由自增强热塑材料制造塑性元件的方法和装置及其生产的塑性元件的制作方法

文档序号:4442592阅读:266来源:国知局
专利名称:由自增强热塑材料制造塑性元件的方法和装置及其生产的塑性元件的制作方法
技术领域
本发明涉及由自增强热塑材料生产塑性元件特别是行李箱壳体的方法、由自增强 热塑材料制成的塑性元件以及用于制造这种塑性元件特别是行李箱壳体的装置。
背景技术
过去人们已经尝试采用多种方法来生产具有高物理强度以及耐破损和抗变形能 力的塑性元件,同时使元件由这种轻便且易于回收的合成树脂制成。特别地,在箱包工业 中,需要生产具备很高的可靠性和耐外部冲击性以及无变形特性的硬壳手提箱,而漂亮的 外观和减轻的重量使得能够轻松而方便地操作这类行李箱。同样,几种包括分层的合成树脂如热塑树脂以及织造品的复合材料也得到了应用。相应地,从US 5,376,322中已知一种从预成形件热成形加工出覆盖有布料的成 形件的方法,用于通过在热塑基底的一个表面上加压层压一层布料织品并随后在压模机中 进行压制成形加工来生产行李箱壳体,压制成形具体着重于拐角区域的成形。但是,要确 保产生的拐角区域光滑-特别是当要求产品的主要表面之间的拐角或交叉处的半径很小 时-仍然很困难。而且,还期望重量能进一步减轻,而强度能进一步增加。此外,从US 5,755,311中还已知一种制作行李箱的硬侧面壳体的方法,其使用了 压差模制工艺并环绕薄的热塑中空壳体施用了一体成形的框架。考虑到由合成树脂例如热塑材料制成的高冲击、低重量的板材可以在嵌入到相同 或相似类型的软材料的基体中的聚合纤维的预拉伸定向丝束的基础上生产出来,EP 0 531 473 Bl提供了一种方法和材料,其中,定向聚合纤维的组件在升高的温度下保持紧密接触, 从而定向聚合纤维的外部区域熔化,并且随后所述纤维被挤压,从而生产出粘在一起的聚 合物板。根据所述方法和材料,定向聚合纤维优选包括聚烯烃特别是聚丙烯或其它结晶体 或半结晶体材料的热塑材料,并且能被布置成单轴排列纤维束或有捻纤维束,或者根据应 用领域被布置成交织束的垫子。从WO 2004/028803 Al中已知一种使用由热塑材料拉出的带子(tape)、薄膜或 纱线来增强物品的类似方法,其在共挤出过程中使用聚乙烯(PE)或聚丙烯(PP),随后进 行拉伸和冷却。最后,自增强聚丙烯,即采用定向聚丙烯纤维来增强的聚丙烯(所谓的“全 PP”复合物)的正面特性-可回收性、强度和刚度-在John Peiis的"Composite for Recyclability”,Materials Today, 2003 年 4 月,第 30 到 35 页中有更详细的描述。

发明内容
基于自增强热塑材料特别是自增强聚丙烯的现有知识,本发明的目的在于,克服 困难以便基于自增强热塑材料生产具有高度形变并包括高度变形区域的物品,例如深度大 的行李箱壳体,考虑到包含拉伸定向丝束或带子的自增强热塑材料的高抗拉强度和变形抗 力,制造这种深度大的行李箱壳体通常比较困难,所述自增强热塑材料例如是PP的自增强 热塑材料或其它结晶体或半结晶体热塑材料,它们能在由所述带子、薄膜或纱线形成织造 垫子或其它薄片材料之前被预拉伸。因此,本发明的目的在于,提供一种用自增强热塑材料制造塑性元件特别是行李 箱壳体的方法,该方法能够以成本效率高的方式形成非常耐用却很轻便的元件,例如深度 特别大的行李箱壳体,并且对于元件主表面之间的拐角区域和交叉区域的光滑成形给予了 特别的关注。此外,本发明的目的在于提供用自增强热塑材料形成的这种塑性元件,特别是行 李箱壳体,使得能够显著增大这种元件的深度与长度和/或宽度的比值,从而能在元件特 别是行李箱壳体的净重最小时支承高载荷或重量。另外,本发明的目的在于提供一种用于制造包括高度变形区域的塑性元件特别是 行李箱壳体的装置,该装置能够基于在传统系统中已经广泛使用的机器和工具生产产品的深 度与宽度或长度的比值高的三维塑性元件,这种装置设计和操作起来简便并且成本较低。至于方法方面,根据本发明,前述目的由具有权利要求1或11的特征的方法来实 现。这些方法的优选实施方式在相关的从属权利要求中限定。因此,本发明采用一种将聚丙烯薄板的热成形加工的方面和金属特别是轻金属板 的深拉的方面相综合的方法,从而提出了一种能够对自增强热塑材料-特别是具有聚丙烯 或其它结晶体或半结晶体热塑树脂的定向丝束的自增强热塑材料-进行深拉的方法,由此 能够形成极轻便的元件,例如行李箱壳体,这类元件具有高度变形区域,尤其是指这类元件 的主表面之间的拐角区域和交叉区域,而由于在对自增强热塑垫子或其它热塑材料的板片 进行压制成形时遇到的困难,这些区域在实践中还不能被模制。因此,能够制造出重量相对于传统的硬侧面箱子大大减轻的元件,尤其是行李箱 壳体。特别地,使用织造自增强聚丙烯材料并通过也被称为“挤压技术”的压制成形技术来 制造这种元件,尤其是壳体。本发明的一个基本方面在于,热塑材料的自增强复合物在所有成形步骤特别是压 制成形和成型步骤中-例如在所述材料的深拉中-至少局部张紧,从而能够形成深度与表 面的比率高的元件,尤其是行李箱壳体。相应地,所有“关键的”丝束(带子)和纤维-即 延伸穿过高度变形区域例如拐角区域的丝束(带子)和纤维-在整个过程中都应该保持张 紧,而不管在压制成形过程中在这些区域内是否产生挤压力。关于塑性元件尤其是行李箱壳体,上述目的由权利要求25和34中记载的特征来 实现,其优选实施例在相关的从属权利要求中限定。在任何成型或模制工艺之前,优选地,自增强热塑材料(薄板)优选通过在连续的 无活动工艺(inactive process)中进行热粘结来装衬织造品或编织品,并对所期望的塑性 元件进行进一步的压制成形。还可以选择将包含在相应的自增强热塑材料层中的多层分子定向(molecularlyoriented)丝束布置为相互成一定角度,特别是使相邻层成十字交叉布置,这会进一步提高 最终产品的单向强度和准各向异性强度以及粘结性能。还可以形成至少包括与其它衬里结合或形成夹层结构的自增强热塑材料的复合 体或元件,例如壳体,即,使用泡沫塑料或由致密泡沫塑料材料制成的衬里,而这些材料不 必是热塑性材料。至于由自增强热塑材料制造塑性元件尤其是行李箱壳体的装置,根据本发明,上 述目的由权利要求37的特征来实现,而所述装置的优选实施例在其进一步的从属权利要 求中限定。因此,本发明使得能够制造一种极薄但耐用、轻便且能抵抗变形的元件,尤其是行 李箱壳体,所述元件具有高度变形而没有皱褶产生的区域,例如比较尖锐弯曲的曲面和包 括半径较小的拐角区域的弯曲部。这可导致新生产出一种基于合成树脂的超轻行李箱。通过自增强热塑复合物(SRTC)的压制成形尤其是深拉,形成了一种新型材料,其 能够以聚丙烯作为基材,但是也可以使用其它结晶体或半结晶体材料例如尼龙(为注册商 标)作为基材。优选地,这种自增强热塑复合材料(SRTC)在压制成形为薄板之前或者在使 用(共挤出聚丙烯)带子的情况下制造有重新软化的区域(通过中间加热),这些带子、线 丝或纱线被拉伸,并且在特别低的温度或冷拉伸工艺之后包括高定向的芯部以及围绕该芯 部的具有较低熔点的相同或相似材料的薄层。优选地,考虑到围绕被拉伸芯部的外薄膜在一定温度下会熔化并且织品能够通过 压力模制而被压成板或多层的薄片,所以所述带子被织造成织品,所述织品能被挤压或者 由其能合并成多层元件。尽管聚丙烯(PP)带子不如有机纤维有刚性,并且它们的粘弹性行为使得它们可 比塑料或热塑复合物发生更大的变形,但是这些特性可改善这些材料的深拉。为了避免对SRTC进行变形程度很大的深拉时存在的缺点,在高于100°C的升高温 度下的被拉伸带子的热收缩问题已经得到解决,这是因为成功的深拉工艺需要将SRTC薄 板加热到约170°C。本发明优选在整个工艺过程中使所有的关键带子-即在深拉或压制成形过程中 就产品的高度变形而言处于关键位置的带子-保持张紧(产生张力)。这种张紧可以如此 被动地发生,即通过在热塑性板材的边缘区域内将其固定,然后对其进行压制成形例如深 拉,从而使薄板本身产生那些张力;或者这种张紧可以是通过从外部引入(导引)作用在薄 板上(可能是附加地)的相应张力而实现的主动受控的张紧。根据本发明,使用一种板夹紧装置,该装置将所有的带子绕整个周边夹紧,并且提 供机会以根据所期望的工艺来控制和被动地或主动地导引条带中的张力。对大多数关键带 子的张紧的所述控制或导引可以是力驱动的、位置驱动的,或者是它们的组合。此外,本发明优选避免在产品特别是行李箱壳体的拐角处产生挤压力,所述挤压 力会抵消或消除带子、线丝或纱线中的张力,并且会在高度变形的拐角区域内引起褶皱。因此,本发明提供了这样的装置,该装置可在拐角区域内产生额外受控的变形以 便使所有带子保持张紧和/或控制可能出现的褶皱以防止它们出现在最终产品中。优选 地,这通过在压制成形特别是深拉过程中的预拉伸或导向拉伸(steered stretching)和张紧来完成。优选地,相应机器的装置设计可以使用两个独立移动的模瓣(腔和芯)的压模机, 或者可以采用独立的框架,该框架保持辅助模表面等,并操作上夹持爪或下夹持爪中的通 孔。而且,可以使用吹塑成形步骤,即在深拉工艺之前通过预先的吹塑成形步骤而进行的预 拉伸。优选实施例在其它从属权利中限定。


下面,通过结合附图对几个实施例的描述对本发明进行更详细的说明,在附图 中图1是根据本发明第一实施例的行李箱壳体从外部看去的透视图;图2是图1的行李箱壳体的表面细节(“细节C”),用于阐明图1的行李箱壳体的 表面图案或表面设计;图3是沿图2中的线“A-A”和“B-B”的行壳箱壳体表面的截面示意图,在图3中 以叠合形式示出所述两条线以阐明表面图案;图3. 1是行李箱壳体的底壁的可选强化(stiffening)图案的俯视图;图3. 2是阐明图3. 1的强化图案的放大透视截面图;图3. 3是类似于图3. 1所示的另一种可选强化图案的俯视图;图4是沿图1的行李箱壳体的长度尺寸方向看去的视图;图5是使用根据本发明的行李箱壳体的行李箱从其下拐角看去的局部透视图;图6是行李箱的拉链封闭件细节的详细(截面)示意图;图6. 1是根据图6的细节的示意性截面线条图;图7是与图5类似的视图,但示意性地示出行李箱该部分的内表面;图8示意性地示出通常使用的传统行李箱壳体的生产机器;图9是用于制造本发明的行李箱壳体的装置的一实施例;图10至15是根据图9的装置在制造图1的行李箱壳体时的不同制造步骤和操作 阶段的实施例;图16示意性地示出用于制造根据本发明实施例的行李箱壳体的下模工具(阴工 具);图17示出安置在活动工作台上的图16所示的下模工具(阴工具);图18示出图16和图17所示的下模工具(阴工具),其中图17的活动工作台处于 升起位置,而下模工具的辅助模表面缩进;图19示出与图16类似的具有单独驱动辅助模表面的另一实施例的下模工具(阴 工具);图20示出辅助模表面缩进的图19的下模工具;图21是上、下模瓣(阳模/阴模)的另一实施例,其中辅助模表面设置成对着下 阴模从上方接触板材;图22是图9中装置的机器压制成形(深拉配置)的夹持装置从上方看去且与其 它工具结构隔开的示意性透视9
图23是图22的夹持残骸(gripping wreck)的一个夹持杆的示意性透视图;图M是移除了夹持爪的夹持机构的局部视图;图25是样品薄板(没有加衬里);图沈是另一样品模具(修改的深拉模);以及图27是图沈中模具的示意性截面图。
具体实施例方式图1示出根据本发明的壳体1,此处为行李箱壳体。在这里,围绕直立侧壁6的周 界的边缘被切除,以除去加工后遗留的多余材料或下脚料。该壳体被深拉,也就是说,侧壁 6相对于底壁5的深度尺寸与由优选的自增强热塑性板制成的现有壳体相比非常大。更具 体地,该深度尺寸与整个壳体1的长度或宽度尺寸相比非常大。这种关系最好描述成与长 度或宽度尺寸中的较小者的比值。优选地,壳体的深度可以高达其宽度尺寸的一半,优选的 比值在约0. 2到0. 3的范围内。壳体材料的均一厚度优选从低至Imm(或0. 8mm)到3mm,优 选为约2. 5mm,正常的范围为1到2mm。优选的行李箱壳体由BP Amoco的商标为“Curv”的 已知自增强塑料商品制造,尽管也可以使用其它的具有相似的物理、化学和热加工特性的 热塑材料,例如可从Lanlchorst获得的Pure。自增强热塑材料包括优选高达10层(可能更 多或更少)的特别是单轴排列的、有捻的(成束)或织造的带子、线丝或纱线,它们包含这 些分子定向丝束与分子无定向热塑材料或相似基体材料的结合。通过对后续层或不同层以 预定图案进行布置,预张紧的丝束在壳体的相同或不同层中相互倾斜地延伸,从而确保了 单向强度特性。如图所示,对于典型的50cm的行李箱,壳体的与底壁5垂直的直立壁的尺寸约为 110mm。长度与宽度之比优选在1和2之间,特别是在1和1.4之间。壳体具有一体形成的 拐角区域7。因此,这种行李箱的壳体的宽度通常在36cm左右。当通过简单的框架或拉链 封闭件将壳体与相似大小的壳体在它们的配合边缘配成对时,这种尺寸使得行李箱非常轻 却具有很大的容积以装下旅游者的生活必须品。因此,每个壳体1的直立壁6应当尽量深, 这使得本发明所预期的自增强材料的成形会产生困难。这类行李箱的垂直尺寸可以小到约 80mm并且仍然被认为是“深拉”,特别是当拐角区域的自增强材料的半径为60mm或更小时。当然,本文公开的方法和装置可以制造一定范围的壳体尺寸。但是本发明的最大 优点优选用于深拉壳体,其中,对于拐角半径优选小于约60mm的壳体,上述垂直尺寸与宽 度或长度尺寸中的较小尺寸的比值优选小于约0. 3。图2是细节透视图,示出了一小区段的印入底壁5的主壳体外表面Ia中的三维强 化图案。自增强塑料具有很高的强度、冲击和坚韧特性,这使得它们在制造很轻便的结构, 特别是所述类型的深拉壳体时很有吸引力。12到15mm厚的极薄板材提供了优异的物理特 性和轻便特性。遗憾的是,行李箱壳体应当提供对变形特别是底壁处变形的抵抗力以防止 被压碎。较厚的原材料板会有所助益,但成本和重量更大。本发明的壳体的底壁5的具有形式为交替的凹区域和凸区域如、513的图案(见图 3),以便通过增加抗弯强度或增加弯矩来提供较大的结构刚性,以抵抗在垂直于底壁的所 有平面内的弯曲。可以看到,图中示出了交替的凹凸矩形区域沿底壁5的二维表面平面延伸的复杂图案。当然,所述凹/凸图案是三维的。由于在深拉过程中将一系列波状起伏的条 带印入壳体底壁中,因此上述区域实际上是可见的。这些具有连续波动的条带图案基本是 平行的,但实际上轻微地弯曲成-如将要详细说明的那样-没有相互平行的边缘形成。同 样,相邻的波动彼此偏移一个矩形形状或区域的纵向尺寸。当然,也可以选用其它的图案, 优选为规则的交替凹/凸图案。图3是将图1中截面AA处的大致截面形状的中心线和相邻截面BB的截面形状的 中心线进行对比的细节。这种波动形状的偏移图案不仅在视觉上令人愉悦,其也导致相当大的平行于其纵 向尺寸即平行于所述波动条带图案的纵向方向以及垂直于其纵向尺寸的刚度或者对易于 使壳体的底壁变形的弯曲力的抵抗力。关于纵向刚度,可看到图3的线AA和BB各自表示 了在图1和图2的截面AA和BB处位于自增强材料的中心以下的线。尽管波动条带图案的 边缘看起来大体上是直线,或者如下面将要详细描述的那样是轻微且光滑地弯曲的线,但 是这些边缘实际上在每个波动处都侧向摆动(即,横向偏移)。这是由于脱模角“d”(即模 具表面相对于压模机中模具移动方向的角度)以及由此引起的相应模制边缘造成的,这些 模制边缘用于在图案中形成每个矩形形状的侧“壁”。该脱模角即便在范围为7度以内的相 当陡峭的角度时也会形成微小距离的多个或反复的偏移,其在图3中放大示出。显然,由这 种图案形成的矩形凹陷和突起使许多自增强材料移离了中轴线,很像一系列肋在底壁的宽 度上横向延伸。但是,这些肋不会增强这种加肋板面对平行于这些肋的弯曲的抵抗力。然 而在这里,由上述脱模角造成的摆动或反复的偏移也使一些自增强材料远离平行于波动的 中轴线,同样有助于抵抗沿这些线的弯曲。换句话说,上述图案产生了一系列具有刚性直立 壁的小的带壁饰板(walled coffin),尽管事实上在所述板面上没有哪一处的自增强材料 的厚度大于其名义上的起始尺寸(前文提及的起始尺寸优选在12mm到15mm之间)。图3. 1示出形成在优选行李箱壳体的底壁中的一种可选形式的强化图案。此处 连续弯曲的边缘被模制成界定相邻的凹凸细长槽和肋,如图3. 2所示的放大透视截面图所 示。这些边缘在底壁的总平面上以特征波长“W”可视地连续弯曲。相邻的边缘相互之间沿 纵向偏移该特征波长的基本部分(substantial portion)。此处所示的示例中,该偏移约为 波长的20%,从而在纵向方向(即,与槽和肋平行的方向)上提供了抵抗弯曲的刚性效果, 同时又提供了较柔和的、可能更美观的图案。图3. 3示出另一变型。其中,纵向边缘以白色 示出,而被这些边缘隔开的交替的槽和肋以黑色示出,并且其具有与图3. 2所示相似的典 型截面形状。这些纵向边缘的每一个都以非常长的特征波长“W”连续弯曲,在本实施例中, 所述波长比壳体的长度尺寸长。相邻边缘彼此之间偏移的距离约为这种非常长的特征波长 的一半。尽管不那么显著,但这种图案也能提供一些抵抗沿纵向尺寸的弯曲的刚性。图4是沿图1中壳体的长度尺寸看去的视图。如上所述,除了在底壁的纵向中央处之外可视地界定偏移波动条带图案的垂直线 实际上都轻微弯曲。该弯曲很小,即曲率半径很大,大约有几米。这种弯曲不仅有助于美观, 而且防止了所述一系列小的直立摆动壁形成“折线”,或者底壁能沿其轻易弯曲的线。图5是使用根据本发明的壳体的行李箱从行李箱的下拐角看去的局部透视图。在此可以看出,行李箱能通过将两个相似形状的本发明壳体配合在一起而制成。 相邻的边缘通过拉链27或者滑动开启线选择性地连接,其在下面将有详细说明。注意,脚
11轮底座25位于壳体拐角,尤其位于提供稳定性的那些拐角,这与办公椅椅腿的端部处的轮 脚非常相似(当然,它们也能被容纳在凹陷区域内)。可以得出,在配合区域相对于拐角/ 轮脚位置偏移时,壳体半部可具有非常不同的深度。图6、6. 1是拉链封闭件细节的截面图。—个壳体的周界边缘具有台阶部27a,该台阶部基本上围绕着壳体周界设置,并且 其大小正好接合或接纳另一个壳体1的相应周界边缘。该台阶部27a优选形成有接近于零 的脱模角a。直立壁部分的其余部分便利地形成有大约为7度的脱模角β。这样的脱模 角β使得用于深拉壳体1的阳模和阴模的相对模表面能在垂直于壳体表面的方向上施加 足够的模压,以适当地对自增强材料施压并保持其适当地固化,并提供较好的表面光洁度。 对于该台阶部分,一专门的阴模具有邻近模边缘的基本没有脱模角(即,脱模角约为0度) 的周界部分18。类似地,阳模的相应模表面19基本上没有脱模角。阳模中的挤压和成形力 由阳模中的弹性体元件20提供,该弹性体元件20优选由粗糙的耐热硅酮橡胶等制成。该 元件当其在阳模支承件和阳模的剩余部分之间受到挤压时沿径向向外膨胀,从而在所述壳 体的台阶边缘部上提供挤压压力(参见相应的附图26、27)。图6左边的拉链带子观在28a处缝合到该台阶边缘上,而右边的拉链带子观在 28a处缝合到另一壳体边缘上,使得当操作拉链滑块四闭合拉链27时,壳体1被牢固地保 持在一起而处于叠合(telescoped)位置,它们的边缘牢固地交迭。优选地,每个拉链带子 观沿其各自的外边缘粘附有突出盖片(extruded flap) 29a,在安装拉链带子观时,所述突 出盖片能被缝纫机脚推开。该突出盖片复位后既遮盖住缝合线也有助于密封所生成的穿孔 以防止渗水(precipitation)。相关的拉链卷筒(zipper coil)用29c表示。图7是与图5类似的视图,但示出行李箱的对应部分的内表面。下拐角(当箱子直立在附装好的脚轮上时)具有一个坚实的凹口,用于接纳其它 传统的轮底座。螺钉紧固件(未示出)穿过在这些凹口处的自增强聚合物板材上钻通的孔 而将轮底座紧固在壳体上。所示的行李箱,甚至包括四个轮子和适当的推送和操作把手,对 于约50cm长的传统大小的箱子而言可以具有小至2. 2kg的重量。图8示出用于制造一种行李箱壳体的传统生产机器。该机器用于制造覆盖有席纹组织(basket weave)纺织品的聚丙烯行李箱壳体1, 其包括(从左至右)加热站(预热)30,用于将预层压纺织品和聚合物板加热到合适的处 理温度;然后是站31,用于将衬里材料例如织品布置在要压制成形的下一块板上;右边的 压制部段32接纳聚丙烯薄片并使其在相配的模腔之间成形为壳体形状;元件移除站用附 图标记33表示。图9示意性地示出根据本发明的用于制造图1中壳体的装置。图10至15示出处于不同操作阶段的图9的装置。该装置从左至右包括衬里纺 织品分配器22,其接纳成堆的用于布置在温度调节好的自增强聚合物板上的纺织品布料; 压模机23;以及辐射加热器M。自增强聚合物板从压模机的后方供应。纺织品线(未示 出)设置在托盘2 上。所述深拉压模机包括可相对移动的上台和下台23a、23b,即,支承 深拉工具14的上模或阳模15的上台23a在柱状框架23c的导引下沿着该柱状框架23c朝 下模或阴模16下降。夹具沈夹持要粘结到从后方供应给压模机23的自增强热塑材料板 (薄片)上的衬里织品或纺织品材料的角部。板夹持架12(在图22至M中显示更详细)对每一块来自板供应处的要加热的板在上部阳壳体模工具15(为了清楚起见,显示时移开 其支承台)和下部阴模16之间的位置进行可控制的保持或拉伸。辐射加热器支承件包括 上部和下部辐射加热器阵列24。在自增强聚合物板在壳体模工具14 (上、下深拉模15、16) 之间被夹持架12夹持和保持或拉伸的同时,这些阵列M同时从支承架12滑出以便对自增 强聚合物板的两侧进行加热。如图10所示,机器处于初始位置,准备接纳聚合物板材和相关的衬里纺织品,用 于粘附在聚合物板材上并深拉聚合物板材和衬里纺织品。图11到15示出执行根据本发明的行李箱壳体制造方法的装置的进一步操作。图11示出向下移动而准备从压模机23后面的供应处接纳加热的聚合物板的夹持 架12。该板移到夹持爪31、32(见图22/2 的上方并下落到四个夹持杆或夹持爪31、32的 四个支承杆12b和下爪32上。然后,辐射加热器M快速移动到这样夹持的聚合物板的上 方和下方,以将聚合物板加热到处理温度(图12)。夹持杆或夹持爪31、32是液压或气压 驱动的以在加热和/或深拉过程中牵拉和/或移动聚合物板4的被夹持边缘。一旦该板被 加热完,辐射加热器M快速地移回它们的支承架内并移开,而模表面移动以接触并成形该 聚合物板。在加热同时和在模制前,纺织品衬里、通常是编织针织品的板片被布置在加热器 24和上模工具15之间的位置。在图13中,衬里存储托盘2 被移动到升高位置,然后,纺织品衬里被送入到压模 机23中(图14)。下模-在这里指阴深拉模16-和辅助模表面13向上移动以便与被加热和伸出的 板接触。上阳模15向下移动,以迫使该板与所有的模表面接触,同时,使衬里材料成形并粘 附到热成形的聚合物板上(图14. 1、图15)。图16至18示出单独的下模16 (阴模工具),包括设置在拐角区域的辅助模部分 13,其辅助在相应的薄片或热塑性板(可能衬装有纺织品)上施加额外张力,并且帮助克服 在该区域出现的挤压力。辅助模部分13被旋拧在相应的可收回和突出的支承件上,从而辅 助模13本身能缩回到下模16内,如图18所示,或者从下模16中突出(图16、17)。此外, 如图16和17所示,下台2 本身能额外地升高,以便结合辅助模部分13提供的精细调节 来以调整板材的相应张力。相应地,辅助模表面和辅助模部分13帮助收集多余材料,不然多余材料将在拐角 区域积聚而可能使模制壳体的拐角起皱。如图19所示,每一个辅助模部分13可以由分离 的驱动机构13a单独驱动,这些驱动机构使得能够精细地调节引入到薄片和复合热塑性板 材中的相应张力,从而材料的适当流动和自增强热塑材料内的分子定向丝束或纤维的持久 张力得以维持,并且有效地避免了挤压力的发展。因此,图19中示意性地示出的实施例是最优选的。在这种情况下,例如,保持位于 那些拐角区域处-所述拐角区域设计为具有接纳轮子(容纳轮脚壳体)的凹部-的辅助模 部分和表面13不与聚合物板接触对于在这些凹部提供充足的聚合物材料是有利的。图20示出全部处于缩进位置的辅助模部分或表面。图21公开了上模瓣和下模瓣的另一实施例,其中,辅助模表面设置成对着下阴模 从上方接触板材。它们经由支承在上模板1 上的突起部1 而设置,上模板15a也支承 阳模15。相应的凹部13c设置在下模(阴模)16的边缘内,用于接合辅助模部分13。当然,与前面的实施例类似,辅助模表面和辅助模部分13的精确位置也能通过将所述支承突 起部1 设计成可伸缩的或其它的可调节方式而进行精细调整。当然,突起部13b也可以 就它们的长度而言可调节地支承在上模支承板1 上。图22至M示出夹持残骸机构的细节。图22示出从上方看去的该夹持残骸12的 透视图,示出了用于支承板材的支承杆12b以及上下夹持杆或夹持爪31、32。响应相应的工 艺控制而通过连杆机构-例如图M所示的肘节杆机构-驱动上下夹持杆或夹持爪的爪操 作驱动单元33可以是电驱动的、气压驱动的或液压驱动的。优选地,下夹持杆或爪是固定的,并且支承杆12b附装于其上,而上夹持杆或爪可 相对于下夹持杆或爪移动以夹持材料。在压制成形即深拉成形过程中以这种方式作用在板上的张力控制可以是被动控 制,其基于模制过程本身并夹紧相应的热塑材料板(特别是加衬里的)的边缘,或者,所述 张力控制可以是主动执行的,即,主动地移动板的相应的以及可能更特性化的夹紧区域以 便在模制过程中向板材内的增强丝束施加一定的张力。图M示出操作组件和夹持杆或夹持爪操作器的局部分解图,其基于例如一活塞 杆,该活塞杆从操作筒体33中伸出并将角运动传递到上夹持杆或夹持爪支承件33a以在凸 轮控制槽36的辅助下经由连杆37向下夹持杆或夹持爪支承件移动。最后,图25再次示出具有中央部分2、空旷部分(field portion) 3以及相应边缘 8的薄板或基材4。图沈和27示出具有相配的上(阳)模15'和下(阴)模16'作为另一深拉模 14'的深拉模块的可选实施例。在这种情况下,阴模部分16'具有靠近修剪线的周界模表 面18。该周界部分基本上没有脱模角。包括周界模表面19的阳模15'具有特别是模制硅 塞子的弹性体部段20,其围绕周界形成可膨胀模表面,从而提供受控而可靠的模制力,以避 免起皱和变形,特别是在壳体的拐角区域。通过前述方法和装置,可以制造出一种至少在某些区域或范围内具有极高程度的 变形的超轻模制元件,例如深拉壳体,尤其是行李箱壳体,其具有高的深度与宽度/长度的 比值以及无与伦比的机械特性(即强度、抗弯性、抗变形和破碎能力),并且具有很高的尺 寸和成形精度以及吸引人的外观。本发明提供了在自增强热塑材料的基础上制造出的一种新产品及其制造方法,其 步骤包括张紧所述材料(薄板),在所有后续的元件成形和/或模制步骤中至少局部张紧 所述薄板,直至元件预成形件从剩余薄板上脱离以形成所述元件。本发明使得能在使用自增强热塑材料的基础上制造超轻行李箱壳体,通过在所有 制造步骤直至产品的最终完成过程中持久地张紧所述材料能进一步改善所述壳体的制造。
权利要求
1.一种用于生产塑性元件的方法,所述塑性元件包括变形区域,例如位于所述元件主 表面之间的交叉处的一体形成的拐角区域、曲面或弯曲部,所述方法包括-提供自增强热塑材料的薄板,-在所有后续的元件成形和/或模制步骤中通过主动地控制所述薄板中产生的张力而 至少局部张紧所述薄板直至元件预成形件从薄板上脱离,以形成所述元件。
2.如权利要求1所述的方法,其特征在于所述塑性元件通过压力成形而成形和/或 模制。
3.如权利要求1或2所述的方法,其特征在于通过主动地控制张力而沿不同方向张 紧至少所述薄板的带子、薄膜、线丝或纱线,其中在所有的成形和/或模制步骤中持久地执 行该张紧。
4.如权利要求1或2所述的方法,其特征在于包括在对薄板开始张紧之后以及在对 薄板开始模制之前对薄板进行温度调节的步骤。
5.如权利要求1或2所述的方法,其特征在于在对自增强热塑材料薄板进行成形和/ 或模制之前将织品材料层压到所述薄板上。
6.如权利要求5所述的方法,其特征在于优选用织品进行层压的薄板在其边缘附近 被夹持,所述边缘之间具有空旷部分。
7.如权利要求6所述的方法,其特征在于空旷部分的中央部分和所述边缘之间的部 分经受深拉步骤之前的预成形。
8.如权利要求6所述的方法,其特征在于至少空旷部分的中央部分通过深拉而模制 成元件预成形件。
9.如权利要求2所述的方法,其特征在于在进行深拉时,薄板边缘相互之间可控地定位。
10.如权利要求1或2所述的方法,其特征在于在模制之后,所述元件预成形件从薄 板上脱离下来,以形成模制元件。
11.一种用于生产塑性元件的方法,所述塑性元件包括需要增加的变形加工的变形区 域,例如位于元件主表面之间的交叉处的一体形成的拐角区域、曲面或弯曲部,所述方法包 括提供自增强热塑材料的薄板,该薄板具有边缘以及在所述边缘之间的空旷部分;考虑到薄板的自增强结构,通过使薄板承受预定应力和/或经受温度调节而将薄板张紧;至少局部地将薄板深拉成壳体预成形件,同时主动地控制薄板边缘相互之间的定位, 最后从薄板上脱离元件预成形件以形成所述元件。
12.—种至少从薄板的空旷部分的中央部分制造壳体的方法,所制成的元件具有底壁 和直立侧壁,以及在底壁和两个直立侧壁交叉处的至少一个一体形成的拐角区域,所述方 法包括提供自增强热塑材料的薄板,该薄板具有边缘以及在所述边缘之间的空旷部分, 在薄板边缘附近用夹持装置夹持该薄板, 对薄板进行温度调节,使位于空旷部分的中央部分和所述边缘之间的部分成形, 至少将空旷部分的中央部分深拉成壳体预成形件,在深拉的同时,主动地控制薄板边缘之间相互定位,并且从薄板上把预成形件切割下来以形成深拉壳体。
13.如权利要求11或12所述的方法,其特征在于在对自增强热塑材料薄板进行成形 和/或模制之前将织品材料层压到自增强热塑材料薄板上。
14.如权利要求12所述的方法,其特征在于成形步骤包括使辅助模表面与位于中央 部分和靠近拐角区域的边缘之间的部分相接触。
15.如权利要求12或14所述的方法,其特征在于深拉步骤包括使薄板的中央部分与 壳体模相接触。
16.如权利要求15所述的方法,其特征在于用在深拉步骤中的壳体模是相配合的模 具,其包括阳模表面和形状对应的阴模表面。
17.如权利要求12或14所述的方法,其特征在于主动地控制薄板边缘定位的步骤通 过可控地移动薄板边缘来执行。
18.如权利要求12或14所述的方法,其特征在于主动地控制薄板边缘定位的步骤通 过响应由薄板施加在夹持装置上的牵弓I力而可控地移动薄板边缘来执行。
19.如权利要求12或14所述的方法,其特征在于主动地控制所述边缘定位的步骤通 过响应深拉步骤所占用的时间段而可控地移动所述边缘来执行。
20.如权利要求12或14所述的方法,其特征在于主动地控制所述边缘定位的步骤通 过可控地使所述边缘相互移近来执行。
21.如权利要求12或14所述的方法,其特征在于主动地控制薄板边缘定位的步骤通 过可控地使边缘相互远离地移动来执行。
22.如权利要求11或12所述的方法,其特征在于成形步骤和深拉步骤同时进行。
23.如权利要求12或14所述的方法,其特征在于成形步骤在可控地定位所述边缘的 步骤之后执行。
24.塑性元件,具有底壁和直立侧壁以及至少一个拐角区域,所述元件包括热塑材料, 其中热塑材料选自定向丝束的自增强热塑树脂,所述定向丝束的自增强热塑树脂被由大致 为非定向的相似的热塑材料形成的基体所围绕,所述元件的名义厚度在Imm到2. 5mm之间。
25.如权利要求M所述的塑性元件,其特征在于侧壁具有深度尺寸,而具有矩形壁形 状的底壁具有长度和宽度尺寸,其中宽度尺寸不大于长度尺寸,深度尺寸与宽度尺寸之比 在0. 2到0. 5之间。
26.如权利要求M或25所述的塑性元件,其特征在于长度尺寸与宽度尺寸之比在1 到2之间。
27.如权利要求M或25所述的塑性元件,其特征在于该元件在拐角区域的曲率半径 为80mm或更小。
28.如权利要求M或25所述的塑性元件,其特征在于热塑材料选自包括聚丙烯、半 结晶体聚合物以及它们的组合的组。
29.如权利要求M或25所述的塑性元件,其特征在于热塑材料具有至少一层或多层 的形式为分子定向长丝的聚丙烯,以及至少一层或多层的非定向的聚丙烯。
30.如权利要求M或25所述的塑性元件,其特征在于自增强热塑材料至少部分地包 括取向不同的定向丝束。
31.如权利要求M或25所述的塑性元件,其特征在于热塑材料被层压有织品和/或 包括相同、相似或不同塑料的复合物。
32.塑性元件,具有底壁和直立侧壁以及至少一个拐角区域,所述元件具有热塑材料, 其中底壁具有模制在其中的重复的凸凹形状图案,底壁在凸形状、凹形状和底壁的其余部 分之间的总厚度一致。
33.塑性元件,具有底壁和直立侧壁以及至少一个拐角区域,所述元件具有热塑材料, 其中至少底壁的主要部分具有模制在其中的重复的凸凹形状图案,使得所述元件在凸凹形 状区域的厚度相同,所述凹形状和凸形状由沿纵向延伸、具有特征波长的连续弯曲形状以 交替顺序形成,相邻的弯曲形状相互之间沿纵向尺寸偏移一等于所述波长的一部分的距离。
34.塑性元件,具有底壁和直立侧壁以及至少一个拐角区域,所述元件包括热塑材料, 其中至少底壁的主要部分具有模制在其中的重复的凸凹形状图案,使得所述元件在凸凹形 状区域的厚度相同,所述凹形状在底壁平面内具有总体为矩形的形状,所述凸形状在底壁 平面内具有总体为矩形的形状,这些凹凸形状由平行的连续波动以交替顺序形成,相邻的 波动相互之间沿纵向尺寸偏移一个凸形状或凹形状的纵向尺寸。
35.如权利要求33或34所述的塑性元件,其特征在于沿着垂直于凸凹形状的纵向尺 寸的截面的壁厚的中心线示出了与凸形状相对应的槽以及与凹形状相对应的脊,所述槽和 脊由直立侧壁相互连接,所述直立侧壁与主壁之间形成等于脱模角的角度。
36.如前述权利要求M、25、32、33、34中的一项所述的塑性元件,其特征在于热塑材 料的总厚度不超过2mm,并且具有不超过10层的分子定向长丝。
37.用于制造塑性元件的装置,所述元件至少包括薄板的空旷部分的中央部分,所制成 的元件具有底壁和直立侧壁以及位于底壁和两个直立侧壁交叉处的至少一个一体形成的 拐角区域,所述装置包括用于在薄板边缘附近用夹持装置夹持薄板的装置,用于调节薄板温度的装置,用于使位于中央部分和所述边缘之间的部分成形的装置,用于至少将薄板的空旷部分的中央部分深拉成元件预成形件的模制装置,以及在深拉时用于主动地控制夹持装置和薄板边缘相互定位的装置。
38.如权利要求37所述的装置,其特征在于用于成形的装置包括辅助模表面,该辅助 模表面定位成与位于中央部分和靠近拐角区域的薄板边缘之间的部分相接触。
39.如权利要求37或38所述的装置,其特征在于用于深拉的装置是壳体模。
40.如权利要求39所述的装置,其特征在于壳体模是相配合的模,其包括阳模表面和 形状对应的阴模表面。
41.如权利要求38或39所述的装置,其特征在于用于主动地控制薄板边缘定位的装 置包括用于可控地移动薄板边缘的装置。
42.如权利要求41所述的装置,其特征在于用于主动地控制薄板边缘定位的装置响 应由薄板施加在夹持装置上的牵弓I力。
43.如权利要求41所述的装置,其特征在于用于主动地控制薄板边缘定位的装置响 应深拉所占用的时间段。
44.如权利要求37或38所述的装置,其特征在于用于使位于中央部分和薄板边缘之 间的部分成形的成形装置包括吹塑模制系统。
45.如权利要求37或38所述的装置,其特征在于设有用于在对薄板进行温度调节之 后使用夹持装置和与夹持装置相连的元件主动地控制薄板内所产生的张力的装置,以主动 地控制薄板的张力区域。
46.如权利要求37或38所述的装置,其特征在于用于夹持(和夹紧)薄板的装置适 于使形成该薄板的所有带子绕着该薄板的整个周边夹紧,所述装置具有用于控制和导引所 述带子中的张力的装置。
47.如权利要求37或38所述的装置,其特征在于包括辅助模部分,该辅助模部分在 薄板的拐角区域施加额外控制的变形,以便使所有带子保持张紧和/或控制可能出现的褶 皱以避免它们出现在最终产品中。
48.如权利要求47所述的装置,其特征在于包括张紧装置,其与两个独立移动的模瓣 结合起来操作或者使用独立的上台或下台,所述独立的上台或下台具有从一独立框架延伸 出并穿过所述台中的通孔的接合元件。
49.如权利要求37或38所述的装置,其特征在于所述壳体模是相配合的模具,其包 括阴模和阳模,阴模具有脱模角等于0度的周界区域,而具有与阴模的周界区域相对应的 模表面的阳模包括弹性体元件,该弹性体元件用于在壳体的模制过程中向外膨胀以将薄板 压靠在阴模的周界区域上,从而深拉壳体具有直立侧壁,而该直立侧壁具有为0度的脱模
50.如权利要求37或38所述的装置,其特征在于设有用于将织品层压到薄板上的装置。
51.如权利要求37或38所述的装置,其特征在于夹持装置包括成对的细长爪,该爪 用于夹持薄板的边缘,在所述成对的板状上爪和下爪附近设置有爪操作驱动单元。
全文摘要
本发明涉及由自增强热塑材料制造塑性元件(1)特别是行李箱壳体的方法、由自增强热塑材料制成的塑性元件(1)以及用于制造这种塑性元件特别是行李箱壳体(7)的装置。本发明提供了基于自增强热塑材料通过以下步骤制造的一种新产品和用于制造该新产品的方法,即,张紧所述材料(薄板),在所有后续的元件成形和/或模制步骤中至少局部张紧所述薄板直至从剩余薄板上脱离元件预成形件以形成所述元件。本发明使得能够在使用自增强热塑材料的基础上制造超轻行李箱壳体(7),通过在所有制造步骤直至产品的最终完成过程中持久地张紧所述材料能进一步改善所述壳体的制造。
文档编号B29C51/30GK102107528SQ20101059348
公开日2011年6月29日 申请日期2005年4月13日 优先权日2004年6月18日
发明者A·德塔耶, R·希拉尔特 申请人:新秀丽Ip控股有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1