在主体部具有凹凸加工部的气溶胶用罐体及其制造方法与流程

文档序号:22507638发布日期:2020-10-13 09:47阅读:144来源:国知局
在主体部具有凹凸加工部的气溶胶用罐体及其制造方法与流程

本发明涉及利用高压将气溶胶封入的罐体,特别涉及在主体部设置有利用击凸加工或压凹加工等的凹凸加工部的罐体及其制造方法。



背景技术:

专利文献1中记载有上下一体型的气溶胶用金属罐。在该金属罐中,对无锡钢板等钢制的薄板实施拉深加工、减薄加工而形成圆筒状的罐主体,在该罐主体的一个开口端(下端开口部)拧紧安装有底盖。另外,罐主体另一个端部通过缩径加工而形成为截面圆弧状的圆顶形,在该圆顶状的部分的末端中央部形成有用于安装气门的开口卷边部。

另外,专利文献2中记载有具有突筋状的薄壁的气溶胶容器。该罐主体部是铝制,构成为圆筒状的薄壁与底盖部成型为一体,底盖部形成为朝向罐主体部的内部突出的圆顶状,另外在圆筒状的薄壁的整体且沿薄壁的高度方向交替且连续地形成有遍及整周上的凸条部和凹槽部。而且,在罐主体部的上端开口部安装有具有喷嘴的圆盖。

专利文献1:日本特开2004-276068号公报

专利文献2:日本特表2005-538003号公报

若在金属罐的主体部设置突筋等凹凸加工部,则像专利文献2中记载的那样,难以产生内部的压力引起的变形。因此,能够想到若在专利文献1中记载的金属罐的主体部形成这种凹凸加工部,则能够使该主体部的壁厚较薄。然而,引用文献2中记载的容器是铝制,相对于此专利文献1中记载的金属罐是钢制,因此在专利文献1中记载的金属罐形成凹凸加工部所需要的载荷为与铝等所谓的软质材料的情况相比非常大的载荷。

另外,专利文献1中记载的金属罐是所谓的肩部呈圆顶状,且圆筒状的部分在其下侧连续地形成的形状,若形成凹凸加工部,则形成于该圆筒状的部分。因此,在圆筒状的所谓的主体部中的上端部存在有凹凸加工部的部分、和与圆顶状的肩部相连的没有凹凸加工部的单纯的圆筒状的部分。在专利文献2中记载的构成中在圆筒状的薄壁的整体形成有突筋,因此不产生壁厚、截面形状等急剧变化的部位,若在与圆顶状的肩部连续的圆筒状的部分形成凹凸加工部,则如上所述在因凹凸加工部的有无而产生的边界部分处,壁厚、截面形状等急剧变化。因此,存在这样的边界部分成为强度降低重要因素的可能性。

特别是,在专利文献1中记载的那样的下端开口部与上端侧的开口卷边部的开口直径较大地不同的罐体中,用于支承配置于罐体的内部的内模具(内部器具)的部件的刚性相对于下端部侧在上端部侧较低,因此针对用于将凹凸加工部成型的载荷的阻力在上端部侧较小。能够想到为了矫正该点而将外模具(外部器具)或内模具中的任一方设置为其上部朝向另一方地倾斜,并进行考虑了支承刚性较低引起的挠曲的加工。然而,那样的外模具或内模具的倾斜在成型载荷作用于罐体或罐主体的轴线方向上的整体的状态下根据载荷分布来设定。因此,在与其不同的状态下,具体而言在凹凸加工部的成型开始点,外模具与内模具的相对的倾斜引起成型载荷仅集中在极窄的部分。因此,存在产生加工深度局部地变深,或者产生龟裂等壁厚、截面形状等急剧变化的部位,而因此造成罐体或罐主体的压曲强度降低的可能性。



技术实现要素:

本发明是着眼于上述的技术课题而完成的,其目的在于使在与截面圆弧的圆顶状的肩部连续的圆筒状的主体部设置有凹凸加工部的气溶胶用罐体的压曲强度提高,以及提供制造那样的气溶胶罐体的方法。

为了实现上述的目的,本发明是一种在主体部具有凹凸加工部的气溶胶用罐体,其在由钢板形成为无缝的圆筒状的主体部的一个端部形成有供底盖安装的下端开口部,在上述主体部的另一个端部与上述主体部连续地形成有截面呈弧形的圆顶状的肩部,并且在上述肩部的末端中央部形成有比上述下端开口部直径小的开口卷边部,在上述主体部中的上述肩部侧的上端部与上述下端开口部侧的下端部之间形成有使上述主体部沿上述主体部的壁厚方向凹凸地变形的凹凸加工部,上述在主体部具有凹凸加工部的气溶胶用罐体的特征在于,在上述主体部的上部设置包含上述凹凸加工部的上端部在内的沿上述主体部的轴线方向的规定宽度的上部区域,上述主体部中的至少上述上部区域的维氏硬度为200hv以上且250hv以下。

在本发明的在主体部具有凹凸加工部的气溶胶用罐体中,上述上部区域进行加工固化而使上述上部区域的维氏硬度高于上述主体部中的比上述上部区域靠下侧的部分的维氏硬度,并且上述上部区域的维氏硬度为200hv以上且250hv以下。

另外,在本发明的在主体部具有凹凸加工部的气溶胶用罐体中,上述上部区域的壁厚为0.18mm以上且0.28mm以下,并且上述主体部中的比上述上部区域靠下侧的部分的壁厚是0.16mm以上且0.22mm以下,上述上部区域的壁厚厚于上述主体部中的比上述上部区域靠下侧的部分的壁厚,由此使上述上部区域的维氏硬度高于上述主体部中的比上述上部区域靠下侧的部分的维氏硬度。

并且,在本发明的在主体部具有凹凸加工部的气溶胶用罐体中,在将上述底盖安装于上述下端开口部的状态下的压曲强度可以为1700n以上且2500n以下。

另一方面,本发明的方法是在主体部具有凹凸加工部的气溶胶用罐体的制造方法,该气溶胶用罐体在底盖被安装于下端开口部的钢板制的主体部形成有凹凸加工部,与上述主体部的上端部连续地形成截面弧形的圆顶状的肩部,在上述肩部的末端中央部形成有比上述下端开口部直径小的开口卷边部,上述气溶胶用罐体的制造方法的特征在于,将上述主体部中的包含上述凹凸加工部的上端部在内的沿上述主体部的轴线方向的规定宽度的部分作为上部区域,在通过拉深加工或者减薄加工将上述主体部成型为圆筒状时,将上述主体部中的至少上述上部区域的维氏硬度设定为200hv以上且250hv以下,接着,以与上述主体部的上端部连续的状态形成上述肩部,在上述肩部的末端中央部形成上述开口卷边部,在使形成了上述肩部以及上述开口卷边部的上述罐体嵌合于内模具的状态下,一边将上述主体部按压于以上端部向上述内模具侧靠近的方式进行倾斜的外模具的表面一边进行转动,从而通过上述内模具和上述外模具来形成上述凹凸加工部。

在本发明的方法中,也可以是在将上述主体部拉深加工或者减薄加工时,使上述上部区域的加工固化的程度高于比上述上部区域靠下侧的部分的加工固化的程度,或者使上述上部区域的壁厚厚于比上述上部区域靠下侧的部分的壁厚,由此使上述上部区域的维氏硬度为200hv以上且250hv以下。

并且,在本发明的方法中,也可以使支承杆从上述内模具的上方下降并且贯通上述开口卷边部而与嵌合了上述罐体的上述内模具的上端部抵接,由此通过上述支承杆来支承上述内模具的上端部。

根据本发明,考虑将凹凸加工部成型加工的情况下的金属模或工具的成型载荷引起的变形或位移,将这些金属模或工具的相对的姿势以在成型开始后成为标准的姿势的方式进行调整,上述操作成为主要因素,而在成型开始时以及结束时,即便成型载荷集中于局部,该部分也是上部区域内的部分,且包含该上部区域在内的罐主体的维氏硬度是200hv以上且250hv以下,因此不会局部地进行过度的成型。凹凸加工部对所谓的面板强度的提高有效,但有时对压曲强度产生不利作用。然而,根据本发明,在凹凸加工部不产生过度成型而变形的部分,因此能够将压曲强度在设计上维持为设想的强度。而且,根据本发明,能够以不损害面板强度以及压曲强度的方式将罐体薄壁化、轻型化。

附图说明

图1是表示本发明所涉及的罐体的一个例子的将一部分截断而得的主视图。

图2用于说明通过拉深加工以及减薄加工来制造该罐体的过程的示意图。

图3是用于对将肩部成型的过程进行说明的工序图。

图4是将冲压机的外形夸大地表示的示意图。

图5是用于对内部器具和外部器具的构成进行说明的简要的立体图。

图6是表示内部器具与外部器具的配置关系的图。

图7是表示外部器具向内部器具侧倾斜的状态的图。

具体实施方式

本发明所涉及的罐体是用于封入气溶胶的罐体,要求内压较高,由此使针对与周壁部垂直的方向的载荷的强度较高。另外,不仅要求罐体的制造过程中的针对上下方向的载荷的强度,还要求气门等的安装时或者内容物的填充过程、搬运等处理时等的针对上下方向的载荷的强度。而且与通常的容器同样地,要求设计性优异。

在图1中示出本发明所涉及的罐体1的一个例子。此外,在图1中示出未安装喷嘴、气门等用于使气溶胶喷射的部件的状态。该罐体1是以钢板为原料的上下一体型的罐体。作为其材料的钢板能够使用镀锡钢板、极薄镀锡钢板、镀镍钢板、电解铬酸处理钢板、镀锌钢板等表面处理钢板那样适当的制罐用金属板的薄板。另外,也能够使用包覆了树脂的金属薄板,包覆其两面的热塑性树脂并不特别限定,例如,能够适宜地使用聚乙烯、聚丙烯、乙烯-丙烯共聚合物、改性烯烃等烯烃系树脂、聚对苯二甲酸、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、对苯二甲酸乙二酯/间苯二甲酸酯共聚物、对苯二甲酸乙二酯/己二酸酯共聚物、对苯二甲酸丁二酯/间苯二甲酸酯共聚物、萘二甲酸乙二酯/对苯二甲酸乙二酯共聚物等聚酯、聚碳酸酯树脂、尼龙树脂、以及这些树脂的两种以上的树脂的混合树脂。另外,作为包覆的方式,不仅能够为单层,还能够为将不同种类的树脂组合而得的多层结构。另外,也可以对罐体1的内表面以及外表面实施涂装。内表面用的涂料以及外表面用的涂料例如可以是日本特开平4-11974号公报中记载的涂料,能够对内表面使用环氧-苯酚系的涂料,对外表面使用聚酯类透明涂料作为印刷层的外壳。

罐体1具有圆筒状的主体部2、和与该主体部2的上端侧连续地形成的截面呈圆弧状的圆顶形的肩部3。因此,主体部2是圆筒状的部分,且是比曲率随着朝向圆顶状的肩部3而变化的边界部b23靠下端侧的部分。主体部2的下端部开口且在此处安装有底盖4。底盖4是与罐体1作为独立部件而制造的,是使与罐体1同种的金属板以朝向上侧即朝向主体部2的内部突出的方式弯曲而得的薄板部件。该底盖4在其周边部以卷边接缝的方式安装于主体部2的下端开口部ob。

另一方面,在圆顶状的肩部(圆顶部)的末端(上端)的中央部设置有开口卷边部5。像图1中放大地一并标注那样,开口卷边部5是将切断而产生的缘部向外侧卷起并进行卷边而得的部分,是用于安装未图示的气门部件等的部分。该开口卷边部5的内径或外径du是主体部2的内径或外径、或者下端开口部ob的内径或外径db的一半左右。

在上述的主体部2遍及整周地形成有凹凸加工部6。该凹凸加工部6是通过击凸加工或压凹加工等使主体部2沿其壁厚方向凹凸地变形而形成凸条部或凹槽部的部分,图1所示的例子是形成了螺旋状的凸条部或凹槽部的例子。该凸条部的高度或凹槽部的深度(以下,作为高度)h是0.07mm~0.23mm左右。此外,本发明中的凹凸加工部6构成为将凸条部或凹槽部形成为格子状、井字状、龟甲花纹状等适当的形状。

凹凸加工部6的上端位置t6设定于比上述的主体部2与肩部3的边界部b23稍靠下侧的位置,对于沿主体部2的上下方向包含上述上端位置t6在内的规定的范围(以下,假定记载为上部区域)a而言,其刚性高于其他的部分。作为一个例子,上部区域a的壁厚ta厚于比主体部2的上部区域a靠下侧的中央部的壁厚t2。例如上部区域a的壁厚ta是0.2mm~0.28mm,相对于此主体部2的中央部的壁厚t2是0.19mm。此外,这些壁厚是金属部分的厚度,若增加表面背面两面的树脂层,则变厚相应的量(20μm左右)。另外,上部区域a的宽度(沿罐主体2的上下方向的尺寸)是1mm~20mm(优选3mm~20mm)。若小于1mm,则无法获得使刚性或硬度增大到规定范围内的效果,另外若超出20mm则那样的效果达到极限。

此外,在凹凸加工部6的上端位置t6的上侧、以及凹凸加工部6的下端位置b6的下侧设置有直线部st、sb。这些直线部st、sb是上述的主体部2的一部分,是外径恒定的圆筒状的部分。对于其宽度(沿主体部2的上下方向的尺寸)而言,作为一个例子是5mm以上。因此,上侧的直线部st设置于凹凸加工部6的上端位置t6与上述边界部b23之间。通过设置这些直线部st、sb,能够在对凹凸加工部6实施击凸加工或压凹加工时,将直线部st、sb作为所谓的把持部,来保持罐主体2(特别是凹凸加工部6),其结果为,能够不使畸变在罐主体2产生地,进行像预期那样的加工。

另外,罐体1是没有接缝的无缝构造,能够通过对金属薄板实施拉深加工、减薄加工来制作。在该加工工序中,通过调整壁厚、加工固化的程度,来适当地设定刚性或强度。在本发明的实施方式中,将主体部2的至少上部区域a的维氏硬度设定为200~250hv(200hv以上且250hv以下)。在本发明中,主体部2的整体的维氏硬度也可以是200~250hv,但相对于上部区域a靠其下侧的部分的维氏硬度也可以较低,例如也可以将上部区域a的维氏硬度设为200~250hv,也可以将比其靠下侧的部分的维氏硬度设为190~240hv(190hv以上且240hv以下)。另外,能够适当地设定壁厚ta而将主体部的维氏硬度设定在上述的范围,特别是能够使上部区域a与比其靠下侧的部分的维氏硬度像上述那样不同。即,也可以通过拉深加工以及减薄加工来使上部区域a的壁厚ta厚于比其靠下侧的部分的壁厚。此外,这些壁厚、硬度是形成上述的凹凸加工部6的部分处拉深加工、减薄加工等之后的形成该凹凸加工部6前的壁厚或硬度。

本发明的实施方式中的上述的罐体1的主体部2中的上部区域a与除此以外的部分的壁厚、硬度能够不同,但凹凸加工部6的深度或高度h大致均匀。因此,针对与主体部2的上述表面垂直的方向的载荷的强度(面板强度)因凹凸加工部6而变高,除此以外,凹凸加工部6的高度h均匀化,不存在成为压曲变形的起点的缺陷,由此压曲强度变高。

这里对制造上述的罐体1的方法进行说明。罐体1基本上能够通过例如上述的日本特开2004-276068号公报中记载的方法来加工,若说明其概况则像以下这样。图2示出其加工工序,准备在表面处理钢板等的两面层压热塑性树脂的保护覆膜而得的树脂包覆金属板那样的制罐用的金属板材,在其两面(树脂覆膜之上)涂覆润滑剂并将坯料10穿孔。在杯成型工序(第一冲压)中,将该坯料10拉深加工而成型为杯11。在接下来的罐主体成型工序(第二冲压)中,针对该较浅的杯11,实施利用拉深减薄加工等的薄壁化加工。该薄壁化加工可以是至少一次以上的再拉深加工、以及、拉伸加工和减薄加工中的至少一种加工。这样主体部2成型为进行了薄壁化的有底圆筒状的无缝罐12。该形状是主体部2的一端侧开口的纵长的杯形状,在本发明的实施方式中,将该主体部2中的封闭的另一端侧的相当于上述上部区域a的部分在减薄加工以及/或者拉深加工时比其他的部分进一步加工固化,或者加厚壁厚。

接下来,在上圆顶成型工序(第三冲压)中,通过第一次拉深加工将无缝罐12的封闭的底部成型为比主体部2直径小的有底圆筒部13,且一并将纵截面为圆弧状的肩部曲面14成型。接着通过第二次以后的拉深加工(再拉深加工),进一步将上述的有底圆筒部13拉深为直径缩小并且拉长。一并,将与肩部曲面14连续的假想曲面为截面近似于弧形的截面直线形状的锥形面再成型,并且反复进行那样的再拉深加工。其后,将与肩部曲面14近似地形成的肩部3的多个锥形面按压拉长而再成型为与肩部曲面14连续的平滑的曲面,从而将肩部3整体成型为圆顶形状的曲面,并且将相当于上述上部区域a的部分在拉深加工时以及/或者弯曲加工时比其他的部分进一步加工固化,或者增厚壁厚。将肩部3整体成型为圆顶形状的方法可以是与上述的日本特开2004-276068号公报中记载的方法相同的方法,若对其简单地进行说明,则如图3所示。

在图3中,对在内部嵌合有冲压机20的推动器21覆盖上述的无缝罐12并在使其底部侧向上的状态下覆盖。推动器21是与配置于其上方的冲模22一同进行皱折按压的成型模具,推动器21的上端部呈凸曲面,冲模22的下端部呈与推动器21的凸曲面对应的凹曲面。这些,在通过推动器21以及冲模22将无缝罐12的角部夹住并进行了皱折按压的状态下,通过冲压机20将平坦的底部拉深加工为有底圆筒部13。通过这样的第一次的拉深加工,将比无缝罐12的主体部2直径小的有底圆筒部13成型,并且在其下方将纵截面为圆弧状的肩部曲面(肩部下部的曲面)成型。呈圆顶状的肩部3的末端中央部的开口卷边部5是将有底圆筒部13整缘而形成,但在将该有底圆筒部13的直径拉深至开口卷边部5的直径的加工难以通过图3所示的一工序进行的情况下,使用比上述的冲压机20、推动器21以及冲模22直径小的冲压机、推动器以及冲模将有底圆筒部13进一步拉深加工。这样进行一次或多次的拉深加工而形成成为肩部3和开口卷边部5的有底圆筒部13。此外,通过具有与预期的圆顶形状相当的假想曲面的未图示的推动器以及冲模将肩部再成型(重整),以使得肩部3成为平滑的圆顶形状。

通过进行这样的拉深加工来使主体部2加工固化。通过适当地设定该情况下的拉深率,能够将主体部2的维氏硬度设定为200~250hv。此外,在使主体部2中的上述的上部区域a与比其靠下侧的部分的硬度、壁厚不同的情况下,使冲压机的形状在与上部区域a对应的部分处同与比其靠下侧的部分对应的部分处不同即可。作为一个例子像在图4中将轮廓(外形)夸大地记载那样,使冲压机p的外径在与上述上部区域a对应侧较小,在比其靠下侧较大。此外,对于这些直径之差而言,作为一个例子是0.1~0.4mm(优选0.12mm以上且0.36mm以下)左右,另外直径变化的部分形成为锥形状或曲面状而使其平滑地连续。

将具有成型为圆顶形状的肩部3以及缩径至规定的直径的有底圆筒部13的无缝罐12中的主体部2的下端开口部ob侧整缘而拉齐高度。在与此接续的修整/卷边成型工序中,将有底圆筒部13的末端侧整缘并开口。将该开口端部15以外卷的方式进行卷边加工而将开口卷边部5成型。其后的用于安装底盖4的加工可以按照上述的日本特开2004-276068号公报中记载那样进行。

在本发明的实施方式中,在像上述那样成型的罐体1的主体部2通过击凸加工或压凹加工或突筋加工等形成凹凸加工部6。图5以及图6示出加工装置的简要的构成,具有相当于插入型以及接收型的内模具(内部器具)30和外模具(外部器具)31。内部器具30是针对未安装底盖4的罐体1从其下端开口部ob侧插入的圆柱状的部件。换而言之,是从上侧覆盖罐体1的圆柱状的部件。因此内部器具30的外径是稍小于主体部2的内径的外径,在其外周面形成有与应在主体部2形成的凹凸形状相当的凹凸部32。内部器具30在以规定的垂直的轴线为中心旋转的旋转台33的周边部以恒定的间隔垂直配置,并被旋转台33保持为能够旋转。另外,并不特别图示,内部器具30构成为伴随着旋转台33旋转且内部器具30以旋转台33的旋转中心轴线为中心旋转而以内部器具30本身的中心轴线为中心自转。用于此的机构只要为如下这样构成的机构即可,即,例如在与内部器具30同轴上设置齿轮,在该齿轮所旋转的轨道的外周侧配置固定齿轮,在这些齿轮相互啮合的状态下内部器具30以及与其同轴上的齿轮旋转由此内部器具30自转。

内部器具30像上述那样构成为从上覆盖罐体1,因此上端部成为没有支承的自由端部。相对于此,形成凹凸加工部6的载荷相对于内部器具30从横向作用,在保持上端部是自由端的状态下,弯曲载荷过大。因此,在各内部器具30的上方配置有支承杆(支承棒)34。该支承杆34构成为与内部器具30同步地旋转,并且构成为朝向内部器具30上下活动。并且,支承杆34是能够贯通罐体1中的上述的开口卷边部5的粗细,且与内部器具30相比弯曲刚性大幅度减小。即,支承杆34构成为相对于覆盖罐体1的内部器具30从上侧下降而通过开口卷边部5而与内部器具30的上端部抵接,在该状态下支承内部器具30的上端部。此外,内部器具30以及支承杆34在高速下旋转,两者是相互抵接的程度,至少在横向不完全一体化地,因凹凸加工部6的成型载荷而产生稍许弯曲变形(向从外部器具31远离的方向倾倒的变形)。

外部器具31是在圆弧状的表面形成有与在内部器具30的表面形成的凹凸部32成对的凹凸部35的板状的成型模具。该外部器具31以形成有凹凸部35的表面沿着被内部器具30覆盖并旋转的罐体1的外周面所经过的轨道定位的方式固定。此外,内部器具30与外部器具31的间隔设定为各自的凹凸部32、35经由上述主体部2的周壁部啮合的程度的间隔。因此,被内部器具30覆盖的罐体1在外部器具31的表面上转动,由此通过各凹凸部32、35对主体部2实施击凸加工或压凹加工而形成上述凹凸加工部6。

罐体1如上所述是钢板制,因此即便主体部2的壁厚是0.2mm左右,凹凸加工部6的高度h是0.2mm左右,需要的成型载荷也较大,例如以铝为材料的罐体不会超出1000n,相对于此钢板制的罐体1需要3000n以上的成型载荷。进行该成型加工的外部器具31是固定于旋转台33的外周侧的部件,因此能够使该支承刚性、强度等足够大以便能够承受得住成型载荷。相对于此,内部器具30是以能够旋转的方式安装于旋转台33,并且上端部为自由端的构成,因此即便将其弯曲刚性提高也存在极限,至少与外部器具31相比其刚性、强度一定较低。因此,若将内部器具30与外部器具31构成为相互平行,并在该状态下对内部器具30覆盖罐体1而进行凹凸加工部6的成型,则内部器具30的上端侧向从外部器具31远离的方向弯曲变形,因此凹凸加工部6的高度h在主体部2的上端侧处比中央部、下端侧低。即成型深度变浅。

为了消除这样的不方便而使凹凸加工部6的高度在整体均匀,在本发明的实施方式中考虑内部器具30的上述的弯曲变形或挠曲而在使外部器具31以其上端部侧向内部器具30靠近的方式倾斜了规定角度θ的状态下进行凹凸加工部6的成型。图7示意性地示出使外部器具31这样倾斜的状态。若覆盖罐体1的内部器具30旋转至配置有外部器具31的区域,则内部器具30以在其与外部器具31之间夹住罐体1的方式将罐体1按压于外部器具31,伴随于此各凹凸部32、35变为夹住主体部2的周壁并相互啮合,因此凹凸加工部6成型为顺应各个凹凸部32、35的形状的形状。该情况下,内部器具30的弯曲刚性或支承刚性较低,另外上侧的支承杆34没有以完全限制内部器具30的弯曲变形的方式进行作用,因此在内部器具30仅产生稍许弯曲变形。考虑到那样的弯曲变形而倾斜外部器具31,因此若成型加工开始,则内部器具30与外部器具31相互平行,凹凸加工部6的成型高度h遍及主体部2的上下方向的整体以及整周而大致均匀。

使外部器具31像上述那样倾斜,由此外部器具31与内部器具30的啮合的开始点成为各自的上部的一部分,成型载荷暂时集中在该部分。相对于此在本发明的实施方式中,主体部2中的至少上述上部区域a的维氏硬度为200~250hv,因此凹凸加工部6的加工开始点(内部器具30与外部器具31开始啮合的部位)处的加工深度(成型高度h)不会过度变大,或者不会产生龟裂。因此,罐体1的压曲强度在设计上进入规定的强度范围。

特别是对于本发明的实施方式中的罐体1而言只要使上述的上部区域a的刚性高于主体部2的中央部、下端侧的部分的刚性,即能够使凹凸加工部6的成型高度h更均匀,并能够减小至少主体部2的上侧的部分与下侧的部分的成型高度h的偏差。即,凹凸加工部6是使被内部器具30覆盖的罐体1在外部器具31的表面上转动从而成型。该内部器具30与外部器具31相互平行是在相对于内部器具30作用较大的成型载荷而在内部器具30产生弯曲变形之后。即,在成型载荷未作用于内部器具30整体的状态即成型开始最初,内部器具30与外部器具31未相互平行。同样地,在成型结束的时刻,外部器具31按压内部器具30的区域逐渐变小。因此,在被内部器具30覆盖的罐体1到达了配置有外部器具31的区域的时刻以及从外部器具31分离的时刻,在内部器具30与外部器具31的间隔最窄的部位亦即各自的上端部开始夹住主体部2的上部(更具体而言上部区域a内的部分)。即,成型载荷集中并作用于上部区域a内的极有限的部分。

这样,使外部器具31像上述那样倾斜,由此在凹凸加工部6的成型开始最初以及终止期较大的成型载荷局部地进行作用。这样的较大的成型载荷所作用的部位是上述的通过加工固化、壁厚的厚壁化等提高了刚性的上部区域a内的部位。因此,即便较大的成型载荷局部地作用也能够避免该部分的成型量(成型高度h)显著变大,甚至产生龟裂,进而将凹凸加工部6的高度h整体均匀化。

公知有若在罐体1的主体部2等的壁厚较薄的部位通过击凸加工、突筋加工等形成凹凸部,则针对与该面垂直的方向的载荷的刚性或强度变高。然而,相对于那样的凹凸部正交的方向,即与主体部2的中心轴线平行的方向的载荷(即压曲载荷)成为使凸条、凹槽封闭并使其宽度变窄的方向的载荷,因此在凹凸部的高度或深度较深的情况、存在局部较薄的部位的情况下,针对压曲载荷的刚性或强度变低。根据本发明的实施方式中的罐体1或上述的制造方法,凹凸加工部6的高度h变得均匀且不存在局部过度地变高、变得薄壁的部位。因此,不仅外观、针对相对于主体部2垂直的方向的载荷的强度(面板强度)优异,压曲强度也优异。

这里若举出具体例,以厚度0.25mm的tfs(无锡钢)板为材料,制成多个作为本发明的实施例的罐体、和作为比较例的罐体,并调查了各自的压曲强度。罐体的制造方法为参照上述的图2说明的方法,凹凸加工部的成型通过参照图5~图7说明的装置来进行。另外,本发明中的维氏硬度hv为如下维氏硬度,即,将罐体的一部分切取出规定的大小作为试件,以在该试件的板厚方向的规定的位置印入维氏压痕的方式,以载荷245n按压压头来进行试验,以其10点进行测定而得的值的平均值。这在以下所示的实施例以及比较例中均相同。

(实施例1)

高度:170mm以及220mm。主体部的直径:66mm。肩部的曲率半径:40~60mm。主体部(形成凹凸加工部的部分)的壁厚(包含涂装或膜):0.18~0.23mm。基于拉深减薄加工的减薄率:14~50%。凹凸加工部相对于全表面的比例:20~90%。凹凸加工部的成型高度:0.1~0.2mm。成型载荷3kn。基于击凸加工前的加工固化的主体部的维氏硬度:200hv。

准备10个上述的构成的罐体,并测定了强度。任一罐体均进入以下的强度的范围。各强度如下。

·面板强度:17~25英寸汞柱(in/hg)

·耐压强度:蜷曲250~320psi,破裂310~330psi

·压曲强度:1700~2500n

此外,面板强度是将内部进行了减压的情况下产生凹陷变形的真空压,耐压强度中的蜷曲是将内部的压力提高而产生膨胀变形的压力,破裂是破裂的压力,压曲强度是对罐体安装底盖组装为产品,并对其作用轴线方向的载荷而产生变形的载荷。

(实施例2)

基于击凸加工前的加工固化的主体部的维氏硬度:250hv。成型载荷:5kn。其他的构成与实施例1相同。

准备10个罐体,并测定了强度。任一罐体均进入以下的强度的范围。各强度如下。

·面板强度:19~27英寸汞柱(in/hg)

·耐压强度:蜷曲270~330psi,破裂3300~340psi

·压曲强度:1700~2500n

(实施例3)

使上部区域的基于加工固化的维氏硬度为200~250hv,使比其靠下侧的部分的基于加工固化的维氏硬度低于上部区域,且为190~240hv,使其他的构成与上述的实施例1相同。

准备10个上述的构成的罐体,并测定了强度。任一罐体均是进入实施例1中的强度范围的强度。

·其他的观察结果:主体部中在上部区域与比其靠下侧的部分处维氏硬度不同,但凹凸加工部的加工高度进入实施例1的罐体的加工高度的范围,不认为在外观以及防滑功能这些点上逊色。

(实施例4)

主体部中上部区域的壁厚:0.18~0.28mm。在主体部中比上部区域靠下侧的部分处壁厚:0.16~0.22mm(中央部以及下端侧部分)。其他的构成与实施例1相同。

准备10个罐体,并测定了强度。任一罐体均进入以下的强度的范围。各强度如下。任一罐体均是进入实施例1的强度范围的强度。

(比较例1)

击凸加工前的主体部的维氏硬度:190hv。其他的条件与实施例1相同。

准备10个罐体,并侧定了强度。各强度如下。

·面板强度:15~22英寸汞柱(in/hg)

·耐压强度:蜷曲230~300psi,破裂290~310psi

·压曲强度:1100~2000n

·其他的观察结果:压曲强度1700n以上的罐体有三个,超过半数的7个是1100n~1600n的压曲强度,认为强度不足。此外,该压曲载荷引起的变形是以凹凸加工部的上端部为起点且周向的规定的范围沿轴线方向(上下方向)压溃的变形。

(比较例2)

击凸加工前的主体部的维氏硬度:260hv。其他的条件除凹凸加工部的成型高度以外与实施例2相同。

各强度如下。

·面板强度:17~25英寸汞柱(in/hg)

·耐压强度:蜷曲260~330psi,破裂310~340psi

·压曲强度:1800~2600n

·其他的观察结果:凹凸加工部的成型高度变为0.07~0.1mm,凹凸加工部没有呈现外观图案,另外作为由手把持的情况下的防滑部未充分发挥功能。

根据以上的实施例1~4以及比较例1、2的结果,在本发明中,使主体部的维氏硬度或至少上述上部区域的维氏硬度为200~250hv。

以上,根据列举的实施例以及比较例可知,即便倾斜外部器具31引起成型载荷在凹凸加工部6的成型的开始时以及终止期局部地作用,在本发明的实施方式中,也通过使该成型载荷局部地作用的上述上部区域a的硬度或壁厚高于或厚于其他的部分并提高刚性,由此使压曲强度成为需要的充分的强度。这是基于在凹凸加工部6的上部特别是成型开始点或结束点不产生过度的成型。

以上,对本发明具体地进行了说明,但本发明并不限定于上述的实施方式或实施例,实施方式或实施例中列举的构成中的未被本发明的权利要求书限定的构成可以任意地变更,包含这些进行了变更的构成的罐体或其制造方法也属于本发明的技术范围。

附图标记的说明

1…罐体;2…主体部;3…肩部;4…底盖;5…开口卷边部;6…凹凸加工部;20…内部器具;21…外部器具;a…上部区域;h…成型高度;ob…下端开口部;ta、t2…壁厚。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1