具有锚定位点的风轮机叶片的制作方法

文档序号:14414742阅读:151来源:国知局
具有锚定位点的风轮机叶片的制作方法

发明领域

本发明涉及风轮机叶片、具有此叶片的风轮机,以及制造此叶片的方法。

发明背景

现代的风轮机叶片可能需要表面安装的装置(也被称为添加物),其被附接到叶片的空气动力壳上。

通过使用不同类型的粘合剂或双面胶带,此类添加物通常在各种位置处被粘合到叶片的空气动力壳上。

wo13060493描述了通过使用粘合剂被固定到风轮机叶片上的涡流发生器。

因此,已知将各种构件如扰流器和锯齿粘合地附接到风轮机叶片上。

此方面的一个问题在于,此类添加物可在操作期间脱离叶片或者随时间逝去而松开,这可引起能量产生、操作噪音和安全性方面的叶片性能降低。

这继而又引起昂贵的停机时间和修理。

本发明的目的在于减轻或缓解这些问题。

内容概述

本发明关于一种风轮机叶片,其具有由复合材料制成的叶片壳体,

所述复合材料包括增强纤维和热固性树脂,

所述风轮机叶片包括尖端和根端,以及前缘和后缘,

所述风轮机叶片包括被整合(integrate)在所述壳体中的热塑性材料,

所述热塑性材料被包括在所述风轮机叶片的外表面的至少一部分中,

所述热塑性材料构造成用作锚定位点(anchoringsite)来附接至少一个附加表面安装的装置。

根据本发明,提供了一种具有锚定位点的风轮机叶片,所述锚定位点用于表面安装的装置的附接。热塑性材料的锚定位点允许装置较容易且较安全地被附接到叶片的表面上。锚定位点的热塑性材料可被选择成提供改进的条件来结合到此类表面安装的装置上。此外,用于锚定位点的热塑性材料可被选择成提供与壳体的纤维增强材料的良好整合。可能有利地是具有所使用的热固性树脂与锚定位点的热塑性材料之间的良好粘合。

用于表面安装的装置不再需要被结合到壳体的复合材料上,这通常可能很难,并且并非总是可复制,具有在使用期间表面安装的装置与叶片断开的风险。通过被整合在根据本发明的风轮机叶片的壳体中的锚定位点的装置的增强附接可导致较长寿命和较少装置相关的保养。

在适合位置处整合在叶片的壳体中的热塑性锚定位点还可提供可见的协助来识别附接装置的位置。例如,相比于壳体材料时,锚定位点可具有不同的颜色或质地,使得容易识别锚定位点。

根据本发明的实施例,表面安装的装置通常可用于改变风轮机叶片的空气动力性能。

根据本发明的实施例,热塑性锚定位点可用于例如沿着风轮机叶片的前缘的至少一部分来附接防蚀护罩。

在本发明的实施例中,热塑性材料包括能够与热固性树脂的成分进行反应的化学基团。

根据本发明的实施例,有利地是选择能够通过例如热塑性材料的聚合物骨架中的化学基团与树脂混合物中的树脂组分(例如,交联组分和/或单体、低聚物或聚合物)之间的化学反应而被化学地结合到热固性树脂的成分上的热塑性材料。

例如,此类化学结合可根据本发明的实施例通过将聚(丙烯腈-丁二烯-苯乙烯)选择为热塑性材料并且选择包括苯乙烯的聚酯树脂混合物作为反应溶剂和交联组分来实现。热塑性聚合物的苯乙烯基团然后可与树脂组分进行反应,并且变为被化学地结合到树脂上。因此,可实现壳体中的锚定位点的很持久的整合。

在本发明的实施例中,风轮机叶片还包括被附接到风轮机叶片的锚定位点上的至少一个表面安装的装置。

根据这些实施例,风轮机叶片可设有被附接到锚定位点上的表面安装的装置。

在本发明的实施例中,所述至少一个表面安装的装置在所述锚定位点处通过胶合、塑料焊接或它们的组合来附接到风轮机叶片上。

用于附接位点的热塑性材料可取决于附接表面安装的装置的方法进行选择。因此,在本发明的一些实施例中,热塑性材料是特别适于与粘合性结合方法进行使用,而在备选实施例中,锚定位点处的热塑性材料可适于塑料焊接。一些热塑性材料可适用于胶合和焊接的组合。

在本发明的实施例中,所述塑料焊接选自于激光焊接、热焊接如热气体焊接、速度尖端焊接、点焊、接触焊接和热板焊接、超声波焊接、高频焊接和溶剂焊接。

当表面安装的装置使用热塑性材料时,使用用于将表面安装的装置在锚定位点处联接到热塑性材料上并由此到风轮机叶片的表面上的塑料焊接工艺具有多个优点:

-焊接工艺可以是自动或半自动的,其可降低生产成本,并且改善可复制性和质量。

-在装置与锚定位点之间形成的结合对应于在界面处的两种材料的聚合链的缠结,使得结合极为持久,并且不可能在叶片操作期间故障。

-所建立的材料连接的过程和质量是或多或少地独立于焊接位点的环境。在叶片制造地点,可能不需要小心控制温度和相对湿度,这在例如使用粘合剂、带等时通常很重要。此外,受损或磨损的表面安装的装置可在现场替换,与此同时叶片是在风轮机上,或者至少不将叶片移入到受控环境中。

原则上,适用于焊接塑料材料的任何焊接工艺都可以根据本发明的实施例进行使用。

在优选实施例中,使用了加热焊接。

热气体焊接是根据本发明的实施例的适用的一种可能的方法。热气体焊接可以是通用且经济的。

也可使用激光焊接,因为其利用多种热塑性材料产生非常可复制的结果。激光焊接可以是自动的,并且还可适于在场地中现场使用。

因此,即使在条件不容易控制时也可获得非常可复制的接头。

激光焊接通常需要在锚定位点处的热塑性材料,以在激光波长下吸收能量,同时用于表面安装的装置的热塑性材料应当使激光波长至少部分穿过来到达两种材料之间的界面。如果表面安装的装置和锚定位点是紧密接触的,则激光透明的材料也在界面处通过传导被加热,并且形成很耐用的接头。

热塑性材料之间的紧密接触例如可通过使用夹持装置来形成,以在激光焊接工艺期间将表面安装的装置固定到锚定位点上。

在一些实施例中,锚定位点处的热塑性材料包括吸热器件,例如,炭黑、其它特殊颜料或其它添加剂。

在本发明的实施例中,热塑性材料以片(sheet)、箔片(foil)或条(strip)的形式提供。

用于锚定位点的热塑性材料可以有足够柔性而能够适于壳体的所需形状或锚定位点处所需的壳体的部分。这可通过使用片或箔片来获得,其可遵循用于产生壳体的模制过程中的模具表面的形状,这可涉及真空协助的树脂转移。

可能有利地是将箔片、片或条加热到热塑性材料略微软化来协助将箔片或片定位在模具中的温度。

在本发明的实施例中,热塑性材料具有在0.1与2.0mm之间的厚度,优选为在0.2与1.0mm之间。

用于锚定位点的热塑性材料的片、箔片或条的厚度可变化。需要一定厚度来实现适合且良好作用的基础材料,表面安装的装置例如可通过塑料焊接来附接到该基础材料上。如果厚度变得太大,则柔性可能削弱且材料成本升高。

在本发明的实施例中,至少一个表面安装的装置是具有锯齿、扰流器、涡流发生器、翼件(winglet)、尖段、昆尼(guerney)翼片、失速栅或它们的任何组合的部分。

任何类型的表面安装的装置可在锚定位点处被附接到风轮机叶片上。这些装置通常改变叶片的空气动力性能。例如,通常安装在叶片的后缘处的锯齿部分可有助于减小在旋转期间由风轮机叶片生成的噪音,同时涡流发生器可防止围绕叶片的翼型件的空气流的分离,从而增强生成的升力。

在本发明的实施例中,至少一个表面安装的装置是注射模制的塑料部分。

通常,表面安装的装置需要详细且准确的几何形状。在优选实施例中,这可通过注射模制由热塑性塑料制成。

在本发明的实施例中,热塑性材料选自于由以下构成的组:聚苯乙烯、聚(丙烯腈-苯乙烯-丁二烯)、聚(丙烯腈-苯乙烯-丙烯酸酯)、聚(苯乙烯-丙烯腈)、聚碳酸酯(polycarbonate)、聚醚醚酮(polyetheretherketone)、聚对苯二甲酸丁二醇酯(polybutyleneterephthalate),或它们的任何组合。

一定数目的热塑性材料可用于锚定位点。在本发明的优选实施例中,聚(丙烯腈-丁二烯-苯乙烯)形成热塑性材料。在本例中,尤其在使用聚酯树脂作为热固性树脂时,可实现热塑性材料与热固性树脂的很好的整合以及壳体中的纤维增强。

在本发明的实施例中,至少一个表面安装的装置由聚苯乙烯、聚(丙烯腈-丁二烯-苯乙烯)、聚(丙烯腈-苯乙烯-丙烯酸酯)、聚(苯乙烯-丙烯腈)、聚碳酸酯、聚醚醚酮、聚对苯二甲酸丁二醇酯、超密度聚乙烯、热塑性弹性体如热塑性聚氨酯,或它们的任何组合制成。

被选择用于表面安装的装置的材料是被选择成产生与锚定位点的可能的良好结合,并且还关于良好的抗侵蚀性进行选择。

在本发明的实施例中,热塑性材料选自于以下构成的组:聚(丙烯腈-丁二烯-苯乙烯)、聚碳酸酯、聚(丙烯腈-丁二烯-苯乙烯)和聚碳酸酯的混合物,以及它们的组合,并且至少一个表面安装的装置由聚碳酸酯、聚(丙烯腈-丁二烯-苯乙烯)和聚碳酸酯的混合物、热塑性聚氨酯和它们的组合制成。

根据这些实施例,锚定位点热塑性材料和表面安装的装置的热塑性材料的若干组合是可能的。

例如,作为锚定位点热塑性材料的聚(丙烯腈-丁二烯-苯乙烯)可在对由聚(丙烯腈-丁二烯-苯乙烯)和聚碳酸酯的混合物制成的表面安装的装置进行附接时有用。

当将聚(丙烯腈-丁二烯-苯乙烯)用作锚定位点热塑性材料且表面安装的装置由聚碳酸酯制成时,可获得本发明的另一个实施例。

当将聚(丙烯腈-丁二烯-苯乙烯)和聚碳酸酯的混合物用作锚定位点热塑性材料且表面安装的装置由热塑性聚氨酯制成时,获得了本发明的另一个实施例。

当将聚(丙烯腈-丁二烯-苯乙烯)用作锚定位点热塑性材料且表面安装的装置由聚(丙烯腈-丁二烯-苯乙烯)和聚碳酸酯的混合物制成时,可获得本发明的另一个实施例。

原则上,用于锚定位点和用于表面安装的装置的材料可以是相同的类型,例如,聚碳酸酯。

根据本发明的实施例,在热塑性材料的顶部上存在凹口,所述凹口具有适用于容纳至少一个表面安装的装置的深度,由此风轮机叶片的表面上的至少一个表面安装的装置的基座部分与风轮机叶片的相邻表面基本上齐平。

在空气动力上有利地是使表面安装的装置的基座与风轮机叶片表面齐平。例如,这可以通过将防蚀护罩置于适于容纳其的凹口中来获得。

例如,此凹口可通过首先在将热塑性材料置于低表面能量材料的顶部上的模具中之前,将低表面能量材料如硅橡胶置于模具中来模制叶片壳体来达成。在模制之后,除去低表面能量材料,并且留下凹口来用于附接表面安装的装置。

低表面能量材料可被选择成基本上匹配表面安装的装置的基座的厚度。

本发明还关于一种包括如本文所述的叶片的风轮机。

本发明还关于一种制造风轮机叶片的方法,

用于风轮机的所述叶片具有在模制过程中由复合材料制成的叶片壳体,

所述复合材料包括增强纤维和热固性树脂,

所述风轮机叶片包括尖端和根端,以及前缘和后缘,

所述方法包括以下步骤:

-将热塑性材料置于模具中来模制所述叶片壳体的至少一部分,

-所述热塑性材料置于模具中来形成在叶片壳体的表面处被整合的锚定位点,用以附接至少一个附加表面安装的装置,

-将所述增强纤维置于所述模具中,

-用热固性树脂润湿所述热塑性材料和所述增强纤维,以及

-固化所述树脂来形成所述壳体的至少一部分,

-可选地将壳体部分联接来形成壳体。

在本发明的实施例中,所述方法还包括以下步骤:

-在锚定位点处附接附加表面安装的装置。

在本发明的实施例中,附加表面安装的装置是通过胶合、塑料焊接或它们的组合来进行附接。

在本发明的实施例中,所述附接所述附加表面安装的装置是在现场执行,与此同时所述风轮机叶片被安装在风轮机上,或者所述风轮机叶片已经与所述风轮机分离用于保养(servicing)。

风轮机的维护通常昂贵,并且涉及不产生能量的非期望停机时间。

风轮机叶片还可能需要维护,其一个原因是表面安装的装置的替换或附接。根据本实施例的方法令人惊讶地适用于如本文所述的表面安装的装置的现场修理、替换或后安装。

这是因为锚定位点可完全完好以用于附接新装置,例如,在原来安装的装置被侵蚀或其它故障破坏之后。原装置的残余物的除去允许了容易附接新的类似装置。

作为备选,当已经在风轮机上投入使用的根据本发明的叶片上需要空气动力改变时,在叶片表面处的被整合的锚定位点可用于附接所需的表面安装的装置。

通常,使用粘合剂来附接表面安装的装置(例如,使用带)将受益于受控的湿度和温度来确保良好结合,并且还需要较大的技巧和洁净度。

如果在现场进行装置的修理或新的附接,则此类控制通常完全不可能或仅在次优的程度。使专用的附接位点被整合到叶片中可减轻对此类控制的需要。

此外,例如,如果使用塑料焊接(例如,如激光焊接)来用于将表面安装的装置附接到锚定位点,则这不需要特殊的气候,而是可在叶片安装在涡轮上的同时应用。这允许了全年修理和替换,与仅在夏季期间的适合温度下适用的其它方法相反。

附图说明

参照在附图中所示的实施例以下详细阐释本发明,在附图中:

图1示出了风轮机,

图2示出了根据本发明的风轮机叶片的示意图,

图3示出了翼型轮廓的示意图,

图4示出了从上方和从侧部看到的根据本发明的风轮机叶片的示意图,

图5示出了翼型轮廓的示意图,该翼型轮廓具有在前缘处由两层热塑性材料构成的防蚀护罩,

图6示出了由两个壳体部分构成的翼型轮廓的示意图,该翼型轮廓具有在前缘处的凹口中的被整合的第一热塑性材料,

图7示出了由于被联接在一起的2层热塑性材料构成的防蚀护罩的示意图。

图8分别示出了由第一热塑性材料和第二热塑性材料构成的预成型部分的示意图。

图9分别示出了由第一热塑性材料和第二热塑性材料构成的两个片/箔片的示意图。

图10示出了由热塑性材料构成的预成型部分的示意图,该部分在端部处比中间更薄,

图11示出了对应于图5的两个壳体部分的联接的翼型轮廓的示意图,

图12示出了具有在指示的锚定位点(anchoringsite)处被附接到图2的叶片上的防蚀护罩、锯齿和扰流器的风轮机叶片的示意图。

图1图示出了根据所谓"丹麦构想"的常规现代逆风风轮机,其具有塔架4、机舱6和带有基本上水平的转子轴的转子。转子包括毂8和三个从毂8沿着径向延伸的叶片10,每一个叶片具有最接近毂的叶根16和最远离毂8的叶尖14。转子具有表示为r的半径。

图2示出了根据本发明的风轮机叶片10的第一实施例的示意图。风轮机叶片10具有常规风轮机叶片的形状,并且包括最接近毂的根区域30、最远离毂的轮廓或翼型区域34以及在根区域30与翼型区域34之间的过渡区域32。叶片10包括在叶片安装到毂上时面对叶片10的旋转方向的前缘18,以及面对前缘18的相对的方向的后缘20。

翼型区域34(也被称为轮廓区域)具有相对于生成升力的理想或几乎理想的叶片形状,而由于结构考虑的根区域30具有基本上圆形或椭圆形截面,例如,其使得更容易且安全地将叶片10安装到毂上。根区域30的直径(或翼弦)可沿着整个根区域30恒定。过渡区域32具有过渡轮廓,其从根区域30的圆形或椭圆形逐渐地变为翼型区域34的翼型轮廓。过渡区域32的弦长通常随着离毂的增大距离r而增大。翼型区域34具有翼型轮廓,其具有在叶片10的前缘18与后缘20之间的翼弦。翼弦的宽度随着离毂的距离r增大而减小。

叶片10的肩部40被限定为叶片10具有其最大弦长的位置。肩部40通常设在过渡区域32与翼型区域34之间的边界处。

应当注意的是,叶片的不同区段的翼弦一般不位于共同平面中,因为叶片可被扭曲和/或被弯曲(即,预弯曲),因此向翼弦平面提供了对应的被扭曲和/或被弯曲的路线,这是最常见的情况,以便补偿取决于始于毂的半径的叶片的局部速度。

示出了被整合的热塑性锚定位点61,其例如用于将扰流器附接在过渡区域32中。示出了另一个被整合的位点63,其例如用于将所指示的降噪锯齿附接在翼型区域34中的后缘20处。在前缘18处,示出了用于第二热塑性材料的附接位点(attachmentsite)68,从而完成了防蚀护罩。可看到该防蚀护罩可围绕叶尖延伸。

显然,叶片可具有多于或少于在图2上所示的三个的附接位点。

附接位点是在叶片的制造期间被整合在风轮机叶片中。如图2上指示,此整合可通过将热塑性材料置于用于叶片本体壳或叶片本体壳的部分的模具中来实现,以便热塑性材料面对着最终叶片的外表面。不同的附接位点可包括相同或不同的热塑性材料。例如,附接位点68可为聚(丙烯腈-苯乙烯-丁二烯),而附接位点61和63为聚碳酸酯,或所有附接位点都是聚(丙烯腈-苯乙烯-丁二烯)。

图3和4描绘出了参数,这些参数用于阐释根据本发明的风轮机叶片的几何形状。

图3示出了以各种参数描绘出的风轮机的典型叶片的翼型轮廓50的示意图,其通常用于限定翼型的几何形状。翼型轮廓50具有压力侧52和吸入侧54,其在使用期间--即转子的旋转期间--一般分别面朝迎风(或逆风)侧和背风(或顺风)侧。翼型50具有翼弦60,其中弦长c在叶片的前缘56与后缘58之间延伸。翼型50具有厚度t,其被限定为在压力侧52与吸入侧54之间的距离。翼型的厚度t沿着翼弦60变化。自对称轮廓的偏离是由倾斜线62给出,倾斜线62为穿过翼型轮廓50的中线。该中线可通过从前缘56到后缘58绘制内切圆来找出。该中线沿着这些内切圆的中心,并且自翼弦60的偏离或距离称为弧f。非对称也可通过使用被称为上弧(或吸入侧弧)或下弧(或压力侧弧)的参数来限定,其被分别限定为离翼弦60和吸入侧54和压力侧52的距离。

翼型轮廓通常被特征化为以下参数:弦长c、最大弧f、最大弧f的位置df、最大翼型厚度t,其为沿中间弧线62的内切圆的最大直径、最大厚度t的位置dt,以及鼻部半径(未示出)。这些参数被通常限定为与弦长c的比率。因此,局部相对叶片厚度t/c被给定为局部最大厚度t与局部弦长c之间的比率。此外,最大压力侧弧的位置dp可用作设计参数,并且当然也是最大吸入侧弧的位置。

图4示出了叶片的其它几何参数。叶片具有总叶片长度l。如图3中所示,根端位于位置r=0处,并且尖端位于r=l处。叶片的肩部40位于位置r=lw处,并且具有肩部宽度w,其等于肩部40处的弦长。根的直径被限定为d。过渡区域中的叶片的后缘的曲率可由两个参数限定,即最小外曲率半径ro和最小内曲率半径ri,其被分别限定为从外侧(或后缘后方)看的后缘的最小曲率半径,以及从内侧(或前缘前方)看的最小曲率半径。此外,叶片设有预弯,其被限定为δy,其对应于从叶片的桨距轴线22的平面外偏转。

图5示出了具有由两层的防蚀护罩64组成的翼型轮廓的示意图,前缘处的一层第一热塑性材料65和第二层第二热塑性材料66。防蚀护罩位于叶片中的凹口67中,并且指示出了防蚀护罩的外表面与壳体的表面齐平。

前缘未被严格限定为窄边缘,但被指示出了延伸至翼型的吸入侧和压力侧两者。前缘被广义地理解为在风轮机的转子的旋转期间切穿空气的叶片部分,叶片的该部分由此最易于被侵蚀。

图6示出了由两个壳体部分构成的翼型轮廓的示意图,该翼型轮廓具有在前缘处的凹口67中的被整合的第一热塑性材料65。第一热塑性材料用作第二热塑性材料的附接位点,第二热塑性材料完成在叶片的前缘处的防蚀护罩。所完成的防蚀护罩对应于图5中所示的护罩64。

图7示出了包括2层的防蚀护罩的示意图,被联接在一起的一层第一热塑性材料65和第二层的第二热塑性材料66。此预制的防蚀护罩可被整合到壳体中来提供完全的前缘保护。防蚀护罩中的两层优选地通过塑料焊接来联接。具体而言,激光焊接是联接2层热塑性材料的优选方法。第一热塑性材料65和第二热塑性材料66紧密接触,并且激光器用于在两种材料之间的界面处熔化第二热塑性材料和第一热塑性材料,由此在两种材料之间形成联接。

可能有利地是在与壳体整合之前预制这两层防蚀护罩,因为在一些实施例中联接两种热塑性材料可在与壳体整合之前更方便地完成,例如,通过将预制的防蚀护罩或预制的防蚀护罩的一部分置于模具中来形成壳体或其部分。

图8分别示出了第一热塑性材料65和第二热塑性材料66的预成型部分的示意图。通常,第一热塑性材料65的预成型部分是在模制风轮机叶片的壳体或壳体部分时置于模具中。第二热塑性材料的预成型部分然后是在模制后被附接到第一热塑性材料的预成型部分上,以完成叶片的前缘处的防蚀护罩。在使用预成型部分时,模具中的第一热塑性材料的预成型部分的正确放置和模制后的第二部分的正确附接两者与使用柔性热塑性箔片或片相比较更容易,因为其制造期间可实现的窄公差使得预成型部分相对容易处理,并且在被附接到彼此上时较好地配合在一起。

在此示出的第一热塑性材料的预成型部分可适用于一次射出模制过程。应当理解,例如,如果叶片由两个壳体部分(见图6)形成,则第一热塑性材料的预成型部分也可构成两个预成型部分,一个置于用于模制第一壳体部分的第一模具中,并且另一个置于用于第二壳体部分的第二模具中。

图9分别示出了由第一热塑性材料65和第二热塑性材料66构成的两个片/箔片的示意图。柔性片或箔片可有利于根据这些实施例进行使用,以形成防蚀护罩。由第一热塑性材料构成的片/箔片可与纤维材料一起置于模具中。片/箔片可有足够柔性,以遵循模具表面的轮廓,尤其是在经历置于由第一热塑性材料构成的片/箔片的顶部上的纤维板层或预浸料坯材料的重量时。在注入树脂时施加的真空也可有助于将由第一热塑性材料构成的片/箔片固定在模具中。

在壳体进行模制之后,现在包括被暴露于前缘处的壳体的外表面的第一热塑性材料,由第二热塑性材料构成的片/箔片被附接在第一热塑性材料的顶部上。通过选择适合的热塑性材料,如上文所解释的,有可能通过塑料焊接如激光焊接来附接第二热塑性材料。

在保养情形(servicesituation)下,其中第二热塑性材料已从风轮机叶片的防蚀护罩侵蚀,暴露出在叶片的前缘的外表面处的第一热塑性材料,防蚀护罩的修理可通过在现场将由第二热塑性材料构成的新的片/箔片焊接到第一热塑性材料上来完成。例如,如果使用激光焊接,则附接过程或多或少独立于修理地点处的环境条件(温度、湿度等)。

当然,修理也可利用由第二热塑性材料构成的预成型部分来执行。

图10示出了由热塑性材料构成的预成型部分的示意图,该部分在端部处比中间更薄。如果在前缘处没有凹口可用,则此部分可以是有利的。如之前所解释的,第一热塑性材料的第一此类部分可在模制过程中被整合到叶片的壳体中,并且第二热塑性材料的第二此类部分可在模制之后被附接到第一部分上。具有较薄的端部的几何形状允许了所得到的防蚀护罩与翼型的表面基本上齐平,甚至没有壳体中的凹口,由此可最小化来自防蚀护罩的空气动力干扰。

图11示出了对应于图5的两个壳体部分的联接的翼型轮廓的示意图。

在前缘处的凹口67可容纳在所示的被整合的第一热塑性材料65的顶部上且例如通过塑料焊接被附接到第一热塑性材料65上的第二热塑性材料(未示出)。第二热塑性材料可为如图9中所示的片或箔片的形式,或者如图8中所示的预成型部分。

还有可能将预成型的夹层部分(见图7)(其已经包括第一层,以及一层第二热塑性材料)附接到在凹口中的热塑性材料上,由此可形成三层防蚀护罩。

图12示出了风轮机叶片的示意图,其具有防蚀护罩69,以及在图2中所示的用于在附接的位点处被附接到图2的叶片上的另外表面安装的装置、锯齿71和扰流器73。经由被整合在壳体中的附接位点来附接此类添加物或表面安装的装置是可通过使用粘合剂来执行的。粘合剂可被选择以提供比通过将表面安装的装置胶合到壳体上实现更好的结合强度,而没有用于附接的专用位点。作为优选,可使用其它的附接方法,如塑料焊接。如果附接位点和表面安装的装置两者由热塑性材料制成,则仅可能使用塑料焊接。由于用于在壳体中附接的锚定位点的整合,因此在与将表面安装的装置直接地附接到风轮机叶片的壳体的纤维增强材料上进行比较时,可实现表面安装的装置的优异附接,例如通过使用双面胶带,因为用于提供锚定位点的材料可针对最佳结合来选择,同时纤维增强的材料通常被选择以提供刚性,并且以抵抗在被安装在风轮机上时在旋转期间经历不同力时,在叶片中所引起的应力。

因此,适用于附接到热塑性附接位点上的任何添加物可根据本发明的实施例来进行使用。例如,涡流发生器(未示出)可由热塑性材料制成,并被附接到适合安置的附接位点上。

附图标记的列表

2风轮机

4塔架

6机舱

8毂

10叶片

14叶尖

16叶根

18前缘

20后缘

22桨距轴线

30根部区域

32过渡区域

34翼型件区域

41第一翼型轮廓

42第二翼型轮廓

43第三翼型轮廓

44第四翼型轮廓

45第五翼型轮廓

46第六翼型轮廓

50翼型轮廓

52压力侧

54吸入侧

56前缘

58后缘

60翼弦

61过渡区域中的热塑性锚定位点

62弧线/中线

63后缘处的热塑性锚定位点

64防蚀护罩

65第一热塑性材料

66第二热塑性材料

67凹口

68前缘处的热塑性锚定位点

69第二防蚀护罩

71表面安装的装置,锯齿

73表面安装的装置,扰流器

c弦长

dt最大厚度的位置

df最大弧的位置

dp最大压力侧弧的位置

f弧

l叶片长度

p功率输出

r局部半径,离叶根的径向距离

t厚度

vw风速

扭转,桨距

δy预弯曲

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1