混合动力车辆的控制装置的制造方法

文档序号:10710139阅读:472来源:国知局
混合动力车辆的控制装置的制造方法
【专利摘要】本发明提供一种能够在电池的输入输出限制的范围内尽量抑制输出变动的混合动力车辆的控制装置。本发明的控制装置应用于在自动变速器(10)的输入侧设置有能够实施燃料过量供给的内燃机(2)和与电池(7)电连接的电动发电机(4、5)的混合动力车辆(1)。在自动变速器(10)的变速操作期间作为第2电动发电机(4)的工作模式而实施动力运行模式的情况下,在变速操作期间的惯性相的期间内实施燃料过量供给,在变速操作期间作为第2电动发电机(4)的工作模式而实施再生模式的情况下,在变速操作的完成后实施燃料过量供给。
【专利说明】
混合动力车辆的控制装置
技术领域
[0001]本发明涉及应用于如下混合动力车辆的控制装置,所述混合动力车辆在变速机构的输入侧设置有内燃机和电动发电机。
【背景技术】
[0002]作为混合动力车辆的控制装置,已知如下控制装置,该控制装置通过根据电池的充电状态灵活使用电动发电机的控制和电子节气门的控制,来抑制在自动变速器的变速操作期间产生的发动机转矩的变动(专利文献I)。除此之外,作为与本发明关联的现有技术文献,还存在专利文献2?4。
[0003]现有技术文献
[0004]专利文献I:日本特开2000-83303号公报
[0005]专利文献2:日本特开2012-240551号公报
[0006]专利文献3:日本特开2011-218945号公报
[0007]专利文献4:日本特开2004-203218号公报

【发明内容】

[0008]发明要解决的问题
[0009]专利文献I的装置通过电子节气门的控制来减少吸入空气量,降低发动机转矩。但是,电子节气门的控制伴随有吸入空气量的减少,所以燃料经济性会恶化。另外,可否进行电动发电机的控制受到电池的充电状态的影响,所以仅凭电动发电机的控制会有可能无法充分抑制发动机转矩的变动。因此,该控制装置,在发动机转矩的变动幅度大且仅凭电动发电机的控制无法抑制发动机转矩的变动的情况下,一并使用电动发电机的控制和电子节气门的控制。
[0010]另外,对于内燃机,不只是维持一个燃烧模式的内燃机,也存在实施伴随有空燃比变化的燃烧模式的变更的内燃机。若实施燃烧模式的变更,则伴随有空燃比变化,所以发动机功率会变动。在将这样的内燃机搭载于设置有变速机构的混合动力车辆的情况下,有可能产生因燃烧模式的变更而引起的输出变动、以及因变速机构的变速操作而引起的输出变动。
[0011 ]若这些输出变动在充分分开的正时产生,则能够通过电动发电机的控制来分别缓和。但是,在内燃机的燃烧模式的变更要求和变速机构的变速要求赶在一起的情况下,希望通过重新确定燃烧模式的变更和电动发电机的控制各自的实施正时,使得在能够避免电池的过充电和过放电的输入输出限制的范围内尽可能使输出变动不大。
[0012]于是,本发明的目的在于,提供在电池的输入输出限制的范围内能够尽量抑制输出变动的混合动力车辆的控制装置。
[0013]用于解决问题的技术方案
[0014]本发明的第I控制装置,应用于混合动力车辆,所述混合动力车辆在变速机构的输入侧设置有能够实施伴随有空燃比变化的燃烧模式的变更的内燃机和与电池电连接的电动发电机,所述控制装置具备:马达控制单元,其能够选择性地实施使用所述电池的电力而使所述电动发电机动力运行的动力运行模式和在所述电动发电机实施再生控制而对所述电池进行充电的再生模式;和发动机控制单元,其在所述燃烧模式的变更要求与所述变速机构的变速要求重叠了的情况下,在所述变速操作期间的惯性相期间内或在所述变速操作完成后实施所述燃烧模式的变更,所述发动机控制单元,若所述燃烧模式的变更是伴随有发动机功率增加的变更、且在所述变速操作期间实施所述动力运行模式,则在所述变速操作期间的惯性相期间内实施所述燃烧模式的变更,若所述燃烧模式的变更是伴随有发动机功率增加的变更、且在所述变速操作期间实施所述再生模式,则在所述变速操作完成后实施所述燃烧模式的变更。
[0015]在变速机构的变速操作期间需要使输入侧的旋转速度增加来抑制输出变动的情况下实施动力运行模式,在变速机构的变速操作期间需要使输入侧的旋转速度降低来抑制输出变动的情况下实施再生模式。由此,能抑制与变速机构的变速操作相伴的输出变动。
[0016]在变速操作期间实施动力运行模式的情况下,在惯性相的期间内实施伴随有发动机功率的增加的燃烧模式的变更,所以能够将该发动机功率的增加部分灵活运用于惯性相下的变速操作。由此,能够减少由动力运行模式的实施引起的电动发电机的消耗电力。另夕卜,与转矩相等相比,在惯性相下发动机转矩的变动不容易作为输出变动来传递。因此,通过在惯性相的期间内实施伴随有发动机功率的增加的燃烧模式的变更,能够在尽量抑制输出变动的同时,在变速操作期间灵活运用与燃烧模式的变更相伴的发动机功率的增加。
[0017]另一方面,在变速操作期间实施再生模式的情况下,在变速操作的完成后实施与发动机功率的增加相伴的燃烧模式的变更。若该变更在变速操作期间实施,则会向在再生模式下电动发电机进行发电而得到的电力上另加上与发动机功率的增加部分相当的电力,所以电池有可能会过充电。为了避免电池的过充电需要限制电动发电机的发电量,所以无法充分抑制输出变动。本发明的第I控制装置在变速操作完成后实施伴随有发动机功率的增加的燃烧模式的变更,所以通过实施再生模式而对电池充电的充电机会被分散。由此,能够在避免电池的过充电的同时,抑制输出变动。
[0018]在本发明的第I控制装置的一实施方式中,也可以是,所述发动机控制单元,不向抵消由所述燃烧模式的变更引起的发动机功率增加的方向控制发动机转矩地实施所述燃烧模式的变更。在对发动机进行吸入空气量的减少和/或点火正时的延迟等操作时,发动机转矩会降低,所以能够向抵消发动机功率的增加的方向控制发动机转矩。但是,燃烧效率会因这样的控制而降低,所以会伴随有燃料经济性恶化。根据该实施方式,由于不进行这样的控制,所以能够避免燃料经济性恶化。
[0019]在本发明的第I控制装置的一实施方式中,也可以是,所述内燃机构成为稀薄燃烧发动机,所述稀薄燃烧发动机能够切换以理论空燃比及其附近为目标的理想配比燃烧运转和以比所述理想配比燃烧运转的目标靠稀侧的空燃比为目标的稀燃烧运转,并且,在所述稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给,伴随有发动机功率增加的所述燃烧模式的变更是从所述稀燃烧运转向所述理想配比燃烧运转的切换或所述燃料过量供给的实施。根据该实施方式,伴随有发动机功率的增加的内燃机的从稀燃烧运转向理想配比燃烧运转的切换和/或燃料过量供给的实施能在恰当的正时进行,所以能够在电池的输入输出限制的范围内尽量抑制输出变动。
[0020]在本发明的第I控制装置的一实施方式中,也可以是,所述发动机控制单元,若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述动力运行模式,则在所述变速操作完成后实施所述燃烧模式的变更,若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述再生模式,则在所述变速操作期间的惯性相期间内实施所述燃烧模式的变更。
[0021]在变速操作期间实施动力运行模式的情况下,伴随有发动机功率的减少的燃烧模式的变更在变速操作的完成后实施。若假设该变更在变速操作期间实施,则会向在动力运行模式下由电动发电机消耗的电力另加上与发动机功率的减少部分相当的电力,所以电池有可能会过放电。根据该实施方式,由于在变速操作的完成后实施伴随有发动机功率的减少的燃烧模式的变更,所以由动力运行模式的实施引起的电池的放电机会被分散。由此,能够在避免电池的过放电的同时抑制输出变动。另一方面,在变速操作期间实施再生模式的情况下,伴随有发动机功率的减少的燃烧模式的变更在惯性相的期间内实施。因此,在再生模式下电动发电机进行发电而得到的发电量会减少与发动机功率的减少部分相应的量,所以电池不容易被过充电。另外,与转矩相等相比,在惯性相下,发动机转矩的变动较难作为输出变动来传递。因此,能够在避免电池的过充电的同时尽量抑制输出变动。
[0022]在该实施方式中,也可以是,所述内燃机构成为稀薄燃烧发动机,所述稀薄燃烧发动机能够切换以理论空燃比及其附近为目标的理想配比燃烧运转和以比所述理想配比燃烧运转的目标靠稀侧的空燃比为目标的稀燃烧运转,并且,在所述稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给,伴随有发动机功率增加的所述燃烧模式的变更是从所述稀燃烧运转向所述理想配比燃烧运转的切换或所述燃料过量供给的实施,伴随有发动机功率减少的所述燃烧模式的变更是从所述理想配比燃烧运转向所述稀燃烧运转的切换。根据该实施方式,内燃机的从稀燃烧运转向理想配比燃烧运转的切换、从理想配比燃烧运转向稀燃烧运转的切换、以及燃料过量供给的实施分别能在恰当的正时进行,所以能够在电池的输入输出限制的范围内尽量抑制输出变动。
[0023]本发明的第2控制装置,应用于混合动力车辆,所述混合动力车辆在变速机构的输入侧设置有能够实施伴随有空燃比变化的燃烧模式的变更的内燃机和与电池电连接的电动发电机,所述控制装置的特征在于,具备:马达控制单元,其能够选择性地实施使用所述电池的电力而使所述电动发电机动力运行的动力运行模式和在所述电动发电机实施再生控制而对所述电池进行充电的再生模式;和发动机控制单元,其在所述燃烧模式的变更要求和所述变速机构的变速要求重叠了的情况下,在所述变速操作期间的惯性相期间内或所述变速操作完成后实施所述燃烧模式的变更,所述发动机控制单元,若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述动力运行模式,则在所述变速操作完成后实施所述燃烧模式的变更,若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述再生模式,则在所述变速操作期间的惯性相期间内实施所述燃烧模式的变更。
[0024]在变速机构的变速操作期间需要使输入侧的旋转速度增加来抑制输出变动的情况下实施动力运行模式,在变速机构的变速操作期间需要使输入侧的旋转速度降低来抑制输出变动的情况下实施再生模式。由此,能抑制与变速机构的变速操作相伴的输出变动。在变速操作期间实施动力运行模式的情况下,在变速操作的完成后实施伴随着发动机功率的减少的变更。若假设在变速操作期间实施该变更,则会向在动力运行模式下电动发电机所消耗的电力上另加与发动机功率的减少部分相当的电力,所以电池有可能会过放电。根据本发明的第2控制装置,在变速操作的完成后实施伴随有发动机功率的减少的燃烧模式的变更,所以由动力运行模式的实施引起的使电池放电的放电机会被分散。由此,能够在避免电池的过放电的同时抑制输出变动。另一方面,在变速操作期间实施再生模式的情况下,在惯性相的期间内实施伴随有发动机功率的减少的燃烧模式的变更。因此,在再生模式下电动发电机进行发电而得到的发电量会减少与发动机功率的减少部分相应的量,所以电池不容被过充电。另外,与转矩相等相比,在惯性相下,发动机转矩的变动不容易作为输出变动来传递。因此,能够在避免电池的过充电的同时尽量抑制输出变动。
[0025]在本发明的第2控制装置的一实施方式中,也可以是,所述内燃机构成为稀薄燃烧发动机,所述稀薄燃烧发动机能够切换以理论空燃比及其附近为目标的理想配比燃烧运转和以比所述理想配比燃烧运转的目标靠稀侧的空燃比为目标的稀燃烧运转,并且,在所述稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给,伴随有发动机功率减少的所述燃烧模式的变更是从所述理想配比燃烧运转向所述稀燃烧运转的切换。根据该实施方式,伴随有发动机功率的减少的从理想配比燃烧运转向内燃机的稀燃烧运转的切换能在恰当的正时进行,所以能够在电池的输入输出限制的范围内尽量抑制输出变动。
[0026]发明的效果
[0027]如以上所说明,根据本发明的第I及第2控制装置,伴随有发动机功率的增加或减少的燃烧模式的变更根据变速操作期间的电动发电机的工作模式而在恰当的正时进行,所以能够在电池的输入输出限制的范围内尽量抑制输出变动。
【附图说明】
[0028]图1是表示应用了本发明的一实施方式的控制装置的混合动力车辆的整体结构的图。
[0029]图2是表示自动变速器工作接合表的图。
[0030]图3是表示图1的车辆的各元件的列线图(速度线图)的图。
[0031]图4是表示降档的变速要求与燃料过量供给(richspike)的实施要求重叠了的情况下的控制内容的时间图。
[0032]图5是表示升档的变速要求与燃料过量供给的实施要求重叠了的情况下的控制内容的时间图。
[0033]图6是表示变速要求与燃料过量供给的实施要求重叠了的情况的控制例程的一例的流程图。
[0034]图7是表示降档的变速要求和从理想配比燃烧运转向稀燃烧运转的切换要求重叠了的情况下的控制内容的时间图。
[0035]图8是表示升档的变速要求与从理想配比燃烧运转向稀燃烧运转的切换要求重叠了的情况下的控制内容的时间图。
[0036]图9是表示变速要求与从理想配比燃烧运转向稀燃烧运转的切换要求重叠了的情况下的控制例程的一例的流程图。
【具体实施方式】
[0037]如图1所示,车辆I构成为设置有内燃机2和2个电动发电机3、4来作为行驶用动力源的所谓的混合动力车辆。内燃机2、第I电动发电机3以及第2电动发电机4连结于动力分配机构5。
[0038]内燃机2构成为具备多个汽缸(未图示)的火花点火型的稀薄燃烧(leanburn)发动机。如周知那样,稀薄燃烧发动机能够切换以理论空燃比及其附近的空燃比作为目标的理想配比(stoic)燃烧运转、以及以比理想配比燃烧运转的目标靠稀侧的空燃比作为目标的稀燃烧运转。并且,在搭载于内燃机2的排气净化催化剂的排气净化功能因稀燃烧运转的持续而劣化了的情况下,为了使劣化了的排气净化功能恢复而在稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给。
[0039]对于从稀燃烧运转向理想配比燃烧运转的切换,考虑到吸入空气量的响应延迟而通过燃料喷射量的暂时的增加而在短时间实施该切换。在产生了吸入空气量的响应延迟的期间,需要通过燃料增加而从稀燃烧运转的目标空燃比(例如:22.1)切换到理想配比燃烧运转的目标空燃比(例如:14.7)。因此,燃料喷射量在空燃比的变更前后成为22.1/14.7 ?
1.5倍。由此,在变更前后若发动机转速相同,则内燃机2的发动机功率增加约50 %,若在变更前后发动机转速增加,则会增加约50%以上。另一方面,从理想配比燃烧运转向稀燃烧运转的切换通过暂时的燃料减少而实施,所以内燃机2的发动机功率会减少。另外,燃料过量供给的实施伴随有暂时的燃料增加,所以内燃机2的发动机功率会增加。这些燃烧模式的变更均伴随有空燃比的变化。从稀燃烧运转向理想配比燃烧运转的切换和燃料过量供给的实施相当于伴随有发动机功率的增加的燃烧模式的变更,从理想配比燃烧运转向稀燃烧运转的切换相当于伴随有发动机功率的减少的燃烧模式的变更。
[0040]各电动发电机3、4经由马达用控制装置6而与电池7连接。马达用控制装置6构成为包括未图示的变换器(inverter)的控制电路,将各电动发电机3、4进行发电而得到的电力转换成直流并对电池7进行充电,并且将电池7的电力转换成交流并向各电动发电机3、4供给。通过适当操作马达用控制装置6来控制各电动发电机3、4的工作。
[0041]动力分配机构5构成为单小齿轮型的行星齿轮机构,具备作为外齿轮的太阳轮Sn、作为内齿轮的齿圈R1、以及将与这些齿轮Sn、Ri啮合的小齿轮P支承为自转且公转自如的齿轮架Cr,这些旋转元件Sn、R1、Cr彼此能够差动旋转。太阳轮Sn连结第I电动发电机3,齿圈Ri经由传递轴8而连结第2电动发电机4,齿轮架Cr连结内燃机2的输出轴2a。第2电动发电机4相当于本发明的电动发电机。
[0042]在比第2电动发电机4靠驱动轮侧的动力传递路径设置有作为变速机构的自动变速器10。换言之,内燃机2和第2电动发电机4设置于自动变速器10的输入侧。自动变速器10具有2个输入轴11、12。在该输入轴11、12与传递轴8之间设置有2个离合器Cl、C2,所述传递轴8被连结成与齿圈Ri —体旋转。通过对该离合器C1、C2进行适当操作,能够从2个输入轴
I1、12中选择性地将一个输入轴与传递轴8连结。自动变速器10通过组合有两组行星齿轮机构21、22、并且设置有2个制动器B1、B2和单向离合器(one-way clutch)Fl而构成。两组行星齿轮机构21、22通过一方的齿轮架Crl和另一方的齿圈Ri2连结、并且一方的齿圈Ril与另一方的齿轮架Cr2连结,从而彼此组合。第I输入轴11与太阳轮Sn2连结,第2输入轴12与齿轮架Crl连结。齿轮架Cr2与用于驱动未图示的驱动轮的驱动轴23连结。在彼此连结的齿轮架Crl和齿圈Ri2设置有仅容许一个方向的旋转的单向离合器Fl。
[0043]在车辆I中,通过利用未图示的液压装置和控制阀使离合器Cl、C2和制动器B1、B2的操作状态适当变化,能够如图2的工作接合表所示那样从包括前进4档和后退I档的多个变速档中选择一个变速档。此外,图2的“N”是指空档,“?”是指离合器或制动器的接合状态。图2的空白栏是指离合器或制动器的释放状态。第I档(1st)、第2档(2nd)、第3档(3rd)、第4档(4th)、以及后退(Rev)分别设定彼此不同的变速比(齿数比)。在选择了图2中的第I档?第4档的各变速档的情况下的车辆I的各元件的列线图(速度线图)如图3所示。此外,图3的“Eng”是指内燃机2,“MG1”是指第I电动发电机3,“MG2”是指第2电动发电机4,“ΙηΓ是指第I输入轴11,“Ιη2”是指第2输入轴12。
[0044]如图1所示,车辆I的各部分的控制由作为计算机而构成的作为本发明的控制装置的电子控制装置(ECU)30进行控制。向ECU30输入来自各种传感器的信号。例如,向ECU30输入曲轴角传感器31、加速器开度传感器32、第I分解器(reSolver)33、第2分解器34、以及车速传感器35等的输出信号,所述曲轴角传感器31输出与内燃机2的发动机转速相应的信号,所述加速器开度传感器32输出与加速器踏板25的踩踏量相应的信号,所述第I分解器33输出与第I电动发电机3的旋转速度相应的信号,所述第2分解器34输出与第2电动发电机4的旋转速度相应的信号,所述车速传感器35基于驱动轴23的旋转速度输出与车辆I的车速相应的信号。
[0045]ECU30基于来自上述的各种传感器的信息和预定的程序,来控制第I电动发电机3和第2电动发电机4各自的工作,并且确定内燃机2的运转条件,按照该运转条件进行内燃机2的工作控制。而且,E⑶30进行自动变速器10的变速控制。
[0046]E⑶30参照加速器开度传感器32的输出信号和车速传感器35的输出信号来计算驾驶员对车辆I要求的要求功率,一边切换各种模式一边控制车辆I,以使得针对该要求功率的系统效率为最佳。例如,在内燃机2的热效率低下的低负荷区域,选择停止内燃机2的燃烧而驱动第2电动发电机4的EV行驶模式。另外,在仅凭借内燃机2则转矩会不足的情况下,选择将第2电动发电机4与内燃机2—起作为行驶用驱动源的混合动动力运行驶模式。
[0047]内燃机2由ECU30控制成以热效率作为原则而成为最佳。ECU30控制第I电动发电机3的马达转矩等,以使由发动机转速和发动机转矩定义的内燃机2的工作点沿着预先设定的最佳燃料经济性线移动。最佳燃料经济性线等按内燃机2的每个运转模式进行准备,ECU30实施与当前的运转模式相适合的内燃机2的控制。ECU30计测内燃机2的空燃比,进行反馈控制以使得所计测到的空燃比与当前的运转模式的目标空燃比的偏差减少。
[0048](运转模式的切换)
[0049]理想配比燃烧运转与稀燃烧运转之间的运转模式的切换通过由ECU30判定当前的运转条件是否属于由发动机转速和发动机转矩定义的理想配比燃烧区域以及稀燃烧区域中的任一者来实施。在内燃机2的运转条件自属于理想配比燃烧区域或稀燃烧区域中的任意一方的区域的状态变化为属于任意另一方的区域的状态的情况下,ECU30产生运转模式的切换要求,之后变更空燃比而切换运转模式。运转模式的切换要求相当于燃烧模式的变更要求。
[0050]从稀燃烧运转向理想配比燃烧运转的切换如上所述伴随有发动机功率的增加,所以若增加了的发动机功率就这样从驱动轴23输出,则会产生输出变动,车辆I的乘员会感到冲击。因此,ECU30向抵消与从稀燃烧运转向理想配比燃烧运转的切换相伴的发动机功率的增加的方向控制第2电动发电机4来抑制输出变动。另一方面,从理想配比燃烧运转向稀燃烧运转的切换如上所述伴随有发动机功率的减少,所以ECU30控制第2电动发电机4以弥补与该切换相伴的发动机功率的减少。
[0051](燃料过量供给的实施)
[0052]使稀燃烧运转继续则吸藏于未图示的排气净化催化剂的NOx的量逐渐增加而排气净化催化剂的净化功能会劣化。ECU30参照与NOx的吸藏量相关的各种参数而判断上述的燃料过量供给的必要性。并且,ECU30在有必要实施燃料过量供给的情况下,产生燃料过量供给的实施要求。燃料过量供给的实施要求相当于燃烧模式的变更要求。ECU30在燃料过量供给的实施要求成立了的情况下,实施燃料过量供给。燃料过量供给的实施如上所述伴随有暂时的燃料增加,所以内燃机2的发动机功率会增加。若增加了的发动机功率就这样从驱动轴23输出,则会产生输出变动,车辆I的乘员会感到冲击。因此,ECU30向抵消与燃料过量供给相伴的发动机功率的增加的方向控制第2电动发电机4来抑制输出变动。
[0053](自动变速器的变速控制)
[0054]E⑶30基于预定的档位计划(shift schedule)或由驾驶员提出的换档要求等来产生变速要求。并且,E⑶30控制自动变速器10的离合器Cl、C2和制动器B1、B2,以实现与变速要求对应的变速档。从自动变速器10的变更操作的开始到变速操作的完成为止的期间划分为自动变速器1的输入侧的旋转速度为大致恒定的转矩相的期间和该旋转速度变化的惯性相的期间(参照图4等)。
[0055]在使自动变速器10降档的情况下,自动变速器10的输入侧的旋转速度在降档前后上升。在使自动变速器10升档的情况下,自动变速器10的输入侧的旋转速度在升档前后降低。因此,为了抑制与自动变速器10的变速操作相伴的输出变动,需要进行如下操作:使自动变速器10的输入侧的旋转速度(输入轴11、12的旋转速度)在操作开始后上升或降低,使旋转速度与输出侧同步。在本实施方式中,为了抑制与变速操作相伴的输出变动,通过选择性地实施使第2电动发电机4动力运行的动力运行模式和在第2电动发电机4进行再生控制的再生模式,来实现自动变速器10的输入侧的旋转速度的上升或降低。由此,ECU30作为本发明的马达控制单元而发挥功能。
[0056]动力运行模式是使用电池7的电力而使第2电动发电机4动力运行的工作模式。动力运行模式使第2电动发电机4作为电动机发挥功能。另一方面,再生模式是在第2电动发电机实施再生控制而对电池7进行充电的工作模式。再生控制使第2电动发电机4作为发电机发挥功能,将输入第2电动发电机4的机械能转换为电能。
[0057](燃烧模式的变更要求与变速要求的重叠)
[0058]本实施方式的特征在于如下控制:在燃料过量供给的实施要求以及稀燃烧运转和理想配比燃烧运转之间的运转模式的切换要求等燃烧模式的变更要求与针对自动变速器10的变速要求重叠了的情况下,ECU30所实施的控制。如上所述,对于燃烧模式的变更,作为伴随有发动机功率的增加的燃烧模式的变更,存在燃料过量供给的实施和从稀燃烧运转向理想配比燃烧运转的切换,作为伴随有发动机功率的减少的燃烧模式的变更,存在从理想配比燃烧运转向稀燃烧运转的切换。另外,对于变速操作,存在实施使自动变速器10的输入侧的旋转速度上升的动力运行模式的情况、以及实施使该旋转速度降低的再生模式的情况。此外,对于燃烧模式的变更要求与变速要求“重叠了的情况”,除了 “在从产生变速要求到变速操作实际开始之前即到上述的转矩相的期间开始为止的期间产生了燃烧模式的变更要求的情况”以外,还包括“在从产生变速要求而变速操作实际开始到转矩相的期间结束为止的期间即在转矩相的期间中产生了燃烧模式的变更要求的情况”、以及“与变速要求同时地产生了燃烧模式的变更要求的情况”。另外,“重叠了的情况”也包括“在从产生燃烧模式变更要求到实际实施燃烧模式的变更为止的期间产生了变速要求的情况”。
[0059](伴随有发动机功率的增加的情况:燃料过量供给的实施)
[0060]图4示出了降档的变速要求与燃料过量供给的实施要求重叠了的情况下的各参数的时间变化。在图4的情形中,在时刻tl产生了降档的变速要求,在时刻t2产生了燃料过量供给的实施要求。在后产生的燃料过量供给的实施要求的产生时刻,降档和燃料过量供给均处于处理开始前,所以成为了这些要求重叠了的状态。此外,降档的变速要求和燃料过量供给的实施要求同时或与图4的情形相反地燃料过量供给的实施要求在降档的变速要求之前产生的情况下,也成为这些要求重叠了的状态。
[0061 ]在时刻t3使变速操作开始。变速操作根据变速模式而使离合器Cl、C2和/或制动器B1、B2的释放操作成为开始的起点。在变速操作开始后,在输入侧的旋转速度为大致恒定的状态下驱动轴23的转矩降低。从变速操作开始了的时刻t3到驱动轴23的转矩的降低结束的时刻t4为止的期间属于转矩相Tf的期间。
[0062]从转矩相Tf的期间结束的时刻t4到变速操作完成的时刻t6为止的期间为惯性相If的期间。由于图4的情形是降档的情况,所以利用第2电动发电机4实施使自动变速器10的输入侧的旋转速度上升的动力运行模式。从惯性相If所开始的时刻t4起,开始实施动力运行模式,由此使得输入侧的旋转速度上升。由于在此期间使用电池7的电力来使第2电动发电机4动力运行,所以电池功率成为意味着放电的正值,第2电动发电机4的马达转矩也成为意味着动力运行的正值。
[0063]燃料过量供给在动力运行模式的实施的开始后且惯性相If的期间内的时刻t5实施。通过实施燃料过量供给来进行使空燃比暂时向浓侧变化的燃料增加,所以内燃机2的发动机转矩和发动机功率均阶跃性地增加。之后,在时刻t6完成变速操作而结束处理。
[0064]在图4的情形中,由于燃料过量供给在惯性相If的期间内实施,所以能够将该发动机功率的增加部分灵活运用于惯性相If时的变速操作。因此,能够减少由动力运行模式的实施引起的第2电动发电机4的功耗。另外,与转矩相Tf等相比,惯性相If时的发动机转矩的变动不容易作为输出变动而传递。因此,通过在惯性相If的期间内实施燃料过量供给,能够在尽量抑制输出变动的同时,将与燃料过量供给的实施相伴的发动机功率的增加灵活运用在变速操作期间。
[0065]图5示出了升档的变速要求与燃料过量供给的实施要求重叠了的情况下的各参数的时间变化。在该情形下,在时刻tl产生了升档的变速要求,在时刻t2产生了燃料过量供给的实施要求。关于2个要求相重叠的情况的解释与上述相同。
[0066]在时刻t3使变速操作开始。变速操作根据变速模式而使离合器Cl、C2和/或制动器B1、B2的释放操作成为开始的起点。在变速操作开始后,在输入侧的旋转速度为大致恒定的状态下驱动轴23的转矩降低。从变速操作开始了的时刻t3到驱动轴23的转矩的降低结束的时刻t4为止的期间属于转矩相Tf的期间。
[0067]从转矩相Tf的期间结束的时刻t4到变速操作完成的时刻t5为止的期间为惯性相If的期间。由于图5的情形为升档的情况,所以利用第2电动发电机4实施使自动变速器10的输入侧的旋转速度降低的再生模式。从惯性相If所开始的时刻t4起,开始实施再生模式,由此使得输入侧的旋转速度降低。在此期间,实施使用第2电动发电机4的再生控制,利用由第2电动发电机4发电得到的电力来对电池7进行充电。因此,电池功率成为意味着充电的负值,第2电动发电机4的马达转矩也成为意味着再生的负值。
[0068]燃料过量供给在变速操作的完成后的时刻t6实施。通过实施燃料过量供给来进行使空燃比暂时向浓侧变化的燃料增加,所以内燃机2的发动机转矩和发动机功率均阶跃性地增加。与燃料过量供给的实施同步地,在第2电动发电机4实施再生控制,以抵消发动机转矩和发动机功率的增加。由于实施该再生控制,因此第2电动发电机4的马达转矩成为负值,电池功率也成为负值。
[0069]在图5的情形中,燃料过量供给在升档的变速操作的完成后实施。如果在变速操作期间实施燃料过量供给,则与发动机功率的增加的部分相当的电力会另加到与在再生模式下第2电动发电机4发电而得到的电力上,从而电池7有可能过充电。为了避免电池7的过充电而需要限制第2电动发电机4的发电量,所以无法充分抑制输出变动。在本实施方式中,由于在升档的变速操作的完成后实施燃料过量供给,所以因实施再生模式而对电池7充电的充电机会被分散。即,在图5的情形中,充电机会被分散在时刻t4?时刻15的期间和时刻16以后的期间。由此,能够在避免电池4的过充电的同时,抑制输出变动。
[0070]参照图4和图5的发动机转矩的变化可知,ECU30不向抵消与燃料过量供给的实施相伴的发动机功率的增加的方向控制发动机转矩。作为这样的发动机转矩的控制,已知吸入空气量的减少、点火正时的延迟等控制。若对内燃机2进行这样的控制则燃烧效率会降低,所以伴随有燃料经济性恶化。在本实施方式中,由于不进行这样的控制,所以能够避免燃料经济性恶化。
[0071]关于上述的图4和图5的各控制,可通过ECU30执行例如图6的控制例程而实现。图6的控制例程的程序保持在ECU30,被适时地读取并按预定间隔反复执行。
[0072]在步骤SI中,ECU30判定是否存在针对自动变速器10的降档或升档的变速要求。关于是否存在变速要求,ECU30通过参照与图6的控制例程一并执行的针对自动变速器10的变速控制的控制结果来进行判定。在存在变速要求的情况下进入步骤S2,在不是这样的情况下跳过以后的处理而结束此次的例程。
[0073]在步骤S2中,ECU30判定是否存在燃料过量供给的实施要求。在存在燃料过量供给的实施要求的情况下进入步骤S3,在不是这样的情况下跳过以后的处理而结束此次的例程。
[0074]在步骤S3中,ECU30判定是否在变速操作期间实施伴随有电池7的放电的动力运行模式。由于动力运行模式在变速操作为降档的情况下实施,所以ECU30通过参照变速要求的内容来判定是否实施动力运行模式。在变速操作期间实施动力运行模式的情况下进入步骤S4,在不实施动力运行模式的情况下即实施再生模式的情况下进入步骤S7。
[0075]在步骤S4中,ECU30实施判定是否处于惯性相的期间的判定处理。关于是否为惯性相,通过基于设置于自动变速器10的未图示的控制阀的各部分的液压而检测自动变速器10的离合器C1、C2和/或制动器B1、B2的操作状态来进行判定。在步骤S5中ECU30判定在当前时刻是否属于惯性相,在不是惯性相的情况下使处理返回步骤S4而继续进行判定处理。在是惯性相的情况下,ECU30使处理进入步骤S6,在惯性相的期间内实施燃料过量供给。
[0076]在步骤S7中,E⑶30实施判定自动变速器10的变速操作是否已完成的判定处理。对于该判定处理,与步骤S4的判定处理同样地,通过基于控制阀的各部分的液压而检测自动变速器10的离合器Cl、C2和/或制动器B1、B2的操作状态来实施。在步骤S8中判定变速操作是否已完成,在变速操作未完成的情况下使处理返回到步骤S7而继续进行判定处理。在变速操作已完成的情况下ECU30使处理进入步骤S6,在变速操作的完成后实施燃料过量供给。并且,结束此次的例程。ECU30通过执行图6的控制例程而作为本发明的发动机控制单元发挥功能。
[0077](伴随有发动机功率的增加的情况:稀燃烧运转—理想配比燃烧运转的切换)
[0078]如上所述,从稀燃烧运转向理想配比燃烧运转的切换通过暂时的燃料增加来实施,所以伴随有发动机功率的增加。该切换在伴随有发动机功率的增加这点与燃料过量供给的实施共通,在该切换要求与变速要求重叠了的情况下实施的处理内容与在上述的燃料过量供给的实施时进行的处理是同样的。因此,该处理内容与将上述的说明内容和图6的流程图中的“燃料过量供给”的部分替换地读成“从稀燃烧运转向理想配比燃烧运转的切换”后的内容相同。因此,省略重复的说明。
[0079](伴随有发动机功率的减少的情况:理想配比燃烧运转—稀燃烧运转的切换)
[0080]图7示出了降档的变速要求和从理想配比燃烧运转向稀燃烧运转的切换要求重叠了的情况下的各参数的时间变化。在该情形下,在时刻tl产生了降档的变速要求,在时刻t2产生了从理想配比燃烧运转向稀燃烧运转的切换要求。关于两个要求相重叠的情况的解释与上述相同。
[0081 ]在时刻t3使变速操作开始。变速操作根据变速模式而使离合器Cl、C2和/或制动器B1、B2的释放操作成为开始的起点。在变速操作开始后,在输入侧的旋转速度为大致恒定的状态下驱动轴23的转矩降低。从变速操作开始了的时刻t3到驱动轴23的转矩的降低结束的时刻t4为止的期间属于转矩相Tf的期间。
[0082]从转矩相Tf的期间结束的时刻t4到变速操作完成的时刻t5为止的期间为惯性相If的期间。由于图7的情形是降档的情况,所以利用第2电动发电机4实施使自动变速器10的输入侧的旋转速度上升的动力运行模式。从惯性相If所开始的时刻t4起,开始实施动力运行模式,由此使得输入侧的旋转速度上升。由于在此期间使用电池7的电力来使第2电动发电机4动力运行,所以电池功率成为意味着放电的正值,第2电动发电机4的马达转矩也成为意味着动力运行的正值。
[0083]从理想配比燃烧运转向稀燃烧运转的切换在变速操作的完成后的时刻t6实施。通过实施该切换来进行使空燃比暂时向稀侧变化的燃料减少,所以内燃机2的发动机转矩和发动机功率均阶跃性地减少。与运转模式的切换同步地,使第2电动发电机4动力运行,以弥补发动机转矩和发动机功率的减少。由此,第2电动发电机4的马达转矩成为正值,电池功率也成为正值。
[0084]在图7的情形下,伴随有发动机功率的减少的从理想配比燃烧运转向稀燃烧运转的切换在变速操作的完成后实施。如果该切换在变速操作期间实施,则与发动机功率的减少的部分相当的电力会另加到在动力运行模式下第2电动发电机4所消耗的电力上,所以电池7有可能过放电。在本实施方式中,在变速操作的完成后实施伴随有发动机功率的减少的从理想配比燃烧运转向稀燃烧运转的切换,所以因实施动力运行模式而使电池7放电的放电机会被分散。具体而言,放电机会被分散在从时刻t4到时刻t6为止的期间和时刻t6以后的期间。由此,能够在避免电池7的过放电的同时,抑制输出变动。
[0085]图8示出了升档的变速要求和从理想配比燃烧运转向稀燃烧运转的切换要求重叠了的情况下的各参数的时间变化。在该情形下,在时刻tl产生了升档的变速要求,在时刻t2产生了从理想配比燃烧运转向稀燃烧运转的切换要求。关于两个要求相重叠的情况的解释与上述相同。
[0086]在时刻t3使变速操作开始。变速操作根据变速模式而使离合器Cl、C2和/或制动器B1、B2的释放操作成为开始的起点。在变速操作开始后,在输入侧的旋转速度为大致恒定的状态下驱动轴23的转矩降低。从变速操作开始了的时刻t3到驱动轴23的转矩的降低结束的时刻t4为止的期间属于转矩相Tf的期间。
[0087]从转矩相Tf的期间结束的时刻t4到变速操作完成的时刻t6为止的期间为惯性相If的期间。由于图8的情形为升档的情况,所以利用第2电动发电机4实施使自动变速器10的输入侧的旋转速度降低的再生模式。从惯性相If所开始的时刻t4起,开始实施再生模式,由此使得输入侧的旋转速度降低。在此期间使用第2电动发电机4实施再生控制,利用第2电动发电机4发电而得到的电力对电池7进行充电。因此,电池功率成为意味着充电的负值,第2电动发电机4的马达转矩也成为意味着再生的负值。
[0088]从理想配比燃烧运转向稀燃烧运转的切换在再生模式的实施的开始后且惯性相If的期间内的时刻t5实施。通过该切换来进行使空燃比暂时向稀侧变化的燃料减少,所以内燃机2的发动机转矩和发动机功率均阶跃性地减少。之后,在时刻t6,变速操作完成,处理结束。
[0089]在图8的情形下,伴随有发动机功率的减少的从理想配比燃烧运转向稀燃烧运转的切换在惯性相If的期间内实施。因此,在再生模式下,第2电动发电机4发电而得到的发电量减少与发动机功率的减少部分相应的量,所以电池7不容易过充电。另外,与转矩相Tf等相比,惯性相If时的发动机转矩的变动不容易作为输出变动而传递。因此,能够在避免电池7的过充电的同时,尽量抑制输出变动。
[0090]关于上述的图7和图8的各控制,可通过ECU30执行例如图9的控制例程而实现。图9的控制例程的程序保持在ECU30,被适时地读取并按预定间隔反复执行。
[0091]在步骤Sll中,ECU30判定是否存在针对自动变速器10的降档或升档的变速要求。关于是否存在变速要求,ECU30通过参照与图9的控制例程一并执行的针对自动变速器10的变速控制的控制结果来进行判定。在存在变速要求的情况下进入步骤S12,在不是这样的情况下跳过以后的处理而结束此次的例程。
[0092]在步骤S12中,ECT30判定是否存在从理想配比燃烧运转向稀燃烧运转的切换要求。在存在该切换要求的情况下进入步骤S13,在不是这样的情况下跳过以后的处理而结束此次的例程。
[0093]在步骤S13中,ECU30判定是否在变速操作期间实施伴随有电池7的充电的再生模式。由于再生模式在变速操作升档的情况下实施,所以ECU30通过参照变速要求的内容来判定是否实施再生模式。在变速操作期间实施再生模式的情况下进入步骤S14,在不实施再生模式的情况下即实施动力运行模式的情况下进入步骤S17。
[0094]在步骤S14中,ECU30实施判定是否处于惯性相的期间的判定处理。关于是否为惯性相,与上述同样地进行判定。在步骤S15中ECU30判定在当前时刻是否属于惯性相,在不是惯性相的情况下使处理返回步骤S14而继续进行判定处理。在是惯性相的情况下,ECU30使处理进入步骤S16,在惯性相的期间内实施从理想配比燃烧运转向稀燃烧运转的切换。
[0095]在步骤S17中,E⑶30实施判定自动变速器10的变速操作是否已完成的判定处理。对于该判定处理与上述同样即可。在步骤S18中判定变速操作是否已完成,在变速操作未完成的情况下使处理返回到步骤S17而继续进行判定处理。在变速操作已完成的情况下ECU30使处理进入步骤S16,在变速操作的完成后实施从理想配比燃烧运转向稀燃烧运转的切换。然后,结束此次的例程。E⑶30通过执行图9的控制例程而作为本发明的发动机控制单元发挥功能。
[0096]本发明不限于上述实施方式,在本发明的主旨的范围内,能够通过各种实施方式来实施。在上述实施方式中,实施伴随有发动机功率的增加的燃烧模式的变更与变速要求重叠了的情况下的控制(图4?图6)、以及伴随有发动机功率的减少的燃烧模式的变更与变速要求重叠了的情况下的控制(图7?图9)这两者,但也可以通过实施任意一方的方式来实施本发明。
[0097]另外,在上述实施方式中,未实施吸入空气量的减少、点火延迟等使内燃机2的转矩降低的控制来抑制因燃烧模式的变更而产生的发动机功率的增加。然而,也可以以容许实施该控制的方式来实施本发明。在该实施方式中,与不实施本发明的控制的情况相比,能够使吸入空气量的减少程度小和/或能够使点火延迟量减少,所以也存在改善燃料经济性的优点。
[0098]上述实施方式的混合动力车辆只不过是一例。只要是如下混合动力车辆,就能够作为本发明的适用对象,所述混合动力车辆具备如下结构:在自动变速器的上游侧设置有至少一个电动发电机,并且该能够通过使电动发电机的工作模式运行在动力运行模式或再生模式来抑制与变速操作相伴的输出变动。
[0099]燃烧模式的变更不限于上述实施方式所例示的燃料过量供给、以及理想配比燃烧运转与稀燃烧运转之间的运转模式的切换。只要是使内燃机伴随有空燃比的变化,就属于燃烧模式的变更,就能够应用本发明。
[0100]变速机构不限于上述实施方式的自动变速器。只要是使多个变速档选择性地成立、且存在转矩相和惯性相的形式的变速机构,就能够作为适用对象。不仅是利用行星齿轮机构的自动变速器,也可以将设置有如下变速器作为变速机构的混合动力车辆设为本发明的适用对象,所述变速器是输入轴与输出轴平行配置并通过致动器使齿轮对的选择操作和离合器操作自动化的自动手动变速器(AMT:automatic manual transmiss1n)。
[0101]附图标记说明
[0102]I混合动力车辆;2内燃机;4第2电动发电机(电动发电机);10自动变速器(变速机构)。
【主权项】
1.一种混合动力车辆的控制装置,应用于混合动力车辆,所述混合动力车辆在变速机构的输入侧设置有能够实施伴随有空燃比变化的燃烧模式的变更的内燃机和与电池电连接的电动发电机,所述控制装置的特征在于,具备: 马达控制单元,其能够选择性地实施使用所述电池的电力而使所述电动发电机动力运行的动力运行模式和在所述电动发电机实施再生控制而对所述电池进行充电的再生模式;和 发动机控制单元,其在所述燃烧模式的变更要求与所述变速机构的变速要求重叠了的情况下,在所述变速操作期间的惯性相期间内或在所述变速操作完成后实施所述燃烧模式的变更, 所述发动机控制单元, 若所述燃烧模式的变更是伴随有发动机功率增加的变更、且在所述变速操作期间实施所述动力运行模式,则在所述变速操作期间的惯性相期间内实施所述燃烧模式的变更,若所述燃烧模式的变更是伴随有发动机功率增加的变更、且在所述变速操作期间实施所述再生模式,则在所述变速操作完成后实施所述燃烧模式的变更。2.根据权利要求1所述的控制装置, 所述发动机控制单元,不向抵消由所述燃烧模式的变更引起的发动机功率增加的方向控制发动机转矩地实施所述燃烧模式的变更。3.根据权利要求1或2所述的控制装置, 所述内燃机构成为稀薄燃烧发动机,所述稀薄燃烧发动机能够切换以理论空燃比及其附近为目标的理想配比燃烧运转和以比所述理想配比燃烧运转的目标靠稀侧的空燃比为目标的稀燃烧运转,并且,在所述稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给, 伴随有发动机功率增加的所述燃烧模式的变更是从所述稀燃烧运转向所述理想配比燃烧运转的切换或所述燃料过量供给的实施。4.根据权利要求1或2所述的控制装置, 所述发动机控制单元, 若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述动力运行模式,则在所述变速操作完成后实施所述燃烧模式的变更, 若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述再生模式,则在所述变速操作期间的惯性相期间内实施所述燃烧模式的变更。5.根据权利要求4所述的控制装置, 所述内燃机构成为稀薄燃烧发动机,所述稀薄燃烧发动机能够切换以理论空燃比及其附近为目标的理想配比燃烧运转和以比所述理想配比燃烧运转的目标靠稀侧的空燃比为目标的稀燃烧运转,并且,在所述稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给, 伴随有发动机功率增加的所述燃烧模式的变更是从所述稀燃烧运转向所述理想配比燃烧运转的切换或所述燃料过量供给的实施, 伴随有发动机功率减少的所述燃烧模式的变更是从所述理想配比燃烧运转向所述稀燃烧运转的切换。6.—种混合动力车辆的控制装置,应用于混合动力车辆,所述混合动力车辆在变速机构的输入侧设置有能够实施伴随有空燃比变化的燃烧模式的变更的内燃机和与电池电连接的电动发电机,所述控制装置的特征在于,具备: 马达控制单元,其能够选择性地实施使用所述电池的电力而使所述电动发电机动力运行的动力运行模式和在所述电动发电机实施再生控制而对所述电池进行充电的再生模式;和 发动机控制单元,其在所述燃烧模式的变更要求和所述变速机构的变速要求重叠了的情况下,在所述变速操作期间的惯性相期间内或所述变速操作完成后实施所述燃烧模式的变更, 所述发动机控制单元, 若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述动力运行模式,则在所述变速操作完成后实施所述燃烧模式的变更, 若所述燃烧模式的变更是伴随有发动机功率减少的变更、且在所述变速操作期间实施所述再生模式,则在所述变速操作期间的惯性相期间内实施所述燃烧模式的变更。7.根据权利要求6所述的控制装置, 所述内燃机构成为稀薄燃烧发动机,所述稀薄燃烧发动机能够切换以理论空燃比及其附近为目标的理想配比燃烧运转和以比所述理想配比燃烧运转的目标靠稀侧的空燃比为目标的稀燃烧运转,并且,在所述稀燃烧运转期间实施使空燃比暂时向浓侧变化的燃料过量供给, 伴随有发动机功率减少的所述燃烧模式的变更是从所述理想配比燃烧运转向所述稀燃烧运转的切换。
【文档编号】B60W10/06GK106080578SQ201610255324
【公开日】2016年11月9日
【申请日】2016年4月22日 公开号201610255324.9, CN 106080578 A, CN 106080578A, CN 201610255324, CN-A-106080578, CN106080578 A, CN106080578A, CN201610255324, CN201610255324.9
【发明人】木下刚生, 菅野善仁, 森田泰毅, 泉冈太辅
【申请人】丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1