/G 18可额外用作发电机,其中来自转动车轮42的转动能通过齿轮箱24被传输回来并且转化为电能用于存储在电池20中。
[0037]应当理解,图1中示出的示意图仅仅是示例并且不意味着限制。可以预期利用发动机和马达的选择性接合以通过变速器传递的其它配置。例如,M/G 18可从曲轴28偏置,并且可设置额外的马达以起动发动机14,和/或M/G 18可设置在变矩器22与齿轮箱24之间。在不超出本申请的范围的情况下,可以预期其它配置。
[0038]如上所述,控制器50配置为对电池20充电。其可以以多种方式完成。在再生制动模式中,M/G 18将车轮42的旋转运动和动量转化为发送至并且存储在电池中的电荷。
[0039]在被称为“发动机-充电模式”的另一电池充电模式中,发动机14是打开的并且主动提供驱动扭矩通过M/G 18、通过变速器齿轮箱24并且到达车轮42。在发动机-充电模式中,控制器50指令M/G 18将一部分发动机扭矩转化为电能以存储在电池20中。换言之,M/G18可运转为发电机以产生来自发动机14的电能同时发动机推进车辆。在发动机-充电模式中,M/G 18提供大小小于发动机14提供的正驱动扭矩的负扭矩。这类电池充电在其中电池20的荷电状态(SOC)相对低并且电池需要立即充电的情况下是有用的。
[0040]发动机14的最大扭矩输出取决于很多因素,其中的一个是变速器齿轮箱24的当前挡位。当发动机-充电模式期间电池20的SOC相对低时,控制器50可请求需要大于变速器的当前挡位下可用的动力的充电负载。为了适应通过M/G 18转化为电能的负扭矩,控制器50通常可请求变速器齿轮箱24降挡以提高发动机14的转速以满足充电需求和需求的驾驶员扭矩。然而,其降低了发动机效率并且可导致不需要的降挡和变速器换挡繁忙。
[0041]因此,根据本申请的多个实施例,提供一种更有效地对电池充电而不导致不需要的换挡繁忙的控制策略。为了减少不需要的降挡,控制器50可配置为指令超过驾驶员需求的扭矩但是将不导致变速器齿轮箱24降挡的量的负扭矩(充电)以适应充电。换言之,在发动机-充电模式期间,可做出由发动机14对电池20充一定量电的请求,该充电的量加上驾驶员需求将不超过变速器齿轮箱24的当前挡位下的发动机动力。其可通过估算可用于充电的剩余驾驶员需求储备(驾驶员需求与当前挡位下的可用发动机动力之间的差)来实现。因为该需求在当前挡位下升高或降低,充电将弥补该差直到高达换挡点。
[0042]图2示出了通过控制器50实施以对电池20充电同时抑制不需要的降挡的示例性算法100。在102处,发动机14提供驱动扭矩以推进车辆。M/G 18可以或可以不主动辅助发动机14推进车辆。当车辆行进时,在104处控制器连续监控电池20的S0C。当在106处确定电池20的SOC低于阈值电荷时,在108处控制器50使车辆进入发动机-充电模式。如上所述,在发动机-充电模式中,M/G 18将来自发动机14的扭矩转化为电能以增加S0C。在一个示例中,阈值为最大SOC的30%,然而该阈值可配置为其中需要对电池充电同时发动机14提供驱动扭矩的任何量。
[0043]一旦确定进入发动机-充电模式,控制器50准确确定对电池20充多少电。如图3B至图3C中进一步示出并且下文说明地,对电池充电的幅值可由△ τ表示,其为驾驶员需求的扭矩与当变速器在当前挡位下时估算的最大可用发动机扭矩之间的差。驾驶员需求的扭矩为加速器踏板位置的函数。当前挡位下的最大可用发动机扭矩由发动机管理系统、发动机控制模块或发动机控制器(比如上述控制器)来估算。其可包括当前(或特定)发动机速度和当前环境工况(比如环境压力、环境温度、发动机温度等)下的最大可达到曲轴扭矩。该最大扭矩计算还包括“实时”调节燃料浓缩和点火延迟(以补偿由于燃料辛烷导致的临界爆震限制)。控制器还可以以发动机映射过程期间产生的查找表来计算该值。当前挡位下的最大发动机扭矩还可限定为利用发动机扭矩映射的用于最佳(或可接受的)效率的最大可允许发动机扭矩。
[0044]在110处,Δτ为这两个值之间的差,表示多少扭矩可从发动机14分出来并且发送至M/G 18用于充电而不需要变速器的降挡。
[0045]如112处所示地,将继续对电池2 O充电基于Δ τ的幅值的量,直到S O C达到第二阈值,或直到发生换挡事件。在114处,发生该换挡。控制器50将基于例如驾驶员需求超过当前挡位下的最大可用发动机扭矩而使变速器齿轮箱24换挡。换言之,当最大可用发动机扭矩超过驾驶员需求的扭矩并且当前挡位下对电池20的充电将牺牲驱动扭矩预期时,变速器可换挡。例如,变速器齿轮箱24可降挡,由此提高发动机速度并且启用更好的环境用于满足驱动扭矩同时还对电池20充电。
[0046]图3Α至图3C示出了M/G18的速度(S卩,变速器输入速度)与基于最大发动机扭矩和驾驶员需求的充电策略之间的关系。如图3Α所示,变速器齿轮箱24处于第4挡并且发动机14开始为关闭的。基于例如电池20的SOC和/或扭矩需求,确定需要激活发动机14以满足驾驶员需求。如上文参考图1说明地,其通过关闭分离离合器26来完成。一旦发动机14被激活,匹配发动机14、M/G 18和变速器输入的速度。如图3A中示出地,在充电控制策略期间,发动机和Μ/G速度可保持相对恒定,同时动力传动系统中的扭矩分配存在变化。一旦发生从第4挡到第3挡的换挡事件,发动机14和M/G 18的速度提高。
[0047]图3B示出了基于Δτ的对电池20充电的量。第4挡下的最大可用发动机扭矩(由线150表示)与驾驶员需求的扭矩(由线152表示)之间的差Δτ随着驾驶员需求的改变而改变。发动机14的实际扭矩输出可保持在或稍微低于第4挡时对电池20充电期间的最大可用发动机扭矩。其允许最大量的电池充电同时满足驾驶员扭矩需求。因此当SOC低于例如阈值时,该策略是有利的。
[0048]一旦驾驶员扭矩需求超过发动机14的最大可用扭矩,控制器50指令变速器齿轮箱24换挡。其允许提高发动机速度,向M/G 18提供容量以对电池20充电同时仍然满足扭矩需求。一旦处于第3挡,算法可再次开始,在新的挡位下具有新的最大可用发动机扭矩。
[0049]图3C表示导致与图3Β的图示结果类似的图示结果的运转的另一实施例。图3C示出了被实施以更有效地对电池充电的上述控制策略。当更需要更有效地对电池20充电而不是以当前挡位下的最大可用发动机扭矩与驾驶员需求的扭矩之间的差对电池充电时,可实施该充电模式。在该模式中,控制器50可估算小于当前挡位下的最大发动机扭矩的可用于对电池20充电的剩余需求储备的量。换言之,代替对电池20充上述Δτ的电,控制器50可以基于(i)由线154表示的、大小小于当前挡位下的最大发动机扭矩的扭矩与(ii)再次由线152表示的、驾驶员需求的扭矩之间的差的幅值对电池充电。换言之,线154可为小于线150的受控的量。当小于最大发动机扭矩的扭矩(线154)的减少的扭矩大小超过驾驶员需求的扭矩(线152)时,可将挡位计划调节为降挡。因此当在更有效地电池充电系统激活之前可能发生降挡,如图3C中的情况。
[0050]应当理解,由于已知关系(即,功率=扭矩X速度),对涉及的“扭矩”可与“功率”互换,并且反之亦然。对“扭矩”的任何描述或限制不限于仅通过数学关系评估扭矩,能够对功率作出该相同的评估。例如,可以为可用发动机功率与驾驶员需求的功率之间的差的幅值功率对电池充电。
[0051]上文对Δτ的引用教导了以与驾驶员需求的扭矩与当变速器在当前挡位下运转时估算的最大可用发动机扭矩之间的差对应的量的对电池充电。当然,可运转发动机以输出低于发动机的实际最大扭矩输出的扭矩。为了抑制降挡以适当地对电池充电的必要,可运转发动机以处于或稍微低于本来通常标识需要降挡的大小的量输出扭矩。因此,A τ可被解释为(i)本来指示需要降挡的发动机扭矩输出与(ii)驾驶员需求之间的差。换言之,“当前挡位下的最大可用发动机扭矩”可被解释为包括在不需要降挡的情况下发动机可输出的最大扭矩。
[0052]应当理解,本申请使发动机能够在(或接近)其最大扭矩输出下运转同时满足驾驶员需求并且对电池充电而不降挡。例如,发动机可在其最大扭矩输出或在偏离其最大扭矩输出INm、5Nm或I ONm内运转。发动机能够保持在该输出范围内,直到驾驶员需求增加到高于最大可用发动机扭矩或电池充满电。
[0053]本说明书中公开的过程、方法或算法可传输到处理装置、控制器或计算机/由处理装置、控制器或计算机实现,处理装置、控制器或计算机可包括任何现存的可编程电子控制单元或专用电子控制单元。类似地,所述过程、方法或算法可被存储为可能以多种形式由控制器或计算机执行的数据和指令,这些数据或指令包括但是不限于永久地存储在不可写入存储介质(比如ROM装置)上的信息和可变地存储在可写入存储介质(比如软盘、磁带、CD、RAM装置、和其它磁性介质和光学介质)上的信息。所述过程、方法或算法还可在软件可执行对象中实现。可替代地,所述过程、方法或算法可利用合适的硬件组件(比如特定用途集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机、控制器或其它硬件组件或装置)或者硬件、软件和固件组件的组合而整体或部分地实现。
[0054]虽然上文描述了示例性实施例,但是并不意味着这些实施例描述了权利要求包含的所有可能的形式。说明书中使用的词语为描述性而非限定的词语,并且应理解,在不脱离本申请的精神和范围的情况下可作出各种改变。如之前描述的,可组合多个实施例的特征以形成可能没有明确描述或说明的本发明的进一步的实施例。虽然关于一个或多个期望特性,多个实施例可被描述为提供优点或优于其它实施例或现有技术的实施方式,但是本领域普通技术人员认识到,可以折中一个或多个特征或特性以实现期望的整体系统属性,其取决于具体应用和实施方式。这些属性可包括但不限于:成本、强度、耐用性、生命周期成本、市场性、外观、包装、尺寸、可维修性、重量、可制造性、装配的便利性等等。这样,关于一个或多个特性被描述为比其它实施例或现有技术实施方式更不令人期望的实施例并不在本申请的范围之外并并且可能期望用于特定应用。
【主权项】
1.一种车辆,包括: 电池; 电机,所述电机选择性地连接至变速器以选择性地提供驱动扭矩;和 控制器,所述控制器配置用于指令来自所述电机的电流以基于驾驶员需求的扭矩与所述变速器的当前挡位下的估算的最大可用发动机扭矩之间的差的幅值对所述电池充电。2.根据权利要去I所述的车辆,其中,所述控制器进一步配置用于:当以所述幅值对所述电池充电时,抑制所述变速器的降挡。3.根据权利要求2所述的车辆,其中,所述控制器进一步配置用于:基于所述驾驶员需求的扭矩超过所述当前挡位下的最大可用发动机扭矩,使所述变速器降挡。4.根据权利要求1所述的车辆,其中,所述控制器进一步配置用于:响应于所述电池的荷电状态小于电荷阈值,指令所述电流对所述电池充电。5.根据权利要求1所述的车辆,其中,所述控制器进一步配置用于:基于所述电池的荷电状态,改变所述变速器的换挡计划。6.根据权利要求1所述的车辆,其中,所述控制器进一步配置用于:指令所述发动机以超过所述驾驶员需求的扭矩的量输出扭矩和指令所述电机将至少一部分所述扭矩转化为待存储在所述电池中的电能。7.根据权利要求1所述的车辆,其中,所述电机电连接至所述电池并且通过离合器选择性地连接至发动机,使得所述电机可运转为马达以提供驱动扭矩和运转为发电机以产生用于电池的电能。
【文档编号】B60W20/13GK105905110SQ201610099283
【公开日】2016年8月31日
【申请日】2016年2月23日
【发明人】伯纳德·D·内佛西, 弗朗西斯·托马斯·康诺利, 马克·斯蒂芬·耶马扎基, 克里斯多佛·艾伦·李尔, 梁伟
【申请人】福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1