导电带及其生产方法

文档序号:4484527阅读:787来源:国知局
专利名称:导电带及其生产方法
技术领域
本发明涉及一种用于制造由热塑性树脂和导电颗粒构成的导电多层带的方法。
用聚烯烃类和聚酯等合成材料的编织带制成的散装物料容器被广泛地用于储存,处理和运输化肥,水泥,化工产品,农产品,矿物等散装颗粒物料。这种容器具有结实耐用,成本低,化学惰性,覆盖好,可回收以及带和纤维易于制造等特点。然而,这种容器的一个缺点是在装卸和物料转移的过程中,由于摩擦会产生静电荷积累。当容器由聚丙烯编织带制成时,其表面的电阻通常为1×1012到1×1014欧姆。然而,当环境中存在可燃性气体或悬浮颗粒时,为避免静电荷积累引起爆炸,要求电阻为1×1012或更低。
例如,在矿业生产中为防止在可燃气体存在的区域由装填或倒空散装物料容器产生的静电所引起的爆炸,散装物料容器用含有能去除静电的金属线或碳纤维的编织物制成。加拿大专利No.1,143,673公开了这种用碳纤维和聚烯烃类纤丝制成的编织物。金属线和碳纤维的缺点是延伸系数小于编织物的其它纤丝,从而引起导线的断裂。此断裂导致断路,增加了静电荷积累时打火和爆炸的危险性。通过化学处理也可以使合成编织物导电,从而避免电荷的积累。然而,这种处理增加了成本和制造过程的复杂性,随着使用次数增加效率会降低。长时间的处理会影响编织物的回收。
另外一种方法是用含有金属颗粒或导电碳黑的带或其它纺线制造编织物。公布的国际申请No.WO 93/01110(1993)公开了一种柔性散装物料容器,其中含有导电颗粒的带以规定的间隔编织在经线或纬线或二者中,使其具有足够的导电性能以去除表面电荷。德国的Empac Verpackungs-GmbH of Emsdettenz在建议材料中提出了一个称为PactainerED的,在其主体和装料口的编织物的经线和纬线都具有这种导电带的柔性散装物料容器。这种导电带用含有导电碳黑的聚丙烯制成。U.S.5,092,683报道了含有导电碳黑的合成纤维的导电线同非导电线在经线和纬线中编织在一起的容器编织物,其能够去除静电荷。
虽然这些容器和编织物能够防止静电,但是因为纺线的尺寸,截面和强度不同,编织物中通常使用的导电线和带纺线的编织需要分开的骨架和张力控制。这增加了编织设备和工艺的成本和复杂性。如果没有这些改进,由于导电线被宽的,扁带重叠,导电线的断裂和编织过程的中断经常发生。既使使用了分开的骨架和张力控制,导电线与带一起编织也会导致质次的编织物,其中细的,截面基本呈圆形的线会被宽的,扁平的带所覆盖,从而导致部分导电线被掩埋。虽然导线的掩埋不会影响编织物实际的导电性能或去除电荷的能力,但是因为这种编织物经常被用户认为是不导电的,所以会影响销售和使用。这种导电线以及申请No.WO 93/01110中的导电带的其它缺点是它们的强度,延伸性能和制造。为实现导电性能的大量导电颗粒的添加使导线的熔体纺丝,薄膜的挤出和带的切割变得复杂。在线的熔体纺丝中,大量的颗粒增加了剪切力,从而加大了聚合物裂构,降低了线的强度。由于导电颗粒的存在也降低了线的强度。因此,在编织过程中经常发生断裂。采用大分子量的聚合物以补偿聚合物的裂构是不合适的,因为这类聚合物在熔融时太粘以致无法使导电所需的大量导电颗粒均匀地分散。U.S.5,091,130中公开了熔体纺丝高度添加线所遇到的问题以及一种用于旋压和部分取向这种线的改进工艺。在薄膜挤出和切割成带时,大量的导电颗粒也会引起许多困难。挤出的膜层上经常会产生的较薄的区域,使这种薄膜或带在拉伸和编织过程容易断裂。挤出的薄膜上的不匀也会影响产品质量和生产效率。而且,同含有导电颗粒的线和丝一样,含有导电颗粒的带的强度也会由于导电颗粒而降低。由于颗粒磨损刀刃,整个薄膜都含有导电颗粒也会影响切割。因此,如果不添加费用来频繁更换刀刃,则会影响带的质量。
合成编织物的静电荷积累也会在其它环境和应用中带来不利。例如,衣服紧贴皮肤的不适,站在地毯上接触接地导体会经常遭受电击,以及地毯上积累的静电对脆弱电子线路的损害。与导电地毯底布以及其它减少静电的编织物的有关专利包括已知的U.S.4,138,519(第二代具有导电纤维的地毯底布,导电纤维有一个导电线芯,外部缠绕着非导电纤维);U.S.5,071,699(用聚丙烯带或线制成的编织物,可含有抗静电剂,其也可以与导电碳,金属或金属涂层的塑料纤维编织而成,并涂有含有抗静电剂的热塑聚合物);U.S.2,845,962(由含有导电碳黑的纤维材料和没有导电碳黑的纤维材料制成的抗静电编织物);U.S.3.288,175(制品纤维中含有金属纤维,用其生产抗静电编织物);U.S.3,586,597(具有导电纤维的抗静电编织物,导电纤维含有热塑芯,外部涂有含银粉或碳黑的树脂);U.S.3,986,530(由含有非电镀纤维和金属线的导电线制成的抗静电布);和U.K.专利申请No.2,101,559(用纤维化聚丙烯等纤维状或带状材料,和作为径线加入的或从一种导电和非导电纺线的组合织入的导电纺线制成的导电编织物;编织物的一面涂有防水涂层并用导线缝合成需要的形状)。
上述专利和出版物没有公开本发明的导电带,编织物和工艺。
本发明提出了由含有导电颗粒的热塑聚合物构成的导电带,其特点所述带为多层带,其中至少一层具有含有有效量的导电颗粒的热塑聚合物层作为带的外层,并被粘合在至少一层由至少基本不含导电颗粒的热塑聚合物层上。更详细地说,本发明提出了构型大致为扁平的,截面大致为矩形的多层导电带,其包括至少一层以作为带的外表面并由至少一种热塑树脂构成,其中含有有效量的导电颗粒,这一层被粘合在至少一层至少基本不含导电颗粒的热塑树脂层上。在另外一个实施方案中,本发明提出了包含这些导电带的编织物。同时还提出了包,容器,地毯底布和其它由这种编织物制成的物品。
本发明还提出用于生产导电带的工艺,其中包括生产由至少一个含有有效量导电颗粒的热塑树脂层和至少一个至少基本不含导电颗粒的热塑树脂层构成的淬火薄膜;(quenched film)沿长度方向切割薄膜;使膜的取向至少沿长度方向。在最佳实施方案中,该工艺包括(1)共挤出一个由至少一个第一种热塑树脂层和至少一个第二种热塑树脂层构成的多层膜,第一种热塑树脂层由至少一种根据ASTM D-1238熔融流动速度为每10分钟2到5克的聚烯烃类树脂和有效量的导电颗粒构成,第二种热塑树脂层由至少一种根据ASTM D-1238熔融流动速度为每10分钟3到8克的聚烯烃类树脂构成,并至少基本不含导电颗粒,第一种热塑树脂与第二种热塑树脂熔融流动速度比为0.1∶1到0.5∶1;(2)对多层薄膜进行淬火;(3)将淬火薄膜切割成一组带;(4)纵向拉伸此带,使其强度至少为1.8cN/dtex,延伸系数为15%到25%,这些参数根据德国工业标准53857确定。
本导电带的一个优点是含有热塑树脂和导电颗粒的层包含足够的导电材料以实现导电性能,同时至少不含导电颗粒的层保证了强度。因此,克服了已知导电线和导电带的导电性能和强度不能兼得的缺点。
另外一个优点是本导电带可以被制成与用来编织不同编织物的非导电带相匹配的尺寸,从而避免了编织的不均匀和使用线时出现的‘掩埋’。因此,提高了编织效率,并且当本带与着色或所谓的‘自然’颜色的带一起编织时,编织物和用其制造的物品的导电特性易于用眼睛来鉴别。
本带的另外一个优点是与效率随时间降低的进行过表面处理的导电产品相比,在多次使用后依然能保持导电性能。尤其与含有导电金属丝和碳纤维的编织物相比;另外一个优点是导电带,编织物和产品可无需分离不相容丝线便能被回收。
与用于制造单层导电带或导电线的工艺相比,本发明的工艺减少导电颗粒的用量,降低了成本和提高了产品质量。在本发明的工艺中,只有带的一部分添加了导电颗粒,因此导电颗粒用量大大低于生产单层导电带或导电线。而且,当采用共挤法以生产多层薄膜时,非导电层对相邻的导电层提供支撑,因此挤出薄膜厚度更加均匀,薄膜上的不匀大大减小。所以,同单层导电带生产相比,本发明的工艺在保证较高质量的同时较易提高挤出速度和产量。因为不含导电颗粒的层比含有导电颗粒层的强度高,与单层导电带相比,在拉伸时本带不易断裂,所以有助于提高生产速度。而且,因为与含有导电颗粒的单层导电带相比,不含导电颗粒的层易于切割成带,对切割刀刃的损伤也小,所以切割的效率比较高。
在编织过程中,导电带也较导电线优越。如前所述,为防止编织物上的脊和避免由于纺线较细导致张力增加而引起断裂,导电线必须使用与经带相分离的骨架。相反,本导电带可以与其它经带一同射束进行编织,因为前者尺寸和线性密度可以与用于编织的其他带相匹配。
本导电带容易被编织和针织成适于制造各种物品的编织物,如散装物料容器,工业和农业用包,地毯,矿业用编织物等。


图1是根据本发明的双层导电带的侧视图。
图2是图1中的导电带的剖视图;图3是根据本发明的三层导电带的侧视图。
图4是根据本发明的导电编织物。
更具体的,本发明的导电带是截面大致为矩形的扁平构型。导电带具有多层结构,其中至少一层由至少基本不含导电颗粒的热塑树脂构成,至少一层由分散着能够进行导电的有效量的导电颗粒的热塑树脂构成,并作为导电带的扁平外表面。“至少基本不含导电颗粒”的表达是说明混合物中或者不含这种颗粒或者其中含量之少不会显著影响基本材料的导电性能和强度。多层带的每一层在整个范围内都是共存的,一层的一个表面粘到或接到相邻层的一个表面上,所以总厚度是所有层厚度的加和。这种连续层的构型在整个范围内既提供了强度支撑又提供了导电层。本领域普通技术人员能够理解导电带的这种构型使其在结构和功能上区别于导电线。导电带大致扁平性质和矩形截面使其适于制成用于包和容器的扁平编织物。当采用紧密编织时,根据覆盖一给定面积所需的纺线数,这种编织物具有较好的覆盖性和较高的编织效率。导电带扁平的性质确保经线和纬线在交叉点充分接触,从而提高编织物的导电性。相反,导电线既不适于和扁平带一起编织成扁平编织物,也不能提供相同程度的覆盖效率。
本发明导电带的特点和属性如图所示。在图1和2中,导电带1具有带导电层3的层状结构,导电层3由其中分散有导电颗粒的热塑树脂构成,并与非导电层5相接,非导电层5由基本上不含导电颗粒的热塑树脂构成,两层之界面用标号7表示。图2显示了本发明导电带基本扁平的性质和矩形截面。
本导电带可以被制造成适于所需用途的强度和导电性能。通常,导电带电阻至多为1×108欧姆,纵向强度至少为1.8cN/dtex,这种电阻与强度的组合适于广泛的应用。对于大多数最终用途很少要求电阻低于1×104欧姆,实现低电阻所需的导电颗粒添加量之大使导电带的制造变得很复杂。本发明的导电带的强度也要与延伸性能相平衡。导电带应该有足够的强度以防止编织时断裂,也应该具有足够的延伸性能使编织好的物品不因受到的作用力而断裂。然而,因为延伸会引起导电层中的导电颗粒与导电颗粒脱离接触,所以如果延伸性能太高了,导电性能将会下降。通常的延伸系数为5到30%,为保证处于延伸状态的导电带的导电性能,延伸系数最好为10到25%。在本发明的最佳实施方案中,这种导电带编织物被制成中间产品容器用于运输散装化工产品颗粒或其它固体颗粒物质,这种导电带电阻为1×105到1×107欧姆,纵向强度至少为2cN/dtex,延伸系数为15到25%。
本发明最佳构型为双层和三层结构。例如图1-3所示。在双层构型中,由热塑树脂和导电颗粒构成的导电层和由至少基本不含导电颗粒的热塑树脂构成的层以层状接触相接,每一层的一个表面在其界面连接到另一层的一个表面,每一层的另一个表面作为平整的外表面。根据本发明的最佳的三层导电带如图3所示。导电带9具有11和13两个导电层,每个导电层都由含有分散着导电颗粒的热塑树脂构成,并被连接到非导电层15上,使其象三明治一样被加在这两层的中间。这种结构不仅具有导电性能和强度,而且当这种结构的导电带被用在编织物的经线和纬线中时,由于导电带两个外表面的导电性质,经线和纬线的导电面在交叉点接触,因此这种结构还能够提高表面导电性能和去除静电荷的能力。
虽然双层和三层结构比较理想,但是如果需要本发明也可以允许更多层。例如,附加的热塑树脂层也可以向导电带和由其制成的编织物中加入特殊的性能属性,如耐火,增加强度,抗微生物属性或其它属性。无论导电带的层数是多少,用于制造去除静电荷的导电编织物的导电带必须至少具有一个导电层作为导电带的外表面。在这个方面,从成本,制造和实现的容易程度作为出发点,三层导电带是最佳的。
任何能被制成薄膜,后被制成带的聚合物都能用作本发明导电带的层中的热塑树脂。相邻层的聚合物可以相同也可以不同,在连接方式上它们应该是相容的,这些连接方式包括热,压力,超声焊接,粘合剂,这些方式的结合或其它合适的连接方式。这些聚合物有聚酰胺,线性聚酯,未被替换或被替换的烯烃类单体的聚合物,诸如聚氯乙烯,聚丙烯酰胺,聚丙烯腈,聚醋酸乙烯脂,聚丙烯酸,聚乙烯甲基醚,聚乙烯,聚丙烯,聚1-己烯,聚4-甲基-1-戊烯,聚1-丁烯,聚3-甲基-1-丁烯,聚3-苯基-1-丙烯和聚环乙烯-己烯。均聚物和共聚物同这些聚合物与一种或多种热塑聚合物的混合物一样合适。
基于2到12碳的(-烯烃或它们混合物的均聚物和共聚物,诸如聚乙烯,聚丙烯,乙烯-丙烯异分子聚合物,聚异丁烯,聚4-甲基-1-戊烯,聚1-丁烯,聚1-己烯,聚5-甲基-1-己烯和类似的比较好。特别合适的聚(-烯烃树脂是高压,低压和线性低密度聚乙烯,聚丙烯,和丙烯占优的异分子聚合物。根据成本,可处理性和性能,丙烯聚合物树脂最为合适。
最适于制造导电带的丙烯聚合物树脂包括大量结晶丙烯均聚物,或丙烯和少量(如30mol%)一种或多种可共聚(-烯烃如乙烯,1-己烯和1-戊烯的共聚物,或丙烯聚合物与少量(20重量%)另外一种聚烯烃如低压或线性低密度聚乙烯的混合物。这种丙烯聚合物是很普通的,可以购买到。一种特别合适的丙烯聚合物树脂是均聚物聚丙烯。
为了使薄膜和导电带的性能适于最终使用的要求,同时为了有助于为保证导电性能所需大量添加的导电颗粒的分散,要添加导电颗粒的丙烯聚合物树脂具有的熔融流动速度为每10分钟1.5到20克。粘度更大的聚丙烯树脂,例如熔融流速低于每10分钟1.5克,由于颗粒难于分散,因此没有用处。处理过程中丙烯聚合物的裂构将导致熔融流速增加到两倍于起始流速,从而导致挤出时熔融强度降低,产生具有较薄区域和不均匀厚度的薄膜,使带脆弱。因此低熔融粘度的丙烯聚合物,例如熔融流速高于每10分钟20克,也不合适。为得到导电颗粒的均匀分散和为保证制成的薄膜的厚度大体一致,丙烯聚合物的熔融流速最好在每10分钟2到15克。当丙烯聚合物被用作热塑聚合物用于制造至少基本不含导电颗粒的层时,这种聚合物熔融流速的合适范围为每10分钟2到20克,最好是为每10分钟2.5到15克。当用共挤法制造薄膜时,包含用于制造导电层的导电颗粒和热塑聚合物的混合物的熔融流速至多等于,最好略低于用于制造非导电层的混合物的熔融流速,以使前者较高的熔融强度补偿导电颗粒引起强度的降低,同时后者较高的流速使较粘的添加的树脂混合物平滑挤出。用共挤法制造本发明的导电带时,用于导电层的混合物最好由熔融流速为每10分钟2到5克的丙烯聚合物,导电颗粒以及可选的10(重量)%低压或线性低密度聚乙烯构成,用于非导电层的混合物最好由熔融流速为每10分钟3到8克的至少基本不含导电颗粒的丙烯聚合物构成。当用于制造导电层的合成物的熔融流速与用于制造非导电层的丙烯聚合物的熔融流速之比为0.1∶1到0.5∶1,特别是0.2∶1到0.4∶1时效果最好。除非特别声明,此处提到的熔融流速在230℃,载荷2.16Kg的情况下根据ASTMD-1238测定。
根据本发明,导电颗粒包括金属粉末,金属颗粒,金属须,以及导电碳黑。合适的金属有铁,铝,银和铜。颗粒应足够的细以便分散在导电层的热塑聚合物中。通常颗粒平均大小应小于25微米,对给定的材料,热塑聚合物和导电带生产过程,采用大一点的颗粒也可能较好。因为碳黑价格低廉,在热塑聚合物中易于分散以及化学稳定,所以是较好的导电颗粒。与金属颗粒和粉末相比,它也更适于塑料的回收。
根据碳黑的性质,在一定的情况下它具有较高的导电能力,但在另外一种情况下它又具有较高的电阻。在本发明中,导电碳黑是用来导电的,以使电子能通过含有碳黑的带层。碳黑的导电能力与其大小,结构和活泼组分有关。根据本发明,使用碳黑所产生的导电性能是分散在热塑树脂基或连续相中的导电碳黑颗粒大量相互接触的结果。因此为达到本发明的目的,碳黑构型必须足够的复杂,并易于在导电层的热塑树脂中分散。所谓中等和高等结构的碳黑较为合适,因为它形状不规则,颗粒上有分支,所以导电性能好,易于分散。较低结构的碳黑也可以使用,但是为实现较好的导电性能,采用多于中等和高等碳黑的添加会导致强度和延伸性能的显著降低。碳黑的平均颗粒大小为15到35nm,20到30nm最好。较好的碳黑如Vulcan(XC72R和P,它们都是高等结构的,可以从Cabot公司购买。基本特性是氮吸附面积分别为250m2/g和140m2/g,大小分别为30nm和20nm,活泼组分分别为1.5%和1.4%,密度分别为61b/ft3(0.096g/cm3)和141b/ft3(0.224g/cm3)。如果需要,也可使用不同碳黑的组合。
导电性能也取决于碳黑或其它导电颗粒在导电层中的分散程度。将导电颗粒集中在导电带的一层或两层能提高导电颗粒的使用效率。导电颗粒在导电层的含量为10(重量)%到40(重量)%。低于10(重量)%时导电性能不足,高于40(重量)%时导电层厚度不易一致,导电带的强度和延伸性能也会因太低而无法编织或用于包和容器编织物中。使用过多的导电碳黑也会因剪切和碳黑颗粒的损坏而导致导电性能的下降。当采用导电碳黑时,25(重量)%到35(重量)%的导电碳黑可得到较好的导电性能,同时具有较好的强度和延伸性能而不会使薄膜挤出复杂化。在本发明的三层导电带中,每一外层添加含有25到35(重量)%的导电碳黑。每个导电层最好添加等量的碳黑,以便每层的电阻大致相等。当然,如果需要,在层中可添加不同量的碳黑以满足用户特定的要求。
多层导电带的总厚度是由含有导电材料的热塑树脂层的厚度和基本不含导电材料的热塑树脂层的厚度构成的。通常,导电颗粒添加层占厚度的10%到90%,最好是30%到60%,能得到强度与性能的均衡。在包含一个至少基本不含导电颗粒的内层和两个导电外层的三层导电带中,内层最好占厚度的40到60%,每个外层分别占20到30%。对于大多数应用,上述构型中的外层厚度大致相等。拉伸后多层带的总厚度为30到200μm,对于某些应用,也可以采用较厚的导电带。
如果需要,在不影响导电带的强度和导电性能或制造的情况下,导电带的一层或多层中也可加入添加剂使其具有其它的性能。可采用的添加剂有抗氧化剂,抗静电剂,润滑剂,紫外线吸收剂,二氧化钛和非导电碳黑等色素,褪色剂,热,光和氧化稳定剂,白垩和碳酸钙等遮光剂,2,4,4(-三氯-2(-羟基二苯醚等抗微生物剂,耐火剂和滑石,碳酸钙,石膏,高岭土,二氧化硅和硅藻土等各种添加剂。因为滑石和碳酸钙能防止导电带脆裂,提高了强度,有助于编织物的制造,所以当被添加到非导电层时,它们较好。这些添加剂的平均大小不超过5μm,最好是1到3μm。当带层中使用了添加剂,添加剂含量不超过10(重量)%,最好是0.5到6(重量)%,以聚合物的重量计。更高会影响处理和导电颗粒的分散。当使用白垩时,其最好为聚合物重量的1到4(重量)%。
制造导电带的工艺过程包括制造具有至少一层含有有效量导电颗粒的热塑树脂层和至少一层至少基本不含导电颗粒的热塑树脂层的淬火薄膜;沿长度方向切割淬火薄膜;和取向淬火薄膜。切割与取向的次序可以互换。最好将淬火薄膜沿长度方向切割成一组带,再进行取向。然而,先取向再切割也可以得到适宜的导电带。
可以采用任何适宜的技术将导电颗粒加入热塑树脂中。在挤出机中进行熔融搅拌可以使导电颗粒分散得较干搅拌好的。然而,如果在熔融配料前进行,干搅拌也是可行的,其有助于熔融搅拌和使导电颗粒均匀分散。碳黑或其它导电颗粒也可以通过密闭式混合或连续混合技术加入聚合物中。也可以用加热的两辊破碎机进行批量处理。热塑树脂中碳黑或其他导电颗粒的浓度最好和导电带中树脂的浓度相同,或在相似条件下易于分散,可熔融处理,以及形成单相系统的意义上与树脂浓度是相协调的。
可以采用任一合适的技术制造多层薄膜,如挤出涂层,挤出层叠或其他层叠工艺,共挤出和不同薄膜的热或胶合连接。用轮压法,挤出和铸造等技术制造的单层薄膜也可以用粘合剂或热和压力等方法与其它薄膜层合,或将它们涂层以形成多层薄膜。吹塑挤出和缝模或T-模挤出工艺既适于单层膜的制造也适于多层膜的制造。
在吹塑挤出工艺中,熔融聚合物的泡状物从环形模具中挤出,根据所要的膜和带的特性,泡状物被吹大到所需的尺寸,用冷空气或周围空气冷却后,泡状物塌扁成扁平状,然后绕到辊轴上用于加工。对于共挤出的多层膜,此聚合物熔融泡状物被制成具有至少一个含有导电颗粒的外表面和至少另外一个基本不含导电颗粒的表面。
在缝模挤出工艺中,熔融聚合物从缝模中挤出到水浴或冷辊等淬火装置中,熔融聚合物被迅速冷却,从而制成淬火薄膜。对于挤出膜工艺,最好采用扁平压出机机头口型的结构,另外也可以采用型模。在上述工艺中,淬火速度相对于熔融聚合物从模具流出的速度过速,以便实现下降的过程。当挤出的熔融热塑树脂混合物中包含导电颗粒时,下降过程较通常挤出非添加树脂时的增加有利于提高下游处理中膜的强度和稳定性。在从聚烯烃类制造膜的过程中缝模工艺最常用。
对于共挤出以至少基本不含导电颗粒的热塑树脂层作为一层或多层和以含有导电颗粒的热塑树脂层作为一层或另外几层的薄膜,要使用一个挤出机挤出基本不含导电材料的热塑聚合物层。使用一个或另外几个挤出机通过相同的或不同的槽模具挤出含有导电颗粒的聚合物层,这几层在两辊的辊隙被压在一起。如果在至少基本不含导电颗粒的树脂的两侧都要有导电聚合物层,则熔融的含有导电颗粒的聚合物被两个槽模具分开,其中一层在第一个辊隙与基本非导电薄膜接触,另外一层在另外一组辊的辊隙与基本非导电薄膜的另一面接触。另外也可以使用多挤出机为共挤出模具提供熔融聚合物,以便同时从一个模具中挤出两个或更多个不同层。
也可以在或正好先于两相对旋转辊时提供含有导电颗粒的聚合物,作为与至少不含导电颗粒的热塑聚合物层相接触的熔融薄膜。含有导电颗粒的热塑树脂与至少基本不含导电颗粒的热塑树脂可以用热和压力或其它适宜的粘合剂粘合以形成多层薄膜。
形成薄膜之后,薄膜被淬火。淬火是为了冷却和固化树脂。可以用任一合适的技术进行淬火,如使薄膜通过冷的辊或通过水浴。淬火的时间和温度取决于速度和具体的树脂,这也易于被技术人员确定。熔融薄膜的淬火要在下降足够长的时间后进行以使其在下游处理中稳定。在下降过程中,导电层和非导电层的热塑树脂的聚合物分子松弛挤出和取向过程中受到的力,以使淬火后的薄膜具有足够的强度和延伸性能以能承受以后的拉伸。导电层的热塑树脂中的导电颗粒妨碍力的松弛和取向,因此具有一层或多层含有导电颗粒层的带的淬火要较正常的未添加的热塑树脂的下降时间长。通常,可以通过适当调整挤出模具和淬火装置之间的距离实现。虽然此距离要足够的长以达到合适的下降,但是它也不能过长使其在自身重量作用下变薄或不匀。本领域普通技术人员清楚上述距离的边界值取决于树脂成份,流速和熔融强度,以及导电颗粒添加量,挤出和淬火系统以及操作条件,对于任一给定树脂,添加量和工艺过程,此距离可以根据实验确定。当挤出添加碳黑的聚丙烯树脂时,根据本发明挤出设备最好是衣架模具,用水浴做淬火设备,距离为30到45cm,35到40cm更好。其它可以实现适宜熔融挤出薄膜下降的合适技术也可以被采用,例如调整挤出速度,熔融薄膜进入淬火设备的速度,使淬火相对于挤出速度过速。
可采用任一合适的技术进行淬火薄膜的切割。通常薄膜在适当的张力作用下通过一系列平行的刀刃。切割可以在薄膜取向之后进行,最好是在其之前进行。如果在取向之后进行,薄膜将被切割成适宜编织或针织的宽度。对于通常的编织应用和设备,正常的宽度为0.1到8mm,如果需要也可制造更宽的,并且如果折叠或纤维化,这种更宽的带可以用常规的编织机编织。如果切割在取向之前,带要更宽以补偿带取向时其变窄50%。
可以采用任一合适的技术进行薄膜或带的取向。带至少要纵向取向。如果不要求,也能进行纵向与横向的取向。取向提高了薄膜或带在所取方向上的拉伸强度,提高了它们的可处理性。取向通常要在足够高的温度下进行以软化薄膜或带并松弛聚合物分子。纵向取向可以通过将带在一组以增加的速度旋转的辊上传输实现。下游辊对上游辊旋转速度之比最好为2.5∶1到8∶1。这个比被称为拉伸比。整个拉伸过程可以通过从一个辊或一组辊到后续的一个辊或一组辊实现,如果需要,也可以通过多个辊或辊集合实现。拉伸比低于2.5∶1时,带的拉伸不足以产生足够的力量,当拉伸比高于8∶1时会产生断裂。当导电层中的导电物质小于20-25(重量)%时,以层重量计,为保持导电性能,拉伸比最好要小。当导电颗粒较高时,为增加强度并保持导电性能,最好采用较高的拉伸比。
在本发明的最佳实施方案中,聚丙烯带用在200到290℃挤出的薄膜制造。具有至少一层至少基本不含导电颗粒的聚丙烯层的多层薄膜最好以三明治一样的构型被共挤出,外面两层是含有20到40(重量)%的导电碳黑的聚丙烯树脂。当制造基本不导电层的聚丙烯的熔融流速为每10分钟3到8克,制造导电层的聚丙烯的熔融流速为每10分钟2到5克,添加导电颗粒的树脂与基本不导电的树脂的熔融流速之比为0.2∶1到0.4∶1时,效果最好。上述熔融流速和熔融流速比提高了挤出薄膜厚度的一致性,从而提高了带的强度和导电性能。在这些最佳方案中,薄膜厚度可以根据工艺设备和经济要求以及导电带的最终使用要求进行选择。通常薄膜宽度为0.15到2m,薄膜厚度为50到500μm。挤出薄膜被下拉,然后在与表面温度为10到50℃的冷辊上或15到45℃的水浴中被淬火。淬火后的薄膜被烘干或风干。
淬火后,薄膜被以适当间距放置的刀刃切割成一组带。这些带通过旋转的辊进入炉等加热区时被拉伸取向。加热温度最好为120到195℃。通过以拉伸比4∶1到8∶1的拉伸来实现达到适当强度与延伸性能均衡的取向。所得到的带的强度最好为1.8cN/dtex,延伸系数最好为10到25%。拉伸比最好为6∶1。如果需要,取向后的带可以进行退火以减少收缩。这些带可以卷到线轴上或直接进入编织或针织设备。在最佳实施方案中,这些带是单轴取向的,大体上扁平的多层带,厚度为25到220μm,宽度为1到5mm。
如果需要,在这些带成形时或成形后,都可以进行纤维化。此处的术语“纤维化”是指在大致纵向的方向上割或切带,以形成多个平行的切口组,切口组在横向上排列。含有切口的带的纵向部分构成带的纤维化部分。在切口组之间的带的纵向部分构成带的非纤维化部分。纤维化长度与纤维化长度和非纤维化长度之和的比再乘以100%称为纤维化比。拧捻后,纤维化的带大致呈线状。这种纤维化的带在强度,延伸系数和导电颗粒的使用效率上都比添加导电颗粒的线好。因此,它们不仅能制成编织物,而且能作为针织和缝纫的导电线。
对于本发明的导电带,可以采用不同的纤维化比以适应特定用户的要求。因为纤维化增加了导电带的柔韧性,60到80%,特别是70到75%有利于编织过程。对于多层带,因为提高了纤维化的经带和纬带在编织物中交叉点的接触,纤维化提高了导电性能,从而两层带也能高效地去除电荷。然而,纤维化也降低了带中非导电层的强度支持作用,因此要做到导电性能与强度的均衡。
可以采用任一能产生平行切口组的合适设备进行纤维化。例如英国专利No.1,073,741和1,262,853和U.S.3,427,912。纤维化可以用具有每厘米8到60,最好是10到40针的针棒的标准针辊裂膜装置实现。针的角度,即针辊半径与针之间的角度,可以影响带上切口的长度。在本发明中,角度最好是15到45度。针棒上的针既可以直线排列也可以交错排列。
对于用本发明导电带制造编织物,可以采用通常的编织机,经编机,链编机械和其它适于用带制造编织物的设备。各种结构,如平编组织,罗纹组织,编筐组织,斜纹组织,缎纹组织,编链组织,针织组织等,都能被制造。根据编织物的最终用途和所要求的去除电荷的能力,具有线密度为200到2,000登尼尔的导电带可以与非导电纺线一起编织,导电带在经线方向上的间隔为1到40cm,其中1到4cm的间隔最好,在纬线方向上的间隔为2到30cm。按照上述间距使用本带能够有效制造电阻为1×108欧姆,最好为1×105欧姆到1×107欧姆的编织物。本发明导电带的一个优点是它们易于在尺寸和线性密度上被制造得与标准带很好匹配,制造编织物时可不必采用特殊的措施。虽然本发明导电带的尺寸和线性密度与编织物中的非导电带和纺线的尺寸和线性密度基本相同,但是本发明也包含了其中一些或全部的导电带的在尺寸,线性密度上与编织物中的其它纺线不同或都不同的编织物。
用来做具有去除静电荷能力的产品的,既有导电带又有通常的热塑带的编织物最好用平织。这些编织物的经带通常为每英寸10到40线,纬带为每英寸2到40线。适当的线性密度为200到1,500登尼尔。根据编织物最终用途和去除静电荷的需要,200到2,000登尼尔的导电带在经线方向上的间隔为1到40cm,其中2到4cm的间隔最好,在纬线方向上的间隔为2到30cm。这样的一个例子如图4所示,根据本发明此编织物17具有通常的经带和纬带19和21,以及导电经带和纬带23和25。
用来做具有增强导电和抗静电性能力的地毯底布的,既有导电带又有通常的热塑带的编织物最好用平织。这些编织物的经带和纬带通常为每英寸11到28线,线性密度为100到1,500登尼尔。地毯底布经带的线性密度最好为200到600登尼尔,纬带的线性密度最好为300到1000登尼尔。地毯底布编织物的经带最好为每英寸20到28线,线性密度最好为250到550登尼尔,纬带最好为每英寸12到32线,线性密度最好为400到900登尼尔。在这样的结构中,所用导电带的间隔为1到30cm,其中在经线方向上的间隔为1到3cm,在纬线方向上的间隔为20到30cm,线性密度最好为200到800登尼尔。
用来做具有增强导电和抗静电性能力的诸如散装中间产物的容器和包的,既有导电带又有通常的热塑带的编织物最好也用平织。这些编织物的经带和纬带通常为每英寸6到30线,线性密度为800到3,000登尼尔。这些编织物的经带最好为每英寸10到25线,线性密度最好为1,000到2,200登尼尔,纬带最好为每英寸10到20线,线性密度最好为1,200到2,300登尼尔。在这样的结构中,所用导电带在经线方向上的间隔为2到40cm,在纬线方向上的间隔为2到40cm,厚度为30到180μm,线性密度最好为700到2,500登尼尔。在这样的结构中使用的导电带最好是三层导电带,其中间热塑层厚度为总厚度的40到60%,最好是聚丙烯,至少基本不含导电颗粒,粘在中间层两侧的两个外层的厚度各占总厚度的15到35%,由含有中等或高等结构碳黑的聚丙烯构成。在这样的导电带中,碳黑占每个导电层的25到35(重量)%。特别适用于此应用的导电带的非导电芯占总厚度的50%,而每个导电表层占总厚度的25%。
包和散装物料容器可以用这些编织物以已知的方式制造成任何适宜的形状。这些包和容器通常包括一个主体部分,由平编编织物制成的基本是直线状,由圆编编织物制成的基本是圆柱状。主体内部通过固定在其底部的一个或多个口或管状部与外部相通。提升箍或把手安装在主体上。口部的编织物通常比主体部的编织物的重量轻,而提升箍的编织物则相反。编织物通常缝制在一起。为尽可能去除静电,这些编织物在连接时保证其中的导电带相互接触。编织物可以用任一合适的方式连接起来。用导电线缝制可提高导电纺线的接触。如果需要,容器还可以安装衬里,衬里通常也是由含有导电颗粒的热塑树脂制成,这些包和容器的广泛应用是技术人员所熟悉的,并且这些应用也适于本发明的编织物的。
本发明用下述例子进行说明,但其适用范围并不只这些。
对照实验这些对照实验例子说明了单层导电带的制备。
使用带有槽模具的挤出机从聚合物混合物挤出一个薄膜。聚合物混合物包括熔融流速为每10分钟2.5克的聚丙烯均聚物树脂和30-32(重量)%的中等结构碳黑,以聚丙烯和碳黑重量计。碳黑是中等结构碳黑,型号为Vulcan(PF,由Cabot公司生产),平均颗粒大小为18-22nm,活泼组分含量为1.4%。碳黑用双螺杆挤出机加入树脂中。碳黑-聚丙烯混合物的熔融流速为每10分钟0.5-1.5克,根据ASTM D-1238,在230℃,2.16kg载荷下测定。以混合物的重量计,5(重量)%的线性低密度聚乙烯和5(重量)%聚丙烯在挤出前与混合物干搅拌。线性低密度聚乙烯的熔融流速在190℃下为每10分钟2.5克。聚丙烯的熔融流速在230℃下为每10分钟2克。最终的混合物在120℃下用空气干燥器(Gerco GT 201/401)以连续的方式干燥。
用以制造薄膜的挤出机是90mm单螺杆挤出机,螺杆旋转速度为每分钟38转,其中温度分布如下螺杆套筒温度 区域1180-200(℃) 区域2200-220
区域3 220-240过滤器 210-240结合器 210-240模具 220-260薄膜从间隙为0.4mm的槽模具中挤出到温度为35℃的水浴中。模具出口与水平面的距离为30cm。薄膜被间隔7.0mm的不锈钢刀刃切割成带,然后进入温度为180℃,气隙比为1∶1的炉中。两组拉伸单元,每组具有7个辊,将带送入和送出电炉。第一组的速度为26m/min,最上游的一组为143m/min。拉伸比为5.5∶1。拉伸单元的辊直径为190mm。最终带的线性密度为1800登尼尔,平均厚度为74um,宽度为3.0mm。根据德国工业标准54345第6部分,带的最大电阻为106欧姆,强度为1.9cN/dtex,平均延伸系数为10-16%,收缩率为7.5%。具有相似尺寸和特性的带也可以通过基本相同的工艺进行制造,除了刀刃间距变为7.5mm,拉伸比变为6.4∶1。
根据基本相近的工艺,变化刀刃间距(6.0和6.5mm)和拉伸比(5.5∶1和6.4∶1),可以得到线性密度为1200登尼尔,厚度为58μm,宽度为2.5mm的导电带。这些带的最大电阻为106欧姆,强度为1.9cN/dtex,平均延伸系数为10-16%,收缩率为7.5%。
同样根据基本相同的工艺,可以得到由含有50(重量)%熔融流速为每10分钟2.5克的聚丙烯和50(重量)%导电碳黑组成的混合物挤出的薄膜。此带呈条纹状,切割之后,在拉伸时容易发生断裂。此样带电阻为1013欧姆。导电性能差是由于碳黑在聚丙烯中分散不好的缘故。例1三层薄膜由一个主挤出机和一个具有进料装置,熔融泵和槽模具的辅助挤出机挤出。芯层中聚丙烯均聚物的熔融流速为每10分钟3克,根据ASTM D-1238,在230℃和2.16kg的载荷下测得。两外层的聚合物混合物是熔融流速为每10分钟2.5克,加入30-32(重量)%中等结构碳黑的聚丙烯均聚物,以聚丙烯重量计。碳黑是与对照实验相同的中等碳黑。添加碳黑的聚丙烯混合物的熔融流速为每10分钟0.5-1.5克。以这种混合物的重量计,5(重量)%融流速为每10分钟3克的聚丙烯与其干搅拌混和。在120℃下干燥,最终的混合物进入辅助挤出机。
主挤出机是60mm的单螺杆挤出机,旋转速度为每分钟20转,其中温度分布如下螺杆套筒温度(℃) 过滤器260区域1230 结合器260区域2230 熔融泵260区域3230 进料装置286区域4260 模具260辅助挤出机是30mm的单螺杆挤出机,旋转速度为每分钟130转,其中温度分布如下螺杆套筒温度区域1 213
(℃) 区域2 268区域3 298区域4 298结合器 298熔融泵旋转速度为每分钟26转,压力为1400psi。薄膜从间隙为0.4mm的槽模具中挤出到温度为38℃的水浴中。模具出口与水平面的距离为40cm。薄膜被间隔2.5mm的不锈钢刀刃切割成带,然后进入温度为170℃,气隙比为1∶3的炉中。
为了拉伸带,采用了5组加热的辊集合的多集合拉伸系统。每个集合的辊个数和温度如下集合1 3个 50℃集合2 5个 90℃炉集合3 3个 125℃集合4 5个 130℃集合5 10个135℃辊直径为190mm,牵引速度为175m/min,拉伸比为6∶1。辊集合旋转的速度分别为30和179m/min,在它们之间进行拉伸。
最终导电带含有9.5(重量)%碳黑,以带的总重量计,其线性密度为350登尼尔,平均厚度为44μm,宽度为1mm。每个导电层占带总厚度的30%。带的最大电阻为106欧姆,强度为3.5cN/dtex,平均延伸系数为25%,收缩率为4%。例2三层带的制造工艺与例1基本相同,其中的变化如下所述。
主挤出机和辅助挤出机的螺杆旋转速度分别为26和180rpm。辅助挤出机的温度分布如下螺杆套筒温度(℃)区域1 210区域2 260区域3 290区域4 290结合器290熔融泵旋转速度为3.7rpm,压力为2000psi。槽模具间隙为0.2mm,模具出口与淬火水浴的距离为35cm,淬火水浴温度为40℃。刀刃间距为6.2mm。炉温为175℃,辊集合1-5的温度分别为70℃,70℃,125℃,130℃和135℃。辊集合旋转的速度分别为29和175m/min,在它们之间进行拉伸。
最终带含有13(重量)%碳黑,其线性密度为1500登尼尔,平均厚度为82μm,宽度为2.5mm。每个导电层占带总厚度的20%。带的最大电阻为106欧姆,强度为3.3cN/dtex,平均延伸系数为22%,收缩率为1.1%。
从这些例子和对照实验可以看出,除了最后一个对照实验以外的所有带都具有相似的电阻;然而,在例1和例2中本发明的导电带只含有40和60%的导电碳黑,而对照实验中的导电带却含有100%的碳黑,因此说明导电颗粒使用效率提高了。以带基的重量计,例1和例2中的导电带分别只含有9.5和13(重量)%的导电颗粒,电阻却与前两个对照实验中使用30-32(重量)%的导电碳黑所达到的电阻相似,因此说明导电颗粒使用量大大减少了。另外,与对照实验中的导电带相比,本发明的导电带具有高得多的强度和延伸系数。
比较例子将例1和例2中的模具出口与淬火水浴之间的距离减少到25cm。切割之后,导电带在拉伸时立刻断裂。这是因为在挤出和淬火之间下降的不充足的缘故。
权利要求
1.用于制造导电带的方法,包括(a)制造具有至少一层含有能够导电的有效量导电颗粒的热塑树脂层和至少一层至少基本不含导电颗粒的热塑树脂层的淬火薄膜;(b)沿长度方向切割淬火薄膜;和(c)至少沿长度方向取向淬火薄膜。
2.权利要求1的方法,其中所述热塑聚合物层由丙烯聚合物构成。
3.权利要求1的方法,其中所述导电颗粒由导电碳黑构成。
4.权利要求1的方法,其中所述淬火薄膜沿其长度方向进行切割,并取向切割的薄膜。
5.权利要求1的方法,其中所述淬火薄膜被取向,取向的薄膜沿其长度方向进行切割。
6.权利要求1的方法,包括切割薄膜的纤维化。
7.权利要求1的方法,其中淬火薄膜通过共挤出一个基本不导电的熔融流速约为每10分钟5到8克的一种丙烯聚合物树脂内层,和两个含有导电碳黑的导电的熔融流速约为每10分钟2到5克的另一种丙烯聚合物树脂外层进行制造,添加导电颗粒的丙烯聚合物树脂与第一种丙烯聚合物树脂的熔融流速之比约为0.1到0.5。
全文摘要
本发明提供一种两层或多层构成的导电带(1,9),含热塑树脂和导电颗粒以及制造这种导电带的方法。
文档编号B29C69/00GK1136789SQ95191032
公开日1996年11月27日 申请日期1995年10月13日 优先权日1994年10月14日
发明者爱里奇G·乔丹 申请人:阿莫科公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1