用于使用非相干红外光源的塑料焊接的波导管的制作方法

文档序号:4431938阅读:173来源:国知局
专利名称:用于使用非相干红外光源的塑料焊接的波导管的制作方法
技术领域
本发明总体涉及塑料焊接,并且更具体地涉及用于塑料焊接的非相干红 外光源的波导管。
背景技术
当前,焊接塑料或树脂部件的技术包括多种技术,包括超声波焊接、热 焊接、和最近的红外线穿透(Trough Transmission Infrared) (TTIr)焊接。
TTIR焊接使用穿过第一塑料部件并进入第二塑料部件的红外光。在当 前的技术中,TTIR焊接能使用红外激光或非相干红外光。当前技术中,红 外激光能通过光学纤维、波导管或光导管而被引导穿过第一塑料部件并且进 入第二塑料部件。该第一塑料部件通常被称为透射件,因为它通常允许来自 激光器的激光束穿过。该第二塑料部件通常被称为吸收件,因此该件通常吸 收激光束的辐射能以在焊接区域产生热量。在焊接区域处的该热量使得透射 件和吸收件被熔化并且因此被焊接在一起。然而,传统的激光系统产生的热 量通常是昂贵的,其导致增加了生产成本。在专利号为US4636609的美国专 利中能找到激光焊接的可选的变形,其以引用的方式结合到这里。
众所周知,激光器通常提供特定频率或频率范围的电磁辐射的聚焦光 束。有许多类型的可用于提供在加热焊接区域中使用的辐射能的相对经济的 光源的激光器。由红外激光器产生的这种辐射能通过多个传送装置-例如单 个光纤、光导纤维束、波导管、光导管等-或仅仅通过将激光束引导在目标 焊接区域处而被输送到目标焊接区域。在使用光导纤维束的情形下,可以排
5列光导纤维束以产生通常用于点焊的单个的点光源激光束,或通常用于线焊
(linear welding)的大体上线性分布的激光束。
能使用非相干红外光源熔化塑料以进行塑料焊接。在共同转让的专利号 为US6528755的美国专利中能找到这样的例子,其以引用的方式结合到这 里。有两个主要的用于非相干红外光的塑料焊接方法-部件到部件 (part-to-part)表面加热红外焊接和TTIr焊接。
如图1 (a) - (c)中所示,部件到部件表面加热红外焊接使用非相干红 外光源110,该非相干红外光源IIO首先加热要被焊接的塑料部件112、 114。 然后移开非相干光源IIO(图l(b))并将部件112、 114压在一起(图l(c))。 随着部件冷却,沿着焊接界面116形成结合,因此将部件焊接在一起。
另一方面,如同在图2中看到的那样,TTIr焊4妾中,类似于上面描述的 那样,来自非相干红外光源122的非相干红外光120穿过被焊接的第一塑料 部件(透射件)124。该非相干红外光120在焊接线126处由要被焊接的第 二塑料部件(吸收件)128吸收或由位于焊接区域处的表面添加剂吸收,因 此沿着焊接区域加热和熔化透射件124和吸收件128。 一旦被冷却,第一塑 料部件124和第二塑料部件128被连接在一起。
然而,将会认识到,这些方法中所使用的非相干红外光源沿所有方向引 导它的能量,如同在图1和2中看到的那样。如同在图3中看到的那样,已 经尝试使用抛物线形的或椭圆形的反射镜140以将这种能量引导到特定的焊 接点,然而,这种反射镜无法可靠地且有效地将能量引导到特定的焊接区域。 抛物线形和椭圓形的反射镜能集中大约百分之五十(50%)的红外光,但是 其它百分之五十(50% )无效地传播出去了。
已经使用屏蔽以尝试使得到达不被熔化区域的红外能最小化。尽管屏蔽 成功地阻止了红外光到达不被熔化区域,但是到达这些屏蔽区域的红外光在 焊接过程中被浪费了。因此,需要较大的且较昂贵的非相干光源。
红外灯泡是最通常地已知的和通常地使用的非相干红外光源。典型地, 当以最大功率运行时,这些灯泡的寿命有限。然而,如同这里所描述的那样, 由于光传播的低效率,为了给焊接区域提供足够的能量以为焊接获得足够的 加热和熔化,不得不以最大的功率运行这些红外灯泡
发明内容
本问题的一种解决方案包括用于产生将工件的第一部件连接到该工件 的第二部件的焊接的组件。该组件包括产生非相干光能的第一非相干光源和
具有输入端和输出端的第 一 负波导管,来自该第 一 非相干光源并被第 一反射 镜反射的该非相干光能在输入端处进入第一负波导管,通过第一负波导管并 且在输出端处离开第一负波导管。第一负波导管具有产生非圓形焊接区域的 非圆锥形纵向横截面。
通过这里和其后提供的详细描述,本发明的其它应用范围将是显而易见 的。应当理解,详细的描述和特定的实施例,尽管简述了本发明的优选实施 方式,仅仅用于示例性的目的并且不用于限定本发明的范围。


通过详细的描述和附图,将更充分地理解本发明,其中 图1 (a) - (c)是一系列侧视图,示出了依照现有技术的部件到部件表 面力口热;
图2是侧视图,示出了依照现有技术的TTIr焊接; 图3是侧视图,示出了依照现有技术的反射镜;
图4 (a) - (c)是一系列侧视图,示出了依照本发明的原理的部件到部 件表面加热;
图5是侧视图,示出了依照本发明的原理的TTIr焊接;
图6 (a)是依照现有技术的正波导管的横截面视图6 (b)是依照本发明的原理的负波导管的横截面视图7是示意图,示出了依照现有技术的使用柔性正波导管的焊接;
图8是示意图,示出了筒单的圆锥形波导管;
图9是示意图,示出了依照本发明的原理的产生非圓形光点的复杂波导
管;
图IO是示意图,示出了依照本发明的原理的曲线形光源和曲线形波导
管;
图11是示意图,示出了依照本发明的原理的曲线形光源和宽度变化的 曲线形波导管;
图12是示意图,示出了依照本发明的原理的交叉光源和交叉波导管; 图13是示意图,示出了依照本发明的原理的平面阵列细长(elongated)光源和复杂的波导管;
图14是示意图,示出了依照本发明的原理的多个点光源和复杂的波导
管;
图15是示意图,示出了依照本发明的原理的与单个、复杂的波导管保 持连通的多个细长的光源;
图16是示意图,示出了依照本发明的原理的与多个复杂的波导管保持 连通的单个光源;
图17是示意图,示出了依照本发明的原理的与多个复杂的波导管保持 连通的多个不同类型的光源;
图18是示意图,示出了依照本发明的原理的与细长的、逐渐缩小的波 导管保持连通的细长的光源;
图19是示意图,示出了依照本发明的原理的与向外逐渐扩大的波导管 保持连通的细长的光源;
图20是示意图,示出了依照本发明的原理的与输出端相对于输入端成 大约90°的角度的弯曲波导管保持连通的细长的光源;
图21是示意图,示出了依照本发明的原理的与输出端相对于输入端成 大约90。的角度并具有倾斜反射拐角的波导管保持连通的细长的光源;
围绕U形波导管的外边界布置的多个细长的光源;
图23是示意图,示出了依照本发明的原理的与U形波导管保持联系并 在非 一 致的方向上围绕U形波导管的内边界布置的多个细长的光源;
图24是示意图,示出了依照本发明的原理的与一对主波导管和布置在 它们之间的间隙填充波导管保持连通的一对细长的光源;
图25是示意图,示出了依照本发明的原理的与一对彼此部分重叠以提 供均匀的焊接区域的主波导管保持连通的一对细长的光源。
具体实施例方式
优选实施方式的以下描述在本质上仅仅是示例性的并且不以任何方式 限定本发明,它的应用或使用。
现在参考图4,提供了依照本发明的原理的使用第一非相干红外光源14 和第二非相干红外光源16将第一塑料部件10与第二塑料部件12焊接在一起的装置和方法。具体地,第一非相干红外光源14和第二非相干红外光源
16分别被安装到支撑结构18上并由支撑结构18支承。第一非相干红外光源 14被布置在第 一 负波导管(negative waveguide )组件20内。第 一负波导管 组件20包括反射镜部分22和负波导管部分24。在一些实施方式中,负波导 管部分24与反射镜部分22—体地形成以形成单个的、整体式组件。在一些 实施方式中,第一非相干红外光源14被定位于反射镜部分22的焦点处。
在一些实施方式中,反射镜部分22被成形以限定有助于将来自第一非 相干红外光源14的非相干红外光朝着负波导管部分24引导的任何轮廓。更 具体地,反射镜部分22可以被成形以限定椭圓形或抛物线形轮廓,其能沿 着负波导管部分24内的预定方向和分布状态引导来自第一非相干红外光源 14的非相干红外光。在一些实施方式中,第一非相干红外光源14被定位于 反射镜部分22的焦点处。在一些实施方式中,负波导管部分24被成形为接 纳来自第一非相干红外光源14和反射镜部分22的非相干红外光并且将该非 相干红外光引导和/或传播到其输出端26。同样地,第二非相干红外光源16 被布置为与第二负波导管组件28 —起使用。第二负波导管组件28与第一负 波导管组件20是一样的,可是与其是镜像关系。因此,为了简洁起见,第 二负波导管组件28的详细描述是不必要的。
在操作期间,各自启动第一非相干红外光源14和第二非相干红外光源 16以输出非相干红外光。该非相干红外光从第一非相干红外光源14和第二 非相干红外光源16被均匀地和径向地传送。然而,朝着反射镜部分22被导 向的任何非相干红外光通过反射镜部分22朝着负波导管部分24被再导向和 /或聚焦。负波导管部分24进一步将非相干红外光导向和/或传送到其输出端 26。从第一负波导管组件20和第二负波导管组件28的输出端26射出的非 相干红外光被导向到第一塑料部件10和第二塑料部件12的预定部分,以分 别局部地加热第一塑料部件10和第二塑料部件12的第一焊接区域30和第 二焊接区域32。 一旦第一焊接区域30和第二焊接区域32通过吸收光能而被 充分地加热,相对于第一塑料部件10和第二塑料部件21移动支撑结构18 以允许第一塑料部件IO和第二塑料部件12被压在一起从而形成最终的焊接 区域34。
现在参考图5,本发明的原理能与TTIr焊接结合使用。具体地,非相干 红外光源40被布置在负波导管组件42内。负波导管组件42包括反射镜部分44和负波导管部分46。在一些实施方式中,负波导管部分46与反射镜部 分44 一体地形成以形成单个的、整体式组件。
类似于上面所讨论的反射镜部分22,反射镜部分44能被成形为限定有 助于将来自第一非相干红外光源40的非相干红外光朝着负波导管部分46导 向的任何轮廓。更具体地,反射镜部分44可以被形成为限定椭圓形的或抛 物线形的轮廓,其能沿着负波导管部分46内的预定方向和分布状态导向来 自非相干红外光源40的非相千红外光。在一些实施方式中,非相干红外光 源40被定位于反射镜部分44的焦点处。在一些实施方式中,类似于负波导 管部分24,负波导管部分46能被成形为接纳来自非相干红外光源40和反射 镜部分44的非相干红外光并且将该非相干红外光引导和/或传送到其输出端 48。
在操作期间,启动非相干红外光源40以输出非相干红外光。该非相干 红外光从非相干红外光源40被均匀地和径向地传送。然而,被导向为朝向 反射镜部分44的任何非相千红外光通过反射镜部分44朝着负波导管部分46 被再导向和/或聚焦。负波导管部分46进一步将非相干红外光导向和/或传播 到其输出端48。从负波导管组件42的输出端48射出的非相干红外光^C导向 为穿过第一透射部件50。该非相干红外光然后在位于第一透射部件50和第 二吸收部件54之间的焊接线52处被吸收。更具体地,非相干红外光穿过第 一透射部件50并被第二吸收部件54或者被放置在第一透射部件50和第二 部件54之间的表面添加剂吸收,因此沿着焊接线52加热和熔化第一透射部 件50和第二部件54。 一旦第一透射部件50和第二吸收部件54在焊接线52 处通过吸收光能而^皮充分地加热,第一透射部件50和第二吸收部件54被冷 却以产生焊接结合。
如同在图5和6(b)中所示的那样,来自上面所讨^r的各种非相干红外 光源的非相干红外光通过负波导管被导向到被焊接的部件的预定部分。该负 波导管精确地控制非相干红外光被导向到的地方,因此大大提高了传递非相 干红外光的效率。
非相干红外光能来自于现在普遍已知的许多合适的光源中的任一个。作 为非限定性的例子,这里所描述的非相干红外光源可以包括红外发射火焰 (infrared emissive flame )、电阻丝加热器、灯丝灯泡、气体放电灯泡、黑体 辐射器、放射性热体、或任何其它非相干红外光源。然而,在一些实施方式中,已经发现灯丝卣素灯泡或电阻丝加热器使成本效率、可用性和设计灵活 性最大化。
类似地,许多负波导管中的任一个能适于与本发明结合使用。负波导管 的反射腔可具有抛光的金属表面或高反射电介质薄膜涂层。而且,在一些实 施方式中,负形态可以充满非相干红外光可透射的气体或液体。可选地,波 导管的负形态可以是被抽真空以在其内形成真空。然而,为了它的耐用性、 效率和较高的波长带宽,最成本有效的实施方式是具有金镀层的充满空气的 负金属波导管。
通常,由于它的筒单性和较高的波长带宽,负波导管优于正波导管
(positive waveguide )。因为非相干红外光源是宽带发射器,负腔波导管的较 大的波长带宽变得重要。
依照本教导的被焊接的塑料部件可以由视觉透明、半透明或不透明材料 制成。在部件到部件红外焊接方法中,唯一的必备条件是,为了焊接其要求 部件必需是吸收红外线的或者具有吸收红外线的表面添加剂。对于TTIr方 法,需要被焊接的一个部件是能透射红外线的,并且被焊接的另一个部件能 吸收红外线,或者替代另一个部件能吸收红外线,在两个部件之间有具有吸 收力的表面添加剂,用于产生所需的局部加热以形成可靠的焊接表面。
如同这里所描述的那样,能使用棵非相干红外光源焊接塑料,但是能量 的更有效的利用是通过一些光学装置将红外光更直接地导向到焊接区域。
一种在工业上普遍使用的方法是屏蔽部件。这仅仅使用了在焊接区域的 能量,但是浪费了光源发出的大部分红外光。
第二种在工业上普遍地使用的方法是使用抛物线形的或椭圆形的反射 镜反射光源。这能将百分之五十的能量集中到焊接区域,但是其它百分之五 十无效地传播出去了。
第三种方法是使用透镜。遗憾地是,由于大部分非相干红外光源呈现黑 体光谱,玻璃和塑料透镜无法传输非相干红外光的大部分能量。能使用更特 殊(exotic)的红外材料,并且更特殊的红外材料已经在工业上使用了,但 是由于成本,很少选择这种方法。
第四种方法是使用光学纤维或正电介质波导管。由于同样的原因,即玻 璃和塑料透镜是低效率的,因为使用非特殊材料,它们不具有宽带非相干红 外光的透射带宽,光学纤维和正电介质波导管是低效率的。
ii第五种方法,为了将非相干光导向到简单的点(simple spot),使用位于 光源下游的简单的圓锥形光学集中器。这是将红外光集中到焊接区域的有效 方法,但是在几何形状方面被限定为简单的点。
第六种方法,其对于本教导来说是新的,是使用用于非相干红外塑料焊 接的大体上负波导管。负波导管的反射腔能具有抛光的金属表面或高反射电 介质薄膜涂层。波导管的效率是使用棵光源的效率的大约三倍,并且反射腔 能有效地传播来自非相干红外光源的全部光谱的宽带辐射。简单的圓锥形光 学集中器是负波导管的一特定的限定例子,但是在几何形状上被限定为产生 简单的光点。通常的负波导管是更通常的例子,其具有能适用于二维的和三 位的几乎任何焊接几何形状,并能接受几乎任何光源几何形状的优势。此外, 负波导管能围绕拐角传播能量,结合多种光源,和传播到多个焊接区域。
最好的方法是,将在非相干红外光源后侧的抛物线形的或椭圓形的反射 镜与在光源和被焊接的部件的焊接区域之间的光源下游的大体上负波导管 相结合。
在图8中能看到简单的圓锥形光学集中器的几何形状。为了清楚,所有 附图用灰色示出了非相干红外光源,并且波导管被示为正形态(positive form),应当理解,正形态代表了负波导管的腔。集中器被限定为圆锥体, 并且在光源前方产生简单的集中的圆形光点。
另一方面,大体上负波导管是更加复杂的实体,能更自由地设计。在下 面的例子中能看到设计的灵活性。
在图9中能看到,大体上负波导管能产生复杂的光点形状-比简单的圓 锥形集中器更复杂。它也能产生直线形或曲线形。光源40的线形或曲线形 几何形状不必与焊接图案52的同样的线形或曲线形几何形状一致,如同在 图IO中看到的那样。此外,焊接图案52的线宽不必是均匀的,如同在图11 中看到的那样。在图11中,曲线形光源40能与宽度沿着曲线形路径变化的 波导管46结合使用。在这种情形下,焊接图案52能形成独特的形状。交叉 也能被结合到大体上负波导管中,如同在图12中看到的那样,其中第一光 源40和第一波导管46与第二光源40,和第二波导管46,成一角度,例如如图 所示的那样的90。的角度交叉。
容纳在波导管46中的一维或二维阵列宽带红外发射源40能以规定的方 式照亮一定区域,如同在图13和14中看到的那样。将光点、线、交叉和区域结合在一起能产生任何任意的二维焊接图案。
分离光源的光照能被混合以确保焊接图案52的均匀性,如同图15中那 样,其中多个光源40同轴地排布并且由单个波导管46控制。然而,在一些 实施方式中,单个光源40能通过多个波导管46, 46,, 46,,而被4殳射到数个 地方,如同在图16中看到的那样。在这种情形下,多个波导管46, 46,, 46" 中的每一个可被定位成它们的纵向轴线彼此成一定角度。然而,通过一个或 多个波导管46,数个不同的光源40, 40,, 40"能被结合到单个焊接图案52, 如同在图17中看到的那样。考虑到不同的光源和焊接强度,可如同在图18 中看到的那样集中光源,或者如同在图19中看到的那样使光源稍微地分散。
大体负波导管能被延伸以产生三维的焊接几何形状。来自光源的能量能 如图20所示通过曲部或者如图21所示通过反射平面而被导向为绕过拐角。 在这种情形下,波导管46的入口被布置为相对于出口成一角度,例如如图 所示的90。。对于外侧起伏(up and down)的焊接几何形状曲面(被称为皱 眉形),分离的光源40被结合以围绕外曲面IOO投射均匀的照亮强度,如同 在图22中看到的那样。内侧起伏的焊接曲面(被称作微笑形)是更加复杂 的,如同在图23中看到的那样。为了获得均匀的强度,由于内侧曲面102 上的可用空间有限,光源40相对于焊接线倾斜,并且锯齿形波导管被放置 在中间,如同在图23中看到的那样。对于外侧起伏的拐角,为了均匀的光 照,光源被分开但是在它们之间具有波导管连接以防止拐角处的冷点,如同 在图24中看到的那样。对于内側起伏的拐角,由于内侧空间有限,光源必 须并排并且为了获得均匀的照射波导管必须重叠,如同在图25中看到的那 样。能围绕拐角引导能量结合能将能量投射到焊接曲面和角落的内侧和外 侧,再结合二维技术提供了实际上的任何焊接几何形状的三维光照。
用于非相干红外塑料焊接的大体负波导管的使用具有几个益处。光学效 率提高以及红外光被导向的位置精度提高导致在机器中的较少的热浪费和 较少的能量使用。如果红外灯泡被作用能源,效率增加允许在较低的功率使 用灯泡,其才及大地增加了它们的寿命。波导管允许光源的几何形状不同于被 焊接的部件的几何形状。这提供了加工的设计灵活性。这也允许使用标准灯 泡或灯丝,相对于定制的灯泡或灯丝,这大大地节省了成本。波导管也阻止 红外光熔化部件的不需要熔化的区域,提高了焊接的质量。
本发明的描述在本质上仅仅是示例性,因此,不脱离本发明要旨的变化也在本发明的范围之内。这种变化不应当认为是违背了本发明的精神和范 围。
权利要求
1. 一种用于将工件的第一塑料部件塑料焊接到该工件的第二塑料部件的组件,所述组件包括产生非相干红外光能的第一非相干红外光源;和具有输入端和输出端的第一负波导管,来自所述第一非相干红外光源的所述非相干红外光能在所述输入端处进入所述第一负波导管,通过所述第一负波导管,并在所述输出端处离开所述第一负波导管,所述第一负波导管具有产生非圆形焊接区域的非锥形纵向横截面。
2. 如权利要求l所述的组件,进一步包括产生非相干红外光能的第二非相干红外光源,来自所述第二非相干红外 光源的所述非相干红外光能在所述输入端处进入所述第一负波导管,通过所 述第一负波导管,并在所述输出端处离开所述第一负波导管。
3. 如权利要求2所述的组件,其中所述第一非相干红外光源和所述第二 非相干红外光源各自是细长的并且同轴对准。
4. 如权利要求2所述的组件,其中所述第一非相干红外光源和所述第二 非相干红外光源各自是细长的并且彼此轴向地偏移。
5. 如权利要求1所述的组件,进一步包括具有输入端和输出端的第二负波导管,来自所述第一非相干红外光源的 所述非相干红外光能在所述输入端处进入所述第二负波导管,通过所述第二 负波导管,并在所述输出端处离开所述第二负波导管,所述第二负波导管不 同于所述第一负波导管。
6. 如权利要求5所述的组件,其中所述第二负波导管被如此布置成使得 其纵向轴线被布置为与所述第一负波导管的纵向轴线成一角度。
7. 如权利要求1所述的组件,其中所述第一非相干红外光源是细长的并 且所述第一负波导管的所述输入端大体正交于所述第一负波导管的所述输出端。
8. 如权利要求7所述的组件,其中所述第一负波导管包括布置在所述输入端和所述输出端之间的倾斜表面。
9. 如权利要求l所述的组件,其中所述第一负波导管是大体U形。
10. 如权利要求l所述的组件,其中所述第一负波导管是细长的逐渐缩 小的构件。
11. 如权利要求l所述的组件,其中所述第一负波导管是细长的扩张构件。
12. 如权利要求l所述的组件,其中所述第一负波导管是曲线形,从而 所述焊接区域是曲线形。
13. 如权利要求1所述的组件,其中所述第一非相干红外光源是曲线形。
14. 如权利要求l所述的组件,其中所述第一负波导管的所述输出端包 括宽度变化的曲线形形状。
15. 如权利要求l所述的组件,进一步包括 产生非相干红外光能的第二非相干红外光源;和具有输入端和输出端的第二负波导管,来自所述第二非相干红外光源的 所述非相干红外光能在所述输入端处进入所述第二负波导管,通过所述第二 负波导管,并在所述输出端处离开所述第二负波导管,所述第二负波导管和 所述第二非相干红外光源被布置为分别与所述第一负波导管和所述第一非 相干红外光源成大体正交的角度。
16. 如权利要求l所述的组件,其中所述第一负波导管是U形并且所述 第一非相干红外光源被定位为沿着所述第一负波导管的外曲线与所述第一负波导管连通。
17. 如权利要求l所述的组件,其中所述第一负波导管是U形并且所述 第一非相干红外光源被定位为沿着所述第一负波导管的内曲线与所述第一负波导管连通。
18. —种用于将工件的第一塑料部件塑料焊接到该工件的第二塑料部件的组件,所述组件包括各自产生非相干红外光能的多个非相干红外光源;和具有输入端和输出端的第一负波导管,来自所述多个非相干红外光源的 所述非相干红外光能在所述输入端处进入所述第一负波导管,通过所述第一 负波导管,并在所述输出端处离开所述第一负波导管,所述第一负波导管具 有产生非圆形焊接区域的非锥形纵向横截面。
19. 如权利要求18所述的组件,其中所述多个非相干红外光源被排列为 彼此邻近以形成阵列。
全文摘要
一种用于产生将工件的第一部件连接到工件的第二部件的焊接的组件。该组件包括产生非相干光能的第一非相干光源和具有输入端和输出端的第一负波导管,来自所述第一非相干光源以及由第一反射镜反射的非相干光能在输入端处进入第一负波导管、通过第一负波导管并在输出端处离开第一负波导管。第一负波导管具有产生非圆形焊接区域的非圆锥形纵向横截面。
文档编号B29C65/16GK101522399SQ200780037679
公开日2009年9月2日 申请日期2007年9月12日 优先权日2006年9月13日
发明者丹尼尔·D·赫尔希, 斯科特·考德威尔, 肯尼思·纳尔逊 申请人:必能信超声公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1