处理并报告用于网络连接恒温器控制的HVAC系统的使用信息的制作方法

文档序号:12354919阅读:314来源:国知局
处理并报告用于网络连接恒温器控制的HVAC系统的使用信息的制作方法与工艺

本申请属于申请日为2013年3月29日的中国发明专利申请201380029046.X的分案申请。

交叉引用相关申请

本专利申请要求保护2012年3月29日提交的美国序列号13/434,560(参考号NES0212-US)的权益,通过引用将其全部并入本文。

技术领域

本专利说明书涉及用于能源消耗系统或其它资源消耗系统的监测和控制的系统、方法以及相关的计算机程序产品。特别地,本专利说明书涉及用于更新气候控制算法的系统和方法。



背景技术:

大量的努力和注意力继续针对于更新、更加可持续的能源供应的发展。对于全球能源的未来,通过提高能源效率节能仍然是至关重要的。根据来自美国能源部的2010年10月报告,在典型的美国家庭中,供热和制冷占据了能源使用的56%,对于大多数家庭而言成为最大的能源消费。随着与家庭供热和制冷相关的物理设备的改进(例如,改进的绝缘、更高效率的炉),通过更好地控制和管理家庭供热和制冷设备,可以实现大幅度提高能源利用效率。通过启动采暖、通风和空调(Heating,Ventilation and Air Conditioning,HVAC)设备以用于合理选定的时间间隔和仔细选择的运行水平,可以节约大量的能源,同时为居住者保持合适地舒适的生活空间。

为了鼓励用户采取节约能源的运行水平,同时依然为居住者保持舒适性,获得尤其是与HVAC活动以及能源消耗相关的HVAC性能信息,对于用户将是有用的。



技术实现要素:

根据一个或多个实施例提供了一种方法,将性能信息交互式和图形化地显示给由恒温器控制的HVAC系统的用户的方法。所述方法包括:使用所述恒温器,收集与HVAC系统使用相关的信息;在远程显示设备上,基于所收集的信息图形化地显示性能信息,所显示的性能信息包括用于多个天中的每一天的图形化的日总结;以及响应于用户的天的选择,在所述显示设备上针对所述用户所选择的天图形化地显示详细的性能信息。

根据一些实施例,所述恒温器是自编程的网络连接的恒温器,以及所述显示设备是在移动计算设备上的触敏显示器,所述移动计算设备例如智能电话或平板电脑。根据一些实施例,所述详细的性能信息包括在时间轴上的HVAC活动的图形化指示,且指示HVAC活动的小时数。根据一些实施例,所述详细的性能信息还可以包括:指示设定点改变的一个或多个符号,以及在时间轴上指示由于非-居住何时改变设定点的符号。

根据一些实施例,用户可以在所述详细的性能信息与所述图形化总结之间切换显示。对于一天的图形化总结可以包括指示在所述天期间获得能源节约性能的符号,以及指示主要原因代理的符号,所述主要原因代理是超过或低于HVAC能源性能的原因。

根据一些实施例,描述了一种为由自编程的网络连接的恒温器控制的HVAC系统分析性能信息的方法。所述方法包括:使用所述恒温器,收集与HVAC系统使用相关的信息;针对时间间隔,计算一个或多个HVAC使用参数高于或低于平均值;为所计算的使用参数高于或低于所述平均值的潜在原因,评估多个潜在原因代理;以及基于所述评估,选择主要原因代理。

根据一些实施例,所述多个潜在原因代理可以包括用户改变恒温器设定点、天气和/或所述恒温器的能源节约特征,例如非居住的自动检测。所述使用参数可以包括能源消耗相关的参数、HVAC系统活动的持续时间和/或时间量乘以温度差。根据一些实施例,指示所述选择的主要原因代理的符号被图形化地显示给用户。

根据一些实施例,描述了一种使用交互式显示器鼓励用户采取能源节约的恒温器温度设置的方法。所述方法包括:接收代表温度设置的改变的用户输入,例如设定点改变;响应于接收到的用户输入,实时显示第一形式的图形符号,该第一形式的图形符号向所述用户指示,所述温度设置的所述改变将导致适度的能源节约;接收指示所述温度设置的另一改变的另一用户输入;响应于所接收到的另一用户输入,将所述图形符号实时地从所述第一形式改变至第二形式,所述第二形式指示所述另一改变将导致更大的能源节约。根据一些实施例,所述图形符号的所述第二形式比所述图形标志的所述第一形式具有相对于背景更高的对比度和/或更饱和的颜色。根据一些实施例,所述图形符号是叶子形状。

另一实施例描述了一种用于表征由HVAC控制器控制的HVAC系统的操作的方法,接收第一历史数据,所述第一历史数据代表对于第一历史时间间隔和第二历史时间间隔中的每一个历史时间间隔通过所述HVAC系统的实际HVAC使用。处理所述第一历史数据以确定在所述第一历史时间间隔和所述第二历史时间间隔之间的HVAC使用差。接收代表一个或多个参数的第二历史数据,所述一个或多个参数表征在所述第一历史时间间隔和所述第二历史时间间隔中的每一时间间隔中的预先选择的多个原因代理中的一每个原因代理,知道每个所述原因代理至少部分地影响所述HVAC系统的HVAC使用。处理所述第一历史数据和所述第二历史数据,以针对每个所述原因代理,生成模型,所述模型表征所述一个或多个原因代理参数和所述HVAC系统的相关的HVAC使用估计值之间的关系。处理所述第二历史数据与所述多个原因代理的模型,以计算每个所述原因代理针对于所述第一历史时间间隔和所述第二历史时间间隔之间的所述HVAC使用差的相对贡献。生成能源使用报告,所述能源使用报告至少包括(i)所述第一历史时间间隔和所述第二历史时间间隔之间的所述HVAC使用差,以及(ii)来自所述多个原因代理的主要的原因代理归因为所述HVAC使用差的主要原因,其中所述主要的原因代理在所述多个原因代理中具有对于所述HVAC使用差的最高相对贡献;以及

在电子显示器上显示所述能源使用报告。

应当理解的是,这些系统和方法是新颖的,以及它们的应用和其中使用和包括的很多的部件、系统、方法和算法是新颖的。应当理解的是,当前所述描述的发明的工作主体的实施例能够以多种方法实现,包括:处理、仪器、系统、装置、方法、计算机可读取介质、计算算法、嵌入式或分布式软件和/或它们的组合。以下描述了几个说明性的实施例。

附图说明

通过参考以下详细说明,并结合附图,可以容易地理解本发明的工作主体,其中:

图1是根据一些实施例的环境条件被控制的封闭空间的图;

图2是根据一些实施例的HVAC系统的图;

图3A-图3B示出了根据一些实施例的具有用户友好界面的恒温器;

图3C说明了图3A-图3B的恒温器的框架的壳部的剖视图;

图4示出了根据一些实施例的恒温器包括头部单元和背板(或壁站)用于简化安装、配置和升级;

图5说明了在连接到依照一些实施例设计的基于云的恒温器管理系统的私有网络上的恒温器和计算机;

图6依照一些实施例说明了恒温器管理服务器的一个组合用于实施恒温器管理系统;

图7A-图7I根据一些实施例说明了智能电话上的图形用户界面的各个方面,用于由自编程网络连接恒温器控制的HVAC系统的性能和其它信息;

图8A根据一些实施例说明了平板电脑上的图形用户界面的各个方面,用于由自编程网络连接恒温器控制的HVAC系统的性能和其它信息;

图9A-图9G根据一些实施例说明了个人计算机上的图形用户界面的各个方面,用于由自编程网络连接恒温器控制的HVAC系统的性能和其它信息;

图10是根据一些实施例说明一种用于为高于和低于平均能源使用决定主要责任的方法的流程图;

图11A-图11B根据一些实施例示出自动生成并发送给用户的电子邮件以报告能源性能相关的信息的例子;

图12-图15是示出根据一些实施例在决定叶子何时将要被显示的步骤的流程图;

图16是根据一些实施例恒温器上一系列的显示屏幕,其中叶子图标慢慢地渐显或淡出;

图17A-图17D示出24小时的时间段中的温度计划表与自动离开状态的激活,用于说明该温度计划表连同自动离开;

图18示出了用于依照一个实施例确定归因于一个或多个贡献者或原因代理的估计的HVAC系统的使用并报告由于该原因代理的该估计的HVAC的使用以及实际的HVAC系统的使用的方法的流程图;

图19A-图19D说明当该计划表无论是手动或通过该系统进入离开状态改变时,表征由该HVAC系统维持设定点温度计划表所需要的努力;

图20说明表征由该HVAC系统维持在一时间段中两个不同计划表之间的差所需要的努力;

图21说明用于确定天气对于在相关时间段中引起HVAC使用或未使用是否合格的示例性过程;

图22说明用于决定离开状态原因代理对于在一时间段中由该HVAC系统的能源使用的合格性的示例性过程;

图23说明用于决定温度计划表原因代理对于在一时间段中由该HVAC系统的能源使用的合格性的示例性过程;

图24说明用于决定关闭模式原因代理对于在一时间段中由该HVAC系统的能源使用的合格性的示例性过程;

图25说明用于决定日历原因代理对于在一时间段中由该HVAC系统的能源使用的合格性的示例性过程;

图26说明了相比于时间段之间的实际使用差,用于确定时间阶段对于引起第二时间段中的HVAC系统的使用或未使用是否合格的示例性过程;

图27A-图27B说明用于决定供热和制冷斜率的经验过程;

图28说明用于决定供热和制冷斜率的经验过程;

图29是用于决定在一时间段中归因于天气的估计的HVAC运行时间的示例性方法的流程图;

图30是依照一个实施例来量化归因于自动离开的估计的HVAC运行时间的方程式;

图31是依照一个实施例来量化归因于手动离开估计的HVAC运行时间的方程式;

图32是依照一个实施例来量化归因于在温度计划表上的改变估计的HVAC运行时间的方程式;

图33是依照一个实施例来量化归因于在温度计划表上的手动改变估计的HVAC运行时间的方程式;

图34是依照一个实施例来量化归因于使用关闭模式估计的HVAC运行时间的方程式;

图35是依照一个实施例来量化归因于月之间在日历天的差估计的HVAC运行时间的方程式;

图36是较于实际的HVAC运行时间,为原因代理换算估计的HVAC运行时间以使它们有意义的示例性过程流程;

图37是相较于实际的HVAC运行时间,为日历原因代理估计的HVAC运行时间定限额以使它意义的示例性过程流程;以及

图38描述了提供归因于三种原因代理的排等级的估计的HVAC运行时间的示例性报告。

具体实施方式

本专利说明书的主题还涉及到下列共同转让申请的主题:2010年9月14日提交的美国序列号12/881,430;2010年9月14日提交的美国序列号12/881,463;2010年11月19日提交的美国临时序列号61/415,771;2010年12月31日提交的美国临时序列号61/429,093;2011年1月4日提交的美国序列号12/984,602;2011年1月10日提交的美国序列号12/987,257;2011年2月23日提交的美国序列号13/033,573;2011年2月23日提交的美国序列号29/386,021;2011年2月24日提交的美国序列号13/034,666;2011年2月24日提交的美国序列号13/034,674;2011年2月24日提交的美国序列号13/034,678;2011年3月1日提交的美国序列号13/038,191;2011年3月1日提交的美国序列号13/038,206;2011年8月16日提交的美国序列号29/399,609;2011年8月16日提交的美国序列号29/399,614;2011年8月16日提交的美国序列号29/399,617;2011年8月16日提交的美国序列号29/399,618;2011年8月16日提交的美国序列号29/399,621;2011年8月16日提交的美国序列号29/399,623;2011年8月16日提交的美国序列号29/399,625;2011年8月16日提交的美国序列号29/399,627;2011年8月16日提交的美国序列号29/399,630;2011年8月16日提交的美国序列号29/399,632;2011年8月16日提交的美国序列号29/399,633;2011年8月16日提交的美国序列号29/399,636;2011年8月16日提交的美国序列号29/399,637;2011年8月17日提交的美国序列号13/199,108;2011年10月6日提交的美国序列号13/267,871;2011年10月6日提交的美国序列号13/267,877;2011年10月7日提交的美国序列号13/269,501;2011年10月14日提交的美国序列号29/404,096;2011年10月14日提交的美国序列号29/404,097;2011年10月14日提交的美国序列号29/404,098;2011年10月14日提交的美国序列号29/404,099;2011年10月14日提交的美国序列号29/404,101;2011年10月14日提交的美国序列号29/404,103;2011年10月14日提交的美国序列号29/404,104;2011年10月14日提交的美国序列号29/404,105;2011年10月17日提交的美国序列号13/275,307;2011年10月17日提交的美国序列号13/275,311;2011年10月17日提交的美国序列号13/317,423;2011年10月21日提交的美国序列号13/279,151;2011年10月21日提交的美国序列号13/317,557;以及2011年10月21日提交的美国临时序列号61/627,996。2011年11月18日提交的PCT/US11/61339;2011年11月18日提交的PCT/US11/61344;2011年11月18日提交的PCT/US11/61365;2011年11月18日提交的PCT/US11/61379;2011年11月18日提交的PCT/US11/61391;2011年11月18日提交的PCT/US11/61479;2011年11月18日提交的PCT/US11/61457;2011年11月18日提交的PCT/US11/61470;2011年11月18日提交的PCT/US11/61339;2011年11月18日提交的PCT/US11/61491;2011年11月18日提交的PCT/US11/61437;2011年11月18日提交的PCT/US11/61503;2012年1月2日提交的美国序列号13/342,156;2012年1月3日提交的PCT/US12/00008;2012年1月3日提交的PCT/US12/20088;2012年1月3日提交的PCT/US12/20026;2012年1月3日提交的PCT/US12/00007;2012年1月17日提交的美国序列号13/351,688;2012年1月24日提交的美国序列号13/356,762;以及2012年3月22日提交的PCT/US12/30084。上述所提及专利申请中的每一个通过引用包括在本文中。上述所提及的专利申请在下文中共同称为“共同转让的并入的申请”。

下面提供了本发明的工作主体的详细描述。尽管对几个实施例进行了描述,但应当理解的是,本发明的工作主体并不限于任何一个实施例,而是包含了大量的替代、变型和等同方案。另外,尽管为了透彻地理解本发明的工作主体在下面的描述中阐述了大量的具体细节,但一些实施例可以实施而没有一些或全部的这些细节。此外,为了清楚的目的,相关技术中公知的某些技术材料没有详细描述,以避免不必要地模糊本发明的工作主体。

在本文中所使用的术语“HVAC”包括提供供热和制冷二者、仅供热、仅制冷的系统以及为提供其它的居住者舒适性和/或调节功能(例如加湿、除湿和通风)的系统。

在本文中所使用的术语电力“获取”“共享”“窃取”,当涉及到HVAC恒温器时,都指的是恒温器被设计为通过设备负载从电力变压器得到电力,而没有直接地从该变压器使用直接的或共用的线源。

在本文中所使用的术语“住宅的”,当涉及到HVAC系统时,指的是一种适合于供热、制冷和/或以其它方式调节主要用作独户住宅的建筑物内部环境的HVAC系统。将被认为是住宅式的制冷系统的一个例子具有小于大约5冷冻吨的制冷能力(1冷冻吨=12000Btu/h(英热单位/小时))。

在本文中所使用的术语“轻型商用”,当涉及到HVAC系统时,指的是以下这样一种类型的HVAC系统:这种系统适合于供热、制冷和/或以其它方式调节主要用于商业目的、但是对其尺寸和构造而言住宅式HVAC系统被认为合适的建筑物的内部环境。被认为是住宅式的制冷系统的例子将具有小于大约5冷冻吨的制冷能力。

在本文中所使用的术语“恒温器”是指用于调节封闭空间的至少一部分内的例如温度和/或湿度的参数的装置或系统。术语“恒温器”可以包括用于供热和/或制冷系统的控制单元或者加热器或空调的组成部件。在本文中所使用的术语“恒温器”还可以通常地指多功能感测和控制单元(versatile sensing and control unit,VSCU单元),其被配置并调节以提供完善的、定制的、节能的HVAC控制功能,而同时具有视觉吸引力、非强迫性的、外观优雅的,并且非常易于使用。

根据一些实施例,图1是其环境条件被控制的封闭空间的图。在该例子中,封闭空间100是独户式住宅。根据其它的实施例,该封闭空间可以是例如复式住宅、公寓大楼中的一套公寓、例如办公室或零售商店的轻型商业建筑物,或是上述组合的建筑或封闭空间。在下面将进一步详细地描述恒温器110控制HVAC系统120。根据一些实施例,HVAC系统120具有小于大约5冷吨的制冷能力。根据一些实施例,远程设备112与恒温器110无线地通信,并能够用于显示信息给用户和接收来自设备112远程位置的用户输入。尽管许多实施例在本文中被描述为由恒温器来实施,例如恒温器110,但根据一些实施例,使用远程设备(例如设备112)采用相同或相似的技术。

图1中的恒温器110的一些实施例包括一个或多个传感器以从与封闭空间100相关的环境中收集数据。包括在恒温器110中的传感器可以检测居住、温度、光和其它的环境条件并影响HVAC系统120的控制和运行。包括在恒温器110内的传感器不从恒温器110的表面突出,从而提供了光滑和优雅的设计,而不吸引在房间里或其它封闭空间里的居住者的注意力。因此,恒温器110很容易与几乎任何的装饰相匹配而增加了室内设计的整体吸引力。

在本文中所采用的“学习”恒温器是指一恒温器或者在多恒温器网络中的多个通信恒温器中的一个恒温器,该恒温器具有基于至少一个自动感测到的事件和/或至少一个过去或当前的用户的输入在供热和/或制冷进度中自动建立和/或修改至少一个未来的设定点的能力。如本文中所采用的,“主”恒温器是指,电气地连接以启动HVAC系统的所有或一部分的恒温器,例如通过与HVAC控制线的电气连接(例如,W,G,Y等)而通向HVAC系统。如本文中所使用的,“辅助”恒温器是指,非电气地连接以启动HVAC系统的一种恒温器,但另外包含至少一个传感器,并通过与主恒温器数据通信影响或促进HVAC系统的主恒温器控制。在一个特别有用的情况下,恒温器110是主学习恒温器,且是壁装式,连接至所有的HVAC控制线,而远程恒温器112是一个置于床头柜或梳妆台上的辅助学习恒温器,该辅助学习恒温器与主学习恒温器在外观和用户界面功能方面是相似的,该辅助学习恒温器进一步具有与主学习恒温器相似的感测能力(例如,温度、湿度、运动、环境光、距离),但该辅助学习恒温器不被连接至任何HVAC导线。尽管辅助学习恒温器没有被连接至任何HVAC导线,但它与主学习恒温器以无线方式通信并合作以改善对HVAC系统的控制,例如,通过提供其在封闭空间中各自位置处额外的温度数据,提供额外的居住信息,为用户提供一个额外的用户界面,等等。

应当理解的是,虽然某些实施例是尤为有利的,其中该恒温器110是主学习恒温器,并且远程恒温器112是辅助学习恒温器,本教导的范围并不局限于此。因此,例如,虽然自动地将网络连接的恒温器与在线用户账户配对关联的某些初始预配置方法是尤为有利的,其中该恒温器是主学习恒温器,但这些方法更通常地应用于涉及主非学习恒温器、辅助学习恒温器、辅助非学习恒温器、或其它类型的网络连接恒温器和/或网络连接传感器的情况。通过进一步举例的方式,尽管用于恒温器的远程控制的某些图形用户界面可能是尤为有利的,其中该恒温器是主学习恒温器,但通常这些方法更加适用于涉及主非学习恒温器、辅助学习恒温器、辅助非学习恒温器、或其它类型的网络连接恒温器和/或网络连接传感器的情况。通过进一步举例的方式,尽管用于通过远程的基于云的管理服务器对恒温器的合作式、节电的信息轮询的某些方法可以是尤为有利的,其中该恒温器是主学习恒温器,但是通常这些方法更加适用于涉及主非学习恒温器、辅助学习恒温器、辅助非学习恒温器、或其它类型的网络连接恒温器和/或网络连接传感器的情况。

封闭空间100还包括通过无线方式和通过有线连接方式都可访问的私有网络,并且也可被称为局域网或LAN(Local Area Network,LAN)。根据本发明的一些实施例,在私有网络上的网络设备包括计算机124、恒温器110和远程恒温器112。在一个实施例中,该私有网络是采用提供路由、无线接入点功能、防火墙和多个有线连接端口的集成路由器122来实现的,这些有线连接端口用于连接到各种有线网络设备,例如计算机124。而其它实施例可以采用多个离散的交换机、路由器和其它设备(图中未示出)来执行等同于集成路由器122提供的那些联网功能的联网功能或除了由集成路由器122提供的那些联网功能以外的联网功能。

集成路由器122还提供访问公共网络(例如因特网)的网络设备,条件是封闭空间100具有通常通过电缆调制解调器、DSL调制解调器和因特网或其它公共网络的服务提供商而与公共网络的连接。因特网和其它公共网络有时被称为广域网或WAN(Wide-Area Network)。在一个实施例中,集成路由器122可以使用如TCP/IP的网络协议将通信导向至这些网络上的其它设备。如果通信被导向至私有网络之外的设备或服务,则集成路由器122可以将私有网络之外的通信路由至如因特网的公共网络。

在一些实施例中,恒温器110可以经由私有网络或通过与远程恒温器112直接形成的自组织网络来与远程恒温器112进行无线通信。在与远程恒温器112通信的过程中,恒温器110可以从用户以及从能够通过远程恒温器112检测到的环境来远程收集信息。例如,远程恒温器112可以与恒温器110无线通信,提供来自远程恒温器112的远程位置的用户输入,或可以用于显示信息给用户,或二者均可。和恒温器110一样,远程恒温器112的实施例也可以包括传感器以收集有关居住、温度、光和其它环境条件的数据。在替代实施例中,远程恒温器112还可以位于封闭空间100的外部。

根据一些实施例,在封闭空间100内的计算机设备124可以借助于通过位于如因特网的公共网络上的恒温器管理系统(图1中未示出)访问恒温器管理账户来远程控制恒温器110。恒温器管理系统在网络上传递控制信息返回到恒温器110,条件是恒温器110还与在恒温器管理系统上的恒温器管理账户相关联或配对。由恒温器110收集的数据也通过集成路由器122从与封闭空间100相关的私有网络通过公共网络传递至恒温器管理系统。不在封闭空间100内的其它的计算机设备如智能电话、膝上型电脑和平板电脑(图1中未示出)也可以控制恒温器110,条件是它们能够访问公共网络和恒温器管理系统和恒温器管理账户。根据本发明的实施例关于访问公共网络(例如因特网)和恒温器(如恒温器110)的进一步细节,在后面进一步详细描述。

根据一些实施例,图2是HVAC系统的示意图。HVAC系统120为封闭空间100(例如图1中所示的独户式住宅)提供供热、制冷、通风和/或空气处理。系统120描述了强制通风式供热和制冷系统,但根据其它实施例,也可以采用其它类型的HVAC系统,例如基于辐射热的系统、基于热泵的系统以及其他系统。

在供热时,空气处理器240内的加热盘管或元件242通过线路236采用电力或气体提供热源。使用风扇238从封闭空间通过回风管246并穿过过滤器270吸入冷空气,冷空气通过加热盘管或元件242被加热。加热后的空气通过供应空气管道系统252和供应空气调节器(例如调节器250)在一个或多个位置流回到封闭空间内。在制冷时,外部压缩机230传递气体(例如氟利昂)通过一组热交换器盘管,然后通过膨胀阀。该气体随后通过线路232到达空气处理器240中的冷却盘管或者蒸发器盘管234,在此处,气体膨胀、冷却并冷却通过风扇238循环的空气。在各种实施例中,可选地可以包括加湿器254,该加湿器254在水分穿过管道系统252之前将水分返回至空气中。尽管图2中未示出,但HVAC系统120的替代实施例可以具有其他功能,例如使空气进出外部,一个或多个阻尼器以控制管道系统252内的气流,以及紧急加热单元。HVAC系统120的整体运行通过控制电子设备212有选择地被启动,该控制电子设备经控制线248与恒温器110通信。

根据一些实施例,图3A~图3B说明了具有用户友好界面的恒温器。与许多现有技术的恒温器不同,恒温器110优选具有光滑的、简约的、整洁的和优雅的设计而不使家庭装饰逊色,甚至对直接安装位置来说可以作为视觉上赏心悦目的中心装饰品。此外,通过恒温器110的设计,与恒温器110的用户交互得到促进,并大大地提到,超过已知的传统恒温器。恒温器110包括控制电路并且电气连接到HVAC系统,例如图1和图2中示出。恒温器110是壁装式的,在外形上圆形的,且具有可旋转外环312用于接收用户输入。恒温器110在外形上是圆形的,因为当它安装于墙壁上时看起来是一般盘状的圆形的物体。恒温器110具有位于外环312内的大的正面。根据一些实施例,恒温器110的直径为大约80mm。可旋转外环312允许用户进行调节,例如选定新的目标温度。例如,通过顺时针旋转外环312,可以升高目标温度,以及通过逆时针旋转外环312,可以降低目标温度。恒温器110的正面包括:透明盖314,其根据一些实施例是聚碳酸酯;以及金属部324,其优选具有如图示出的形成于其中的多个槽。根据一些实施例,盖314和金属部324的表面形成共同向外的弧形或平缓地向外呈弧形的球形,且该平缓的弧形通过外环312继续。

尽管由单片透镜状的材料形成,例如聚碳酸酯,但盖314具有两个不同的区域或部分,包括外部部分314o和中央部分314i。根据一些实施例,盖314在外部部分314o的周围被油漆或熏制,但保持中央部分314i明显地清晰,以使得便于查看安排于其下方的电子显示器316。根据一些实施例,弯曲盖314用作透镜,其趋向于放大在电子显示器316上显示给用户的信息。根据一些实施例,中央电子显示器316是点矩阵布局(可单独寻址)而不是分段式布局,从而可以产生任意形状。根据一些实施例,点矩阵布局和分段式布局的组合被采用。根据一些实施例,中央显示器316是背光式彩色液晶显示器(liquid crystal display,LCD)。在图3A中说明了在电子显示器316上显示的信息的例子,包括代表了当前设定点温度的中央数字320。根据一些实施例,金属部324具有多个槽状开口,以使得便于安装于其下方的被动红外运动传感器330的使用。金属部324可以替换地被称为金属前格栅部。前述的共同转让美国No.13/199,108中提供了金属部/前格栅部的进一步描述。恒温器110优选地被构造成使得,电子显示器316在固定的方向且不随外环312旋转,使得电子显示器316保持容易被用户读取。对于一些实施例,盖314和金属部324也保持在固定的方向且不随外环312旋转。根据一个实施例,该实施例中,恒温器110的直径大约为80mm,电子显示器316的直径大约为45mm。根据一些实施例,LED指示器380置于部件324的下方,作为某些状态条件的低功率消耗指示器。例如,当恒温器的可充电电池(见图4A,下文)处于很低的电量且正在再充电时,该LED指示器380可以用于显示闪烁的红色。更一般地,该LED指示器380可以用来借助红色、绿色、红色和绿色的各种组合、各种不同的闪烁速率等等而传达一个或多个状态码或错误码,这对于故障排除目的可以是有用的。

如在前述共同转让美国序列号12/881,430中进一步描述的,运动感测和其它技术一样可以应用于居住的检测和/或预测中。根据一些实施例,生成有效的且高效率的计划程序中,使用居住信息。优选地,提供主动接近传感器370A以通过红外光反射检测正在接近的用户,以及提供环境光传感器370B以感测可见光。接近传感器370A可以用于在大约1米的范围内检测接近,使得当用户正接近恒温器且在用户触摸恒温器之前,恒温器110可以启动“唤醒”。这种接近感测的使用,通过在用户准备与恒温器交互时或者在用户准备与恒温器交互不久之后,而对于交互“准备就绪”,有助于提高用户体验。此外,通过当没有用户交互正在发生或即将发生时进行“睡眠”,接近时唤醒(wake-up-on-proximity)功能还允许恒温器内部节能。环境光传感器370B可以用于各种情报收集的目的,例如,用于当检测到急剧上升或下降边缘时促进居住率的确认(因为很可能是有居住者开灯和关灯),例如用于检测长期(例如24小时)模式的环境光强度以确认和/或自动确定一天中的时间。

根据一些实施例,为了鼓励用户信任和进一步促进视觉和功能优雅的组合的目的,恒温器110仅仅由两种类型的用户输入控制,第一种是如图3A示出的外环312的旋转(以下称为“旋转环”或“环旋转”输入),并且第二种是向内按压外帽308(见图3B)直到听得见的和/或可触知的“点击”发生(以下称为“向内点击”或简单的“点击”输入)。对于图3A-图3B的实施例,外帽308是包括外环312、盖314、电子显示器316和金属部324的全部的组件。当用户向内按压时,抵靠着内部金属圆顶开关(未示出),外帽308向内行进少量,例如0.5mm,然后,当释放向内的压力时,向外弹性地行进返回该相同的量,向用户的手提供令人满意的可触知的“点击”感觉,随着相应的温和的可听得到的咔哒声音。因此,对于图3A-图3B的实施例,通过直接按压外环312本身,或者通过借助提供向内按压盖314、金属部314而间接按压外环,或者通过其各种组合而可以获得向内的点击。对于其它的实施例,恒温器110可以被机械地配置成使得,对于向内点击输入,仅仅外环312向内行进,而盖314和金属部324保持静止。应当理解的是,将向内行进以实现“向内点击”输入的特定机械元件的各种不同的选择和组合在本教导的范围内,不论其是外环312本身、盖314的某部分或者其某组合。然而,为用户提供使用一只手和所涉及的最少的时间量和精力在达到“环旋转”和“向内点击”之间快速地来回的能力,已经被发现是尤为有利,因此通过按压外环312直接地提供向内点击的能力已经被发现是尤为有利的,这是由于用户的手指不需要抬起而离开与设备的接触或者沿其表面滑动,以便在环旋转和向内点击之间来回。此外,通过将电子显示器316策略地置于可旋转的环312内部的中心,提供了进一步的优势,由于在整个输入过程中用户可以自然地将其注意力集中于电子显示器上,在正中间那里,他们的手执行其功能。直观的外环旋转(尤其应用(但不限于)恒温器的设定点温度的改变)、与向内点击的令人满意的物理感觉一起便利地交叠、以及在他们手指的活动的中间将自然注意力调节在电子显示器的组合,显著地增加直观的、无缝的和完全有趣的用户体验。根据一些实施例采用的有利的机械式的用户界面和相关设计的进一步描述,能够在上述的美国序列号13/033,573、美国序列号29/386,021和美国序列号13/199,108中发现。

图3C说明了图3A-图3B的恒温器的框架的壳部309的剖视图,当针对在各种不同家庭环境和家庭设置中的各种不同的墙壁颜色和墙壁质地观察时,已经发现壳部309提供整体的恒温器110的特别令人愉快的和适应性强的视觉外观。尽管如在本文中和上述的一个或多个共同转让的并入的申请中所述的,恒温器本身将在功能上适应于用户的计划,外壳部309被特定地配置成来传达“变色龙”的质量或特点,使得,至少部分地因为当从很多不同的角度观察时,其看起来呈现为周围的颜色甚至纹理,因而整体设备在视觉和装饰意义上,呈现为自然地融入于在家里和商业环境中发现的许多最常见的壁颜色和壁纹理。当在剖面图中观察时,壳部309具有略微弯曲的截头椎体的形状,且包括由透明的固体材料(例如聚碳酸酯塑料)制成的侧壁376。侧壁376是用基本上平的银色或镍色的涂料而进行背面涂布(backpainted)的,该涂料被应用到侧壁376的内表面378,但不应用到它的外表面377。外表面377是光滑的、有光泽的但未被涂布。侧壁376可以具有约1.5mm的厚度T,在当安装时较靠近墙壁的第一端的约78.8mm的直径d1,在当安装时远离墙壁的第二端的约81.2mm的直径d2,直径跨越约22.5mm的向外宽度尺寸“h”发生改变,直径以线性方式或者更优选地略微非线性的方式随着增加的向外距离而发生改变,以形成在剖面看时稍微弯曲的形状,如图3C中示出的。外帽308的外环312优选地被构造以匹配直径d2,在直径d2那儿,被配置为从那里跨过适当大小的间隙g1靠近壳部309的第二端,之后,轻轻地弧形向内返回以穿过小间隙g2与盖314连接。当然,应当理解,图3C仅仅示出了恒温器110的外壳部309,且为了描述清晰,外壳部309的内部的许多电子元件从图3C省略,这样的电子元件进一步被描述在下文和/或在其它的共同转让合并申请中,例如,上述的美国序列号13/199,108。

根据一些实施例,恒温器110包括处理系统360、显示驱动器364和无线通信系统366。该处理系统360适合于使显示驱动器364和显示区域316来显示信息给用户,并经由可旋转环312来接收用户输入。根据一些实施例,该处理系统360能够执行包括本发明所描述的用户界面特征的恒温器110的操作的管理。该处理系统360还被编程和配置以执行其它的操作,如下文中和/或在其它的共同转让合并申请中进一步描述的其它操作。例如,处理系统360还被编程和配置以维护和更新用于安装有HVAC系统的封闭空间的热力学模型,例如,在上述美国序列号12/881,463和国际专利申请号PCT/US11/51579中描述的,其通过引用并入本文。根据一些实施例,该无线通信系统366用于与设备通信,该设备例如个人计算机和/或其它的恒温器或HVAC系统的组件,其可以是点对点通信、通过位于私有网络上的一个或多个服务器的通信和/或通过基于云的服务的通信。

根据一些实施例,图4说明恒温器110的侧视图,恒温器110包括头部单元410和该头部单元的背板(或壁站)440,用于简便安装、配置和升级。正如上文所述,恒温器110是安装于墙上,圆形形状的,且具有用于接收用户输入的可旋转外环312。头部单元410包括外帽308,外帽包括盖314和电子显示器316。圆形恒温器110的头部单元410可滑动地安装到背板440上且可滑动地从背板拆除。根据一些实施例,头部单元410到背板440的连接可以采用磁体、卡销、插销和搭扣、具有配合的凹口的凸出部或肋部来来实现,或者仅仅通过在头部单元410和背板440的配合部分上的摩擦来实现。根据一些实施例,头部单元410包括处理系统360、显示驱动器364和无线通信系统366。还示出可再充电电池420,该可再充电电池420使用再充电电路422被再充电,该再充电电路422使用来自背板的电力,来自背板的电力是通过从HVAC系统控制电路或从共用的线路(如果有的话)电力获取(也称为电力窃取和/或电力共享)而得到的,如在共同待定的专利申请美国序列号13/034,674和13/034,678中进一步详细描述的,其通过引用并入本文。根据一些实施例,可再充电电池420是单电池的锂离子或锂聚合物电池。

背板440包括在外壳460内的电子器件482和温度/湿度传感器484,它们通过通风孔442通风。两个或更多的温度传感器(未示出)也位于头部单元410内且合作以取得可靠的和准确的室温数据。导线连接器470被提供以允许连接到HVAC系统导线。连接端子480提供头部单元410和背板440之间的电气连接。背板电子器件482也包括电力共享电路以从HVAC系统电路感测和获取可获得的电力。

图5说明了在连接到依照一些实施例设计的基于云的恒温器管理系统506的私有网络502上的恒温器和计算机。在一个实施例中,私有网络502被设计成主要地在封闭空间内和邻近提供网络连通性,例如图1中示出的封闭空间100。私有网络502还提供了用于各种设备的网络连通性,所述各种设备例如智能电话508、平板电脑510、计算机512和膝上型电脑514以及恒温器110和远程恒温器112。在私有网络502中的路由器(未示出),例如图1中的集成路由器112,可以使用例如TCP/IP的网络协议为这些设备提供有线和无线连接。优选地,恒温器110和远程恒温器112无线地连接至私有网络502,至少由于至恒温器的位置的有线连接可能不可用,或者在恒温器110或远程恒温器112中包含这种的物理连接可能是不可取的。对于一些实施例,恒温器110和远程恒温器112也可以彼此之间以及与其他装置使用自组织网络517而以无线方式直接通信,自组网络517优选直接建立在这些设备之间和绕开私有网络502。

本文所描述的实施例被有利配置成与服务于大量的家庭和商业的各种各样的常规的集成路由器相兼容。因此,仅仅以举例而不是以限制的方式来说,服务于图5的私有网络502的路由器(未示出)可以是例如友讯科技DIR-655极端N无线路由器、美国网件公司WNDR3700大范围双频段无线USB千兆路由器、商巴比禄公司NfinitiWZR-HP-G300NH无线-N路由器、华硕RT-N16无线路由器、思科系列E4200双频段无线路由器或思科系列E4200双频段无线路由器。不失一般性地,在下文中一些进一步的描述将参照一个示例性场景,在该示例性场景中恒温器110/120被使用在家庭环境中。然而,可以理解的是,所描述的实施例并不局限于此,并且应用于在任何各种封闭空间内的这种恒温器的使用,各种封闭空间包括小区住宅、商场、度假住宅、宾馆、饭店客房、工业设施以及通常有被控制的HVAC系统的任何地方。

恒温器访问客户端516是客户端应用程序,其是依照本发明的各个方面被设计的,以通过公共网络504访问恒温器管理系统506。在上文和下文的各种描述中,术语“恒温器管理系统”可以被互换地称为用于恒温器的“基于云的管理服务器”,或者更简单地“云服务器”。因为恒温器访问客户端516被设计以在不同的设备上执行,多个客户端应用程序可以基于基本设备平台或操作系统的要求采用不同的技术被开发。对于一些实施例,恒温器访问客户端516被实施,使得终端用户操作他们的能够访问恒温器管理系统506且与恒温器管理系统506进行交互的因特网可访问设备(例如台式电脑、笔记本电脑、网络驱动的移动设备、具有渲染引擎的蜂窝式便携无线电话等)。终端用户机器或设备具有网络浏览器(例如IE浏览器、火狐、Chrome、Safari浏览器)或者其它的通常与AJAX技术兼容(例如XHTML、XML、CSS、DOM、LSON等)的渲染引擎。AJAX技术包括:用于标记和样式化信息的XHTML(可扩展的HTML)和CSS(层叠样式表);通过客户端侧脚本语言访问的DOM(文档对象模型)的使用;XMLHttpRequest对象(脚本语言使用的API)的使用以使用HTTP从服务器来回异步传输XML和其它的文本数据;以及作为在服务器和客户端之间传输数据格式的XML或JSON(Javascript Object Notation,JavaScript对象表示法,轻量级的数据交换格式)的使用。在Web环境中,终端用户以通用的方式访问该网站,即通过打开浏览器至与服务提供商相关的URL。用户通过用户名和密码的输入可以验证到该网站(或其中一部分)。终端用户实体机器与系统之间的连接可以是私有的(例如,通过SSL)。该系统的服务器侧可以包括常规的托管组件,例如IP交换机、Web服务器、应用服务器、管理服务器、数据库等。在客户端侧使用AJAX的情况下,客户端侧代码(AJAX垫片)在终端用户的Web浏览器或其它渲染引擎内本机地执行。代表性地,当终端用户访问网站时这种代码可以服务于客户端机器,但是在替代方案中它也可持续地驻留在客户端机器上。最后,虽然通过互联网协议(Internet Protocol,IP)的基于Web的应用被描述,但这不是一种限制,因为这些技术和披露的用户界面技术可能通过在任何运行时间应用程序内的一个独立的应用程序来提供,无论是固定线路或者移动。应当理解的是,虽然TCP/IP协议是作为在恒温器管理系统506、恒温器访问客户端514和对一些实施例的其它设备之间用于通信的网络协议来阐述的,它被阐述以举例的方式而不是通过限制的方式,由于在任何其它合适的协议,尤其是例如在IP上的UDP,在不脱离本发明的教导的范围内可以使用。

在另一个实施例中,恒温器访问客户端516可以是旨在被下载并运行在特定设备上的独立的应用程序或“app”,例如智能手机508或运行苹果ios操作系统、安卓操作系统或其它的平板电脑510设备。开发人员使用一套应用程序编程接口(set of application programming interfaces,APl)和由设备制造商提供的封装在软件开发工具包或SDK内的函数库创建这些独立的应用程序。一旦完成,通过由应用程序商店的老板监管的应用程序商店或“app”商店,“app”可供下载至相应设备,来提升质量、易用性和客户满意度。

在一个实施例中,通过在私有网络502上运行恒温器访问客户端516的计算机设备可以在公共网络504上访问图5中示出的恒温器管理系统506。恒温器访问客户端516代表计算机设备访问由恒温器管理系统506供应的恒温器管理账户(未示出),以便访问或控制恒温器110或远程恒温器112。另外,在私有网络502上的计算机设备例如计算机512可以使用恒温器访问客户端516和恒温器管理账户来从恒温器110和远程恒温器112收集数据。

可以从在私有网络502或公共网络504上的大量不同的位置远程访问恒温器110和远程恒温器112。如将在下文中进一步详细地描述,安装时,恒温器例如恒温器110首先向恒温器管理系统506登记,然后请求恒温器管理系统创建在恒温器和相应的恒温器管理账户之间的配对。此后,如平板电脑518的设备可以直接连接至公共网络504或通过一系列其它私有网络(未示出)连接至公共网络504,该一系列其它私有网络仍然通过恒温器管理系统506访问这些恒温器,但位于这些恒温器所在的私有网络外面。在一个实施例中,运行苹果IOS操作系统的平板电脑518可以通过恒温器管理系统506和恒温器管理账户使用IOS“app”版本的恒温器访问客户端516远程访问这些恒温器。恒温器与恒温器管理账户的配对允许平板电脑518和其它计算机设备来远程控制、收集数据,并与如恒温器110和远程恒温器112的恒温器通常交互。

在一个实施例中,恒温器管理系统506分配与恒温器的通信和控制的任务至一个或多个恒温器管理服务器520。这些恒温器管理服务器520可以协调通信、管理访问、处理数据并使用由如恒温器110和远程恒温器112的恒温器产生的数据分析结果。在这些服务器520上来自计算的中间结果和最终结果,与原始数据一样,可以暂时储存或存档在恒温器数据库522上以供将来参考和采用。恒温器管理服务器520也可以随同控制信息和更通常地任何各种不同类型的信息一起发送一部分数据,返回至恒温器110和远程恒温器112。来自恒温器管理服务器520的结果也可以储存在一个或多个恒温器数据库522中,以用于通过如运行恒温器访问客户端516的平板电脑518的设备随后访问。

这些恒温器管理服务器520的每一个可以执行一个或几个离散的功能,可以为这些不同的离散功能充当冗余故障切换服务器,或可以以串联或集群的方式共享某些离散的功能的性能,以及其它组合执行更复杂的且并行或分布在计算机的一个或多个集群上的操作。在一些实施例中,这些恒温器管理服务器520中的一个可以直接地与物理计算机或计算设备对应,然而,在其他实施例中,这些恒温器管理服务器520可以是运行在一个或多个物理计算机上且在虚拟机计算环境的控制下的虚拟服务器,该虚拟机计算环境例如由帕洛阿尔托的虚拟化软件公司或任何其它的虚拟机供应商提供。在另一个实施例中,恒温器管理服务器520和恒温器数据库522由“云”计算和存储环境预分配,该“云”计算和存储环境例如由华盛顿州西雅图市的亚马逊网络(Amazon.com)提供的弹性计算云(Elastic Compute Cloud)或EC2。在EC2解决方案中,例如,恒温器管理服务器520可以根据处理器周期和存储要求、而不是根据多台计算机(无论是真实的或虚拟的)进行分配,认为对于手头任务是必需的。

依照一些实施例,图6说明了恒温器管理服务器520的一个组合用来实施恒温器管理系统506。在一个实施例中,恒温器管理系统506包括注册服务器602、更新服务器604、配对服务器606、恒温器前端用户界面(user interface,UI)服务器608、恒温器后端服务器610以及恒温器管理账户服务器612。互连614可以使用一个或多个高速网络连接、共享背板、本地和远程高速连接的组合以及一个或多个虚拟连接将服务器连接。尽管恒温器管理服务器520的配置是示例性的,但不应被视为以任何方式进行限制,并可以想到,通过服务器和这些服务器上功能分配的不同组合来处理功能的分配。

在一些实施例中,组成该恒温器管理系统506的恒温器管理服务器520可以管理位于跨越不同地理环境和时区的多个封闭空间内的恒温器。每一个封闭空间可以使用根据本发明的实施例的一个或几个恒温器以控制一个或几个HVAC系统,例如图1中的HVAC系统120。在一些情况中,恒温器管理系统506可能有对某些功能的增长需求,并因此更多的服务器来提供这些功能能力。可以理解的是,恒温器管理系统506的设计以及恒温器管理服务器520的使用可以是规模化的以满足该系统的这些需求并高效地跟踪和整理来自这些多个封闭空间和恒温器的数据用于处理、分析、控制以及机器学习的目的。

注册服务器602的一个实施例提供了与在恒温器管理系统506上注册恒温器和准备该恒温器与恒温器管理账户配对相关的多个服务。在操作中,当恒温器有线连接至一个封闭空间的HVAC时,注册服务器602可以首先由该恒温器访问,然后通过私有网络连接至因特网。为了使恒温器在系统520上已知,该恒温器从私有网络发送恒温器元数据至公共网络,例如因特网,然后注册服务器602处理。优选地,该恒温器元数据包括唯一的恒温器识别码,例如在制造的时候指定的恒温器识别码。作为发送恒温器元数据通过为私有网络502服务的路由器(未示出)的网络地址转换器(network address translator,NAT)的该通信,其附加有该路由器的公共网络地址,因此该公共网络地址是由恒温器通过公共网络通信“使用的”的公共地址。该恒温器识别码用于将该恒温器与由注册服务器602注册的其它的恒温器识别开,并部分地或全部地,可以基于分配给该恒温器的NIC的媒体访问控制(media access control,MAC)地址。作为针对注册未经授权的设备的一个安全措施,注册服务器602可以将该恒温器元数据中的MAC地址与由恒温器或NIC组件的制造商提供的有效的MAC地址列表比较。根据一个实施例,当注册服务器602在恒温器注册库中预配置一个条目并标志该恒温器条目准备好与恒温器管理账户配对时,则恒温器注册完成。在恒温器注册库中的条目可以通过其唯一的恒温器识别码、其使用的公共网络地址(或者,更特别地,私有网络路由器的公共地址,通过该私有网络路由,器其连接至因特网)以及任选地与该恒温器关联的其它相关元数据来参考。

在一些实施例中,更新服务器604试图更新软件、固件、配置更新至恒温器注册库中注册的每一个恒温器。如果来自该注册库中条目的元数据排除版本信息,更新服务器可能需要进一步针对于当前安装版本查询每一个恒温器。更新服务器604可以访问该注册库中的条目,然后使用每个条目中相对应的网络地址以通过公共网络或私有网络或二者来连接至相关的恒温器。

如果比恒温器上当前使用的软件版本新的软件版本存在,更新服务器604继续通过公共网络发送软件更新至恒温器。例如,更新服务器可以在上传新软件时使用文件传输协议例如ftp(file transfer protocol,文件传输协议)、tftp(trivial file transfer protocol,简单文件传输协议)或更安全的传输协议。一旦上传后,恒温器上软件的安装和更新可以通过恒温器上的自动更新选项或手动地通过如用户请求的恒温器的界面而立即进行。

配对服务器606的一个实施例有利于恒温器与恒温器管理账户服务器612上的恒温器管理账户的关联或“配对”。本文中除非另有说明,术语“恒温器管理账户”与“用户账户”可以互换使用。一旦恒温器与用户账户配对,各种丰富的支持网络的性能被启用,如本文以及上述共同转让并入申请的一个或多个进一步描述的。例如,一旦配对已经实现,访问该恒温器管理账户的人可以访问该恒温器(通过使用恒温器访问客户端516的恒温器管理系统506)用于各种目的,例如看到家里的当前温度、改变当前设定点、在“在家”和“离开”之间改变恒温器的模式等等。此外,恒温器管理系统506可以随后开始跟踪由恒温器提供的各种信息,反过来,各种信息使丰富多样的基于云的数据汇总和分析,基于云的数据汇总和分析可以用于通过恒温器显示器本身、通过恒温器访问客户端516或者二者提供相关的报告、总结、更新和建议给用户。各种其它的功能(例如需求响应动作)可以被执行,在需求响应动作中,恒温器管理服务器发送能源警报和/或发送节能设定点命令至已经参加这类项目的用户的恒温器。

鉴于在恒温器和恒温器管理账户之间建立配对的重要性,提供了配对的后降方法的能力,其可以被称为“手动辅助”的配对方法,在下文进一步描述的方便的自动配对方法对于特定的安装不能够安全地且可靠地执行的情况下,可以起作用且被执行。手动辅助的方法可以使用字母数字“密码”来将恒温器配对至恒温器管理账户。通常,密码通过公共网络(例如,因特网)被发送至恒温器,且显示在恒温器的显示区域上。如果当用户登录进其恒温器管理账户时,从恒温器上的显示器上获得密码的用户然后将密码输入到所呈现的配对对话中,则提供授权访问恒温器。如果用户输入了在其恒温器显示器上显示的该相同密码,配对服务器606将恒温器与用户的恒温器管理账户配对。

根据优选的“自动配对”方法,配对服务器606可以自动地配对或“自动配对”恒温器管理账户至恒温器,如果二者都位于相同私有网络上的话。如果恒温器和恒温器管理账户与相同私有网络相关联,本发明的实施例推测该恒温器在用户的家里、办公室或其它用户也应该能够控制该设备的区域。为了自动地做出该确定,配对服务器606将通过因特网用于注册恒温器的公共网络地址与最近地被用于访问恒温器管理账户的由计算机设备使用的公共网络地址进行比较。由于恒温器和计算机设备仅仅具有私有网络地址,它们共享的私有网络上的路由器插入相同公共网络地址至它们的数据包内从而允许两个设备访问服务器、服务和因特网上的其它设备。“自动配对”利用了这一事实,并自动地配对共享相同公共网络地址的设备。从用户的观点来看这是特别有利的,用户没有为输入密码或其它字母数字识别码以实现配对处理的需要而费心,并且避免了用户可能无意中输入不正确的代码或识别码至系统内这一担心的事。自动配对和手动辅助配对上的细节在后面进一步详细描述。

恒温器前端用户界面(UI)服务器608有利于产生和呈现直观的、用户友好的图形用户界面,该图形用户界面允许用户从计算机网络浏览器、智能电话、平板电脑或其它计算设备远程地访问、配置、并控制其网络连接恒温器110/112中一个或多个以及与之交互。用户友好的图形用户界面还可以提供有用的工具和接口,有用的工具和接口不一定需要与恒温器110/112实时连接,对于一些实施例,例如包括提供用户界面用于显示历史能源使用量、历史传感器读数和/或居住类型、允许用户了解和/或参加需求响应项目、提供社交网络的论坛(其允许用户相互之间以知识性、竞技性、趣味的方式交互,促进节约能源、提供访问本地信息,包括天气、公共安全信息、邻居日历时间和当地的博客,并更广泛地提供与全面的“能源门户”功能相关的服务和信息)。直观的、用户友好的界面的例子由UI服务器608根据一个或多个优选实施例提供,在共同待审的美国专利申请序列号13/317,423中进一步描述。

在一些实施例中,恒温器访问客户端用户界面显示表示配对至恒温器管理系统中的恒温器管理账户的主封闭空间的房子的图像。恒温器前端UI服务器608可以进一步指示恒温器访问客户端(例如图5中的恒温器访问客户端516),以显示在视觉上表示主封闭空间内的一个或多个恒温器110/112的图像。默认情况下,所述一个或多个恒温器图像中的每一个还可以显示封闭空间内的当前温度测量值。在一些实施例中,用户界面还可以进一步显示额外的房子或多个房子的图像,表示具有也可以配对至恒温器管理账户的额外的恒温器的次封闭空间。额外的房子的图像可以显得更小,失焦或通常在视觉上不再强调与表示主封闭空间的房子图像的关系。次封闭空间外的额外的封闭空间也可以在用户界面中显示,并与用于显示主封闭空间的图像相比较,也应当在视觉上显得不再强调。恒温器访问客户端和用户界面上的进一步信息在共同待审美国专利申请序列号13/317,423中进一步详细描述。

恒温器后端服务器610管理在恒温器管理系统506中由各种的恒温器管理服务器所使用的数据的存储。在一些实施例中,恒温器后端服务器610可以管理由注册服务器602所使用的恒温器注册库数据的存储,或者可以组织并存储用于更新服务器604的新的软件更新和发布。在另一个实施例中,恒温器后端服务器610也可以存储与封闭空间相关的供热和制冷相关数据(即,封闭空间内的HVAC系统处于供热或制冷模式下的日期和时间)、传感器信息、电池电量数据、警报等等,它们通过向恒温器管理系统注册的恒温器被发送至恒温器管理系统506,以及在一些实施例中,提供预先计算的供热和冷却时间表、应用程序和用于在公共网络上下载由恒温器所使用的其它数据。

在一些实施例中,恒温器管理账户服务器612用于创建新的账户并更新恒温器管理系统506上已有的账户。为了在恒温器访问客户端516上访问它们的恒温器并享受恒温器连通性的好处,用户使用他们的恒温器访问客户端516首先需要在恒温器管理账户服务器612上创建恒温器管理账户(“用户账户”)。此外,用户执行在计算机或其它计算机设备上的恒温器访问客户端516以访问恒温器管理账户服务器612。恒温器管理账户服务器612应当为其中恒温器已经(或将要)安装的封闭空间接收至少邮政编码和/或城市和州,使得由气象服务提供的天气信息可以被访问并下载至恒温器,其可以用作它的最佳封闭空间特征和HVAC控制算法的部分。任选地,各种其它的信息,包括用户的联系人信息、房子街道地址等等,也可以被接收。与恒温器管理账户服务器612相关的主要选择包括通过由配对服务器606提供的配对操作将一个或多个恒温器配对至正确的恒温器管理账户。然而,即使账户尚未与恒温器配对,用户可以使用恒温器管理账户来访问本地信息,包括天气、公共安全信息、社区日历事件、本地博客和基于用户的联系人信息、语言环境和其它利益的更多信息。

根据一些实施例,图7A~图7I说明了智能电话上的图形用户界面的各个方面,用于由自编程网络连接恒温器控制的HVAC系统的性能和其它信息。图7A中,智能电话508被示为运行苹果IOS操作系统的iPhone,但是根据其它的实施例,智能电话508可以为运行不同操作系统(例如安卓、塞班、RIM或Windows操作系统)的不同的设备。智能电话508具有大的触敏显示器710,触敏显示器上可以显示各种类型的信息,并且从触敏显示器可以接收各种类型的用户输入。显示区域示出了由电话508的操作系统生成的并且对于电话508的操作系统是标准的顶部信息栏720。上部的横幅722包括信息,例如恒温器制造商的标志、以及用户的恒温器的安装位置的城市名称和当前室外温度。主窗口区730示出具有指定名称的房子符号732,其中安装有恒温器。恒温器符号734也随着指定给恒温器的名称一起显示。对于用于远程设备(例如智能电话508)的用户界面的进一步细节,参见共同待审美国专利申请序列号13/317,423,其在此通过引用并入本文。下部的菜单栏740具有箭头形状,箭头形状指向显示的菜单应用的符号。在图7A示出的例子中,菜单740的箭头形状指向恒温器符号734,因此菜单项,分别是:能源、时间表和设置,属于命名为“起居室(living room)”的恒温器。菜单740还包括开/关切换按钮742,用户可以从其关闭或打开恒温器。当用户从图7A中的菜单740选择“能源(Energy)”菜单选项时,显示器710转换至图7B所示。上部的菜单区750模拟图7A中的菜单740,并在菜单结构中提供用户位置信息以及提供用户在菜单结构中进行导航的方便部件。中央显示区760以日历格式将能源相关信息示给用户。该月的各天示出在月横幅(例如示出的横幅762)下面。用户可以在触摸屏上手势来向上和向下滚动经过不同的天。还示出了叶标志,例如用于2月29日周三的标志768,在这种情况下叶标志被授予给那天。本文提供了授予叶标志的进一步细节。对于每一天,水平条,例如条766,用于图形化地向用户指示在那天用于供热和/或制冷所使用的能源量。在图7B的情况中,供热是唯一使用的HVAC功能。这些条是彩色的以匹配HVAC功能,例如橙色用于供热以及蓝色用于制冷。在有多级供热情况下,可以使用不同的深浅或色调,例如浅橙色和橙色。邻近每一个条还示出的是激活HVAC功能(在该情况下,是供热)期间的小时数,四舍五入至一小时的最近的四分之一。根据一些实施例,每一个条的相对长度表示该HVAC功能是激活的小时数。由于用于HVAC功能的活动的小时数是与通过该功能的能源使用密切地相关,因而小时数被发现是用于显示能源使用信息给恒温器用户的有用的度量。根据一些实施例,这些条的长度被标准化,其中具有在数据集中最大使用量的一天具有全长条。在每一天的最右侧还示出的是责任符号764,其指示对于那一天高于或低于平均能源使用而确定的主要原因。根据一些实施例,移动平均值用于过去七天,以计算能源使用是否高于或低于平均值的目的。根据一些实施例,三个不同的责任符号被使用:天气(例如符号764中示出的)、用户(人手动地进行改变恒温器的设定点或其它设置),以及离开时间(无论是由于自动离开或手动激活离开模式)。

图7C示出图7B的屏幕,用户正在要求有关责任符号762的更多信息。用户可以简单地触摸该责任符号来获取更多信息。图7C中示出的情况中,弹出消息770指示给用户,天气被认为是主要责任导致能源使用低于周平均值。

图7D示出用户询问责任符号的另一个例子。在这种情况下,用户选择了“离开(away)”符号774,其导致消息772来显示。消息772指示自动离开特征是导致那一天低于能源使用平均值的主要责任。

根据一些实施例,当用户请求时,贯穿任何给定的一天的能源使用的进一步细节被示出。当用户触摸能源条符号中的一个能源条符号时,或用于那一天的行的任何位置时,用于那一天的详细的能源使用显示被激活。图7E中,用于2月29日的详细的能源信息780被显示以响应用户在那一天的区域上点击。如果用户在详细的区域780上再次点击,显示将会切换回简单的日常显示(例如图7E中其它天显示的)。详细显示780包括用于整天的时间轴条782,其具有每两个小时的散列标记或符号。主条782用于指示HVAC功能被激活(在这种情况下单级加热)在一天内的次数和每一次的持续时间。水平活动条(诸如条786)的颜色匹配HVAC功能正在被使用,并且该活动条的宽度对应于在一天中该功能活动的时间。在主时间轴条上方是指示符,例如设定温度和任何模式变得活跃,例如离开模式(例如由用户手动地设置或由自动离开自动地设置)。在时间轴的最左上角的小数字指示起始设定点温度(例如从前一天)。圆圈符号(例如符号784)指示一天中的时间和设定点的温度变化。这些符号用于指示预定的设定点和手动改变设定点二者。

根据一些实施例,图7F示出了详细的日常显示的另一个例子。在这种情况中,为2月25日即星期六示出详细的能源信息786。如图7E中示出的情况,用户通过点击这一天的区域选择这一天以显示详细的时间轴条,示出HVAC功能活动以及例如触发离开模式和改变设定点温度的事件。在这种情况中,离开符号788用于指示在大约上午7点恒温器进入离开模式(手动地或自动离开控制下)。

根据一些实施例,图7G示出用于不同建筑的智能电话显示区域710的例子。在这种情况中,该建筑被称为通过房子符号732示出的凯瑟琳的房子(Katherine's House),且包括通过恒温器符号736和恒温器符号738分别示出的称为“楼下(DOWNSTAIRS)”和“楼上(UPSTAIRS)”的两个恒温器。在图7G中示出的时间,楼下恒温器正在供热至66度的设定点温度,同时楼上恒温器是在自动离开模式,如在符号736和738中示出的。下部的菜单栏上的箭头指向楼下恒温器,其控制供热和制冷二者,如由在下部菜单栏的右侧的两个小圆圈示出的。HVAC功能供热是当前活跃的,如由填充左边的圆圈中的橙色所示,同时右边的符号没有被颜色填充(并因此被示为具有白色中心)。如果用户选择在下部的菜单上的“能源(Energy)”选项,则用于楼下恒温器的详细的能源信息被示出,例如图7H中所示。

在图7H中,用于每一天的水平能源使用条的颜色是不同颜色的阴影以指示对于那一天而言活跃的HVAC功能或多个HVAC功能。例如,对于2月26日星期日,如通过条的橙色阴影的颜色所指示的,仅仅使用供热。在2月25日星期六,如通过条的蓝色阴影的颜色所指示的,仅仅使用制冷。在2月24日星期五,供热和制冷二者都使用,它们的相对量通过彩色的阴影示出,在这种情况中少量的制冷和较大量的供热。用户已经为2月28日星期二触发了通过详细的信息790示出的详细的能源视图。在这个特定的HVAC系统中,供热系统包括两级加热,其由在小的能源使用条中橙色阴影的两个不同的阴影来指示。例如,接近大约下午1点时,使用第一级加热,由浅橙色的阴影表示,随后第二级加热,由更深的橙色阴影表示。在这个例子中,在大约下午9点30分以后使用制冷,如由蓝色阴影所指示的。在这一天,使用设定点范围,如由椭圆形符号794所指示的。范围设定点用于通过使用供热和制冷二者以保持温度在一个范围内。根据一些实施例,可以使用其它的颜色和/或图案。例如,对于相对昂贵的和/或能源消耗的供热循环,如热泵二次供热,可以使用条状亮红色或亮红色和黑色条状填充。另外在两级制冷的情况下,可以使用较暗和较亮的蓝色。范围设定点符号的细节还在图7I中示出。范围设定点符号796指示用于制冷的75度和用于供热的68度的范围设定点。图7I还示出用户的责任符号798的例子,其指示对于那一天低于平均能源使用是由于用户设置(例如用户设定低于平均值的设定值)。

根据一些实施例,图8A~图8K说明了平板电脑上的图形用户界面的各个方面,用于由自编程网络连接恒温器控制的HVAC系统的性能和其它信息。图8A中,平板电脑510被示为运行苹果IOS操作系统的iPad,但是根据其它的实施例,平板电脑510可以为运行不同操作系统(例如安卓、黑莓或Windows操作系统)的不同的设备。平板电脑510具有大的触敏显示器810,触敏显示器上可以显示各种类型的信息,并且从触敏显示器可以接收各种类型的用户输入。显示区域示出了顶部信息栏820,顶部信息栏820是由平板电脑510的操作系统生成的并且对于平板电脑510的操作系统是标准的。主窗口区830示出具有指定名称的房子符号832,其中安装有恒温器。恒温器符号834也随着指定给恒温器的名称一起显示。对于用于远程设备(例如平板电脑510)的用户界面的进一步细节,参见共同待审美国专利申请序列号13/317,423,其在此通过引用并入本文。下部的菜单栏850具有箭头形状,箭头形状指向显示的菜单应用的符号。在图8A示出的例子中,菜单850的箭头形状指向恒温器标志834,因此菜单项,分别是:能源、时间表和设置,属于命名为“起居室(LIVING ROOM)”的恒温器。在图8A示出的例子中,从菜单850选择“能源(Energy)”菜单选项,并因此有较低的显示区域860以日历格式提供给用户能源相关信息。该月的各天示出在月横幅(如图示出)下面。用户可以在触摸屏上手势来向上和向下滚动经过不同的天。还示出了叶标志,例如标志868用于2月29日周三,在这种情况下叶标志被授予给那天。本文提供了授予叶标志的进一步细节。对于每一条,水平条,例如条866,用于图形化地向用户指示在那天用于供热和/或制冷所使用的能源量。在图8A的情况中,供热是唯一使用的HVAC功能。这些条是彩色的以匹配HVAC功能,例如橙色用于供热和蓝色用于制冷。在有多级供热情况下,可以使用不同的深浅或色调,例如浅橙色和橙色。阴影指示遵循如图7H中示出的那些。邻近每一个条还示出HVAC功能(在该情况下是供热)被激活的小时数,其四舍五入至小时的最近的四分之一。在每一天的最右侧还示出责任符号864,其指示对于那一天高于或低于平均能源使用而确定的主要原因。根据一些实施例,运行平均值用于过去七天,以为了计算能源使用是否高于或低于平均值的目的。根据一些实施例,三个不同的责任符号被使用:天气(例如符号864中示出的)、用户(人手动地进行改变恒温器的设定点或其它设置)以及离开时间(由于自动离开或手动激活离开模式)。

当用户请求时,贯穿任何给定的一天的能源使用的进一步细节被示出。当用户触摸用于一天的行时,用于那一天的详细的能源使用显示被激活。图8B中,用于2月26日的详细的能源信息880被显示以响应用户在那一天的区域上点击。如果用户在详细的信息880上再次点击,显示将会切换回简单的日常显示。详细显示信息880包括用于整天的主时间轴条882,其具有每两个小时的散列标记或符号。主条882用于指示HVAC功能被激活(在这种情况下单级加热)的在一天内的次数和每一次的持续时间。水平活动条(例如,条886)的颜色匹配HVAC功能正在被使用,并且该活动条的宽度对应于一天中该功能活跃的时间。在主时间轴条上方是指示符,例如设定温度和任何模式变得活跃,例如离开模式(例如由用户手动地设置或由自动离开自动地设置)。在时间轴的最左上角的小数字指示起始设定点温度(例如从前一天)。圆圈符号(例如符号884)指示一天中的时间和设定点的温度变化。这些符号用于指示预定的设定点和手动改变设定点二者。

图8C示出屏幕,其中,用户正在要求有关责任符号864的更多信息。用户可以简单地触摸该责任符号来获取更多信息。图8C中示出的情况中,弹出消息870指示给用户,天气被认为是主要责任导致能源使用低于周平均值。

根据一些实施例,图8D~图8J示出平板电脑510上各种设置的画面。用于恒温器的设置菜单通过从菜单850(如图8A中示出)选择选项“设置”进行访问。图8D示出用于楼下(DOWNSTAIRS)恒温器的设置主菜单。各种设置的类别在区域802中示出,并且用户可以使用根据平板电脑510的特定操作系统的触摸屏手势向上和向下滚动通过列表。在区域802的行中示出的每一个设置选项具有右箭头标记,例如标记804。如果用户选择该标记,则为那一个选项显示一个或多个详细的画面。如果选择标记804,例如,为离开设置显示更多的详细信息,如图8E中所示。在图8E中,菜单区域850指示给用户,“离开”设置的详细视图正在被示出。另外,用户可以通过选择菜单区域850中的“设置”选项容易地导航返回至主设置菜单。详细的离开设置信息区域806包括自动离开特征开关(当前该特征是暂停的,如所指示的)以及用于显示和设置离开温度的较低区域。消息向用户解释有关离开温度设置的信息。在设置滑动器808中,用户可以查看当前离开温度设置以及默认值。另外,用户可以通过触摸并拖动圆圈符号(如在离开供热温度符号812情况中示出的)容易地设置离开温度。

图8F示出设置菜单中“一目了然(at a glance)”信息的进一步细节。区域822示出在所示框中的恒温器的当前名称,该恒温器的当前名称可以由用户改变。示出用于华氏温度或摄氏度的当前设置,其也可由用户改变。还显示当前温度、当前设定点(在恒温器“楼上(UPSTAIRS)”设置为自动离开的这种情况中,因此自动离开温度将被用作设定点)和相对湿度。

图8G示出“学习”信息区域824的进一步细节,其从图8D示出的设置菜单访问。学习信息区域824示出各种学习算法和特征的状态,例如自动调度(可暂停或激活)、自动离开(也可以暂停或激活)、时间-温度、叶子和可用的能源历史。

图8H示出“设备”子菜单的进一步细节,其从图8D示出的设置菜单访问。设备子菜单840包括燃料类型选择、强制通风、布线和安全温度。

图8I示出安全温度的进一步细节,其从图8H示出的设备子菜单访问。该安全温度是只要恒温器被接通时恒温器将总是试图保持的最低温度(用于供热)和最高温度(用于制冷)。安全温度信息区域826包括解释该安全温度设置的消息。在设置滑动器中,用户可以查看当前安全温度设定以及默认值。另外,用户可以通过触摸并拖动圆圈符号(如在制冷安全温度符号828情况中所示)容易地设置安全温度。如图所示,用户还被提醒默认安全温度设置。

图8J示出布线信息的进一步细节,其从图8H示出的设备子菜单访问。布线信息区域824示出恒温器背板的图像844,其指示哪些导线连接至各种导线连接器端子。根据一些实施例,以彩色示出导线,所述彩色匹配用于恒温器布线的常规标准颜色。区域824还示出已安装的HVAC功能。在图8J示出的情况中,HVAC安装的功能是:供热、第二级供热和制冷。

图8J是在纵向取向的平板电脑510的例子。显示的信息与图8A中显示的信息相似。

根据一些实施例,图9A~图9G说明了个人计算机上的图形用户界面的各个方面,用于由自编程网络连接恒温器控制的HVAC系统的性能和其它信息。图9A中,计算机512被示为运行苹果IOS操作系统的iMac台式计算机,但是根据其它的实施例,计算机512可以为不同类型的计算机(例如膝上型电脑)和/或运行不同操作系统(例如Windows操作系统)。计算机512具有显示器902,显示器上可以显示各种类型的信息,包括窗口910。计算机512包括键盘904和定位设备,例如用于指引屏幕上指针908的鼠标906。窗口910包括靠近窗口910的顶部的URL地址区域,以及上部的横幅区域包括信息,例如恒温器制造商的标志、用户的在线账户名称以及用户的恒温器的安装位置的城市名称和当前室外温度。主窗口区930示出具有指定名称的房子符号932,其中安装有恒温器。恒温器符号934也随着指定给恒温器的名称一起显示。对于用于与恒温器关联的计算设备的用户界面的进一步细节,参见共同待审美国专利申请序列号13/317,423,其在此通过引用并入本文。较低的菜单栏740具有箭头形状,箭头形状指向显示的菜单所应用的符号。在图9A示出的例子中,菜单740的箭头形状指向房子符号932,因此菜单项,分别是:设置和支持,属于名为“帕罗奥图(PALOAUTO)”的建筑。菜单740还包括在最右侧的开/关切换按钮,用户可以从开/关切换按钮在“在家(home)”和“离开(away)”之间改变建筑状态。

图9B示出当用户使用定位设备908已经选择恒温器符号934时窗口910的例子。恒温器符号934放大以便与恒温器本身的显示相似或相同,使得其示出更多的信息,例如刻度线上的当前温度。菜单940现在显示了应用于名称为“Hallway”的恒温器的选项。菜单940还示出了两个圆圈符号来指示当前激活的HVAC功能。在这种情况中,右边圆圈942是橙色阴影,其指示供热HVAC功能是当前活跃的。根据一些实施例,用户还可以使用圆形的符号来选择哪一个功能是活跃的或关闭恒温器。

当用户从图9B中的菜单740选择“能源(Energy)”菜单选项时,窗口910转换至图9C所示。上部的菜单区750模拟图9B中的菜单940,并在菜单结构中提供用户位置信息以及提供用户在菜单结构中导航的方便部件。较低的窗口区域960以日历格式向用户示出能源相关信息。该月的各天示出在所示的月横幅下面。用户可以使用指针以及在区域960右侧的滚动控制区域来向上和向下滚动经过不同的天。如果在定位设备(例如滚轮)和其它输入设备(例如跟踪板)上提供滚动控制和/或手势,则其也可以由用户使用以滚动经过针对不同的天的能源数据。在叶标志已经被授予给那一天的情况中,显示叶标志。本文提供了授予叶标志的进一步细节。对于每一天,使用水平条来图形化地向用户指示在那天用于供热和/或制冷所使用的能源量。在图9C的情况中,使用多级加热,并且相同的阴影图案用于指示颜色,如图7H所示。能源显示的其它方面,包括详细的日常信息(例如为3月7日星期三所示出的),与在前述智能电话和平板电脑例子中所示出和描述的那些类似或相同。然而一个区别是,在计算机界面上,信息可以通过用户在某些位置悬停指针而显示。图9D~图9G示出显示这些信息的各种例子。在图9D中,用户正在将指针908悬停(而不是点击)在设定点符号982上。作为响应,信息横幅980被显示,其指示给用户,该符号代表在星期四上午6:30供热至72度的设定点。还指示了设定点怎样来源的—在这种情况中通过Nest学习(即,一种自动学习特征)设置。图9E示出了用户在离开符号984上悬停指针908的例子,其导致信息横幅986显示。在这种情况中,在上午7:58恒温器被手动地(即,通过用户直接地或远程地作用于恒温器)设置为离开模式。图9F示出在设定点符号上悬停指针908的另一个例子。横幅988指示在下午7:23,设定点通过鸟巢牌(Nest)学习设置。图9G示出在离开符号上悬停指针908的另一个例子。在这种情况中,横幅990示出离开模式通过自动离开特征触发。

现在将针对确定高于或低于平均能源使用的主要责任提供进一步描述。这种责任信息可以被使用,例如在能源用户界面屏幕上来显示责任符号,如图7C中的“天气(weather)”符号764、图7D中的“离开(away)”符号774和图7I中的“用户(user)”符号798。通过确定主要责任并将其显示给用户,用户可以了解以为了节约能源和成本做出更好的选择。

根据一些实施例,图10是说明一种用于确定高于和低于平均能源使用的主要责任的方法的流程图。根据这些实施例,能源使用被分配给用户、天气、自动离开或离开,这些在本文中全部称为“代理”。术语“责备”(blame)将是指特定的代理导致能源使用增加的时间。术语赞扬(credit)是指能源使用减少。术语责备和赞扬是相等的且相反的,因此当确定代理对能源使用的整体效果时,对能源使用的影响等于赞扬减去责备。如果这种效果是正的,则该代理负责节约能源,并且如果这种效果是负的,则该代理负责浪费能源。在确定各种代理中的主要责任时,对能源使用具有最大整体影响的代理被认为是主要责任代理。认为,如果使用高于平均值,则这个代理在使用方面将有净负影响,反之亦然。根据一些实施例,图10中示出的方法每个午夜(当地时间)被执行。根据一些实施例,计算以度-秒进行,以便保存温度变化的幅度以及持续时间。根据一些替代实施例,计算可以以度-小时进行,以避免固定点数的溢出。

在步骤1010中,计算用户赞扬和用户责备的值。需要注意的是,在这个例子中,对于当恒温器未处于离开或自动离开模式时,用户才得到赞扬或责备。在供热时,对于每30秒时段,在该时间的目标温度和计划温度进行比较。如果系统处于关闭模式且环境温度低于计划温度时,用户避免低效率的设定点,因此用户被赞扬30秒乘以计划温度和环境温度之间的差。如果目标温度和计划温度是相同的,该差为零,意味着该设备运行计划的设定点,因此用户既不被表扬也不被责备。如果目标温度低于环境温度,且环境温度低于计划温度,则用户节约能源,且用户被表扬30秒乘以环境温度和目标温度之间的差。如果计划温度低于环境温度,且环境温度低于目标温度,则用户浪费能源,因此我们责备用户30秒乘以环境温度和计划温度之间的差。

在制冷时,对于每30秒时段,在该时间的目标温度和计划温度进行比较。如果系统处于关闭模式且计划温度低于环境温度时,则用户避免低效率的设定点,因此用户被表扬30秒乘以环境温度和计划温度之间的差。如果这两个温度是相同的,该差为零,意味着该设备运行计划的设定点,因此用户既不被表扬也不被责备。如果计划温度低于环境温度,且环境温度低于目标温度,则用户节约能源,因此用户被表扬30秒乘以目标温度和环境温度之间的差。如果目标温度低于环境温度,且环境温度低于计划温度,则用户浪费能源,因此用户因30秒乘以环境温度和目标温度之间的差而被责备。

在步骤1012中,计算天气赞扬和天气责备的值。需要注意的是,根据一些实施例,当发现主要责任代理时,这个天气值被平均,使得恒定的天气模式被忽略。对于每30秒的时段(bucket),对于室外温度和计划温度之间的差乘以30秒(时段的尺寸)进行计算。如果天气在温度上处于更加有力的方向(例如,在供热情况中较冷或在制冷情况中较暖),该量责备于天气。如果天气在温度上处于较少有力的方向,该量赞扬天气。

在步骤1014中,计算自动离开赞扬的值。需要注意的是,根据这些实施例,在任何情况下都不责备离开或自动离开;它们仅仅可以被赞扬。在供热模式中,如果供热离开温度低于环境温度,且环境温度低于计划目标温度,则离开被表扬30秒乘以目标温度和环境温度之间的差。在制冷模式中,如果制冷离开温度高于环境温度,且环境温度大于计划目标温度,则离开被赞扬30秒乘以环境温度和目标温度之间的差。

在步骤1016中,计算离开赞扬的值,其与上述描述的用于步骤1014的相同,除了手动启动的离开次数。

在步骤1018中,使用步骤1020、1022和1024的方法计算主要责任代理。在步骤1020中,通过总计过去一周中的天的总的活动(供热、制冷、辅助)(该过去一周中的天具有足够的数据(例如漏掉不超过2个小时)),并将其除以有效天数,计算秒数高于/低于平均值。然后高于周平均值的秒数等于今天总的活动减去平均活动。在步骤1022中,如果今天是高于平均值,则责备具有最大值(责备-赞扬)的代理。如果所有的值都小于零,则设定责备未知。在步骤1024中,如果今天低于平均值,则赞扬具有最大值(赞扬-责备)的代理。如果所有的值都小于零,则设定赞扬未知。需要注意的是,根据一些实施例,当至少18小时的天气数据是可得到的时,天气才可以被责备/赞扬。在步骤1030中,通过一事件记录能源总结,该事件包括哪一个代理(用户、天气、自动离开或手动离开)被认为对高于或低于平均能源使用负主要责任。

根据一些实施例,图11A~图11B示出自动生成并发送给用户的电子邮件以报告能源性能相关的信息的例子。图11A和图11B分别示出示例性邮件1110的上部和下部。根据一些实施例,月能源概括电子邮件发送至用户以告知用户各种能源相关的数据,并且还提供给用户建议,以便用户能够在提高舒适性和/或节约能源和成本的方面做出更好的选择。

电子邮件1110的区域1120包括制造商的标志、以及用户的账户名称、位置和该信息所属的日期。区域1130将该月的能源使用概要提供给用户。这个计算指示,这个月相对上个月多使用35%的能源。包括条符号,用于当月相对上个月的制冷和供热。这些条将能源的图形表示提供给用户,包括不同的阴影用于相对前一个月的过度(或低于)用户。

区域1140指示叶子授予信息。在这种情况中,总体上(从初始安装)用户已经获得了总数46个叶子。一条消息指示用户如何与平均用户相比较。日历图形1142示出获得叶子的这些天(通过阴影)。在这种情况中,当月中在12天中获得了叶子。叶子算法的细节在图12~图15中给出。根据一些实施例,如果对于一天中的至少一个小时显示(或将显示)叶子,则叶子被授予给这一天。

区域1150示出与自动离开和手动离开特征相关的信息。日历符号1152和日历符号1154示出自动离开和/或手动离开被触发的这些天。在区域1150中还提供关于使用的自动离开的小时数的信息、用于节约能源和成本的建议以及关于其他用户的平均值的信息。

区域1160示出恒温器被切换到“关闭”期间的信息,并包括月历符号1162。区域1170提供帮助用户节约更多能源的小贴士。该小贴士可以为特定用户定制。例如,如果用户已经设置用于供热的离开温度高于默认62度,可以显示建议改变的一条消息。还提供链接以进一步帮助用户方便地做出建议的设置改变。

区域1180提供进一步的帮助(例如如何使用某些特征并得到进一步信息)以及用于进一步信息和帮助的链接。

根据一些实施例,图12~图15是示出确定何时将显示叶子的步骤的流程图。图12示出用于当供热活跃时显示叶子的算法。在步骤1210中,当设定点低于62℉时,叶子总是显示。在步骤1212中,如果设定点被手动改变至比当前计划设定点低2℉或更多,则叶子被显示,除了以下之外:根据步骤1214,如果设定点高于72℉,则不显示叶子。

图13示出用于制冷活跃时显示叶子的算法。在步骤1310中,如果设定点高于84℉,叶子总是被显示。在步骤1312中,如果设定点被手动设置至高出当前计划设定点2℉或更多时,叶子被显示,除了以下之外:根据步骤1314,如果设定点低于74℉,不显示叶子。为了为这一天获得叶子的目的,例如该叶子被用在本文示出的能源显示和能源电子邮件中,则当针对那一天中的至少一个小时显示叶子时,该叶子被授予。

图14和图15示出用于选择离开温度时显示叶子的算法。图14示出了一般算法。在步骤1410中,通过由用于每一个设定点的小时数标准化设定点,计算平均计划温度。在步骤1412中,在供热情况中,如果离开温度设置至比平均计划温度低2℉或更多,则显示叶子。相同算法可以用于制冷,如果离开温度高出平均计划温度2℉或更多,则显示叶子。此外,根据一些实施例,用于显示和/或不显示叶子的绝对阈值(如图12和13中)还可以在离开温度算法中被实施。如果没有计划表,例如如果恒温器刚刚被安装,则使用图15中的算法。在步骤1510中,如果供热时离开温度设置在62℉或低于62℉,则叶子被显示。在步骤1512中,如果制冷时离开温度设置在82℉或高于82℉,则叶子被显示。

根据一些实施例,图16是恒温器上一系列的显示屏幕,其中叶子图标缓慢地渐显或淡出。恒温器110被示出为:在屏幕1610中具有在70度的当前设定点和70度的当前环境温度。用户开始逆时针旋转外环以降低设定点。在屏幕1612中,用户已经降低设定点至69度。需要注意的是,叶子还未显示。在屏幕1614中,用户已经降低设定点至68度并根据所述算法(如图12中所示),叶子符号1630显示。然而,根据这些实施例,该叶子首先以淡淡的颜色(即以便与背景颜色混合)显示。在屏幕1618中,用户继续转动调低设定点,现在至67度。此时叶子符号1630以更明亮的、更大对比度的颜色(如绿色)显示。最后,如果用户继续转动设置设定点至更低温度(以便节约更多的能源),在屏幕1620的情况中,该设定点现在是66度,叶子符号1630以全饱和的对比色显示。以此方式,用户被给予有用的且直观的反馈信息,即,供热设定点温度的进一步降低提供了更大的能源节约。

恒温器管理服务器520如前所述具有与和该服务器配对的恒温器101通信的能力,且尤其是具有将信息(如数据、固件、指令等等)发送至恒温器101、从恒温器101接收信息(如数据、固件、指令等等)、并处理该信息的能力。这种信息的一个示例性的非限制性的例子涉及恒温器和由它控制的HVAC系统的功能(例如,计划温度、离开状态和温度、手动温度改变,和特定模式(例如供热模式、关闭模式、制冷模式)或者特定状态(自动离开或手动离开)中的时间量))。根据一些实施例,图17A~图17D说明标准设定点温度计划表相对于实际运行设定点曲线图的时间曲线图,对应于自动离开/自动到达算法的示例性操作。为了本讨论的目的,自动到达简单地把恒温器返回至它的计划表模式,其中该设定点温度返回至计划温度,由用户手动更改除外。为了清楚地公开的目的,图17A示出了对于用户(可能是退休人员、或停留在家的父亲或母亲和年幼的儿童)相对简单的用于特定的工作日(例如,星期二)的示例性恒温器温度计划表1702。计划表1702由以下组成:在上午7:00和下午9:00之间的简单的计划表(例如,当居住者通常是醒着的),对于该简单的计划表,期望的和计划的温度是76度;以及在下午9:00和上午7:00之间(例如,当居住者可能通常是睡着的)的计划表,对于该计划表,期望的和计划的温度是66度。为了即时描述的目的,计划表1702可以被称为“标准的”设定点计划表或仅仅计划表。计划表是一天中不同时间的一个或多个设定点温度(例如,在上午7点为76度,以及在下午9点为66度)的集合,当达到计划的时间时,恒温器将控制HVAC系统以实现该计划设定点温度。恒温器将控制HVAC系统以实现该计划温度,除非超过,例如通过用户手动设置温度设定点,该温度将会被保持直到指示不同的计划温度的下个计划时间,并且恒温器将会返回至控制HVAC系统以实现该计划表。标准设定点计划表1702已经可以通过在一个或多个共同转让并入的申请中之前描述的各种的方法中的任一方法或通过一些其他的方法被建立。

依照优选的自动离开算法,使用恒温器111的多传感器技术(例如恒温器110内的被动红外接近传感器),连续且自动地感测封闭空间居住状态。根据一些实施例,占位传感器以相当高的频率(例如1Hz~2Hz)进行测量。随后这些测量值被收集至时间的“时段”内,例如5分钟。对于每一个“时段”,使用简单的算法用来确定是否检测到居住。例如,如果在一时段中多于两个传感器读数示出检测到的移动,则该5分钟“时段”被视为“检测到居住”。因此,每个“时段”被分为两种状态之一:“检测到居住”或“没有检测到居住”。根据一些实施例,为了使该时段被归类为“检测到居住”,一定的阈值百分比的读数必须指示运动。例如,可以发现,即使对于相对差的布置,当调节的封闭空间被居住时,大约10%的读数指示运动。在这个例子中,5%的阈值可以用于归类该时段为“检测到居住”。

根据一些实施例,至少部分地基于这些时段的当前感测到的状态,恒温器可以将封闭空间或调节的空间分类为几种状态中的任一状态,例如而不是以限制的方式,“在家”(也称为“居住的”)和“离开”(自动或手动)。根据一些优选的实施例,当对于预定的最小间隔,当前感测到的居住已经是“没有检测到居住”时,本文称为离开状态置信窗口(away-state confidence window,ASCW),则该自动离开特征触发封闭空间的状态从“在家”到离开(尤其是自动离开)的改变。手动离开是当用户手动设置恒温器进入离开状态,被称为手动离开。作为状态改变至离开(自动或手动)的结果,实际的运行设定点温度被改变至预定的节能离开状态温度(away-state temperature,AST),不管通过标准的恒温器计划表所指示的设定点温度如何,其中AST优选远低于任何计划温度设定点。

自动离开和手动离开特征的目的是为了当没有居住者存在以实际地体验或享受计划表1702的舒适性设置时,避免不必要的供热或制冷,从而降低HVAC使用并节约能源。以举例的方式,该AST可以被设置为用于冬季期间(或者将需要供热的室外温度)的62度和用于夏季期间(或者将需要制冷的室外温度)的84度的默认预定值。可选地,用于供热和制冷的AST温度可以是用户能够设置的。

该离开状态置信窗口(ASCW)对应于感测到非居住的时间间隔,在其之后,可以以合理度的统计准确性做出合理可靠的运行假设,即在封闭空间内的确没有居住者。对于大多数典型的封闭空间,已经发现,在90分钟~180分钟范围内的预定时间段是用于ASCW的合适时间段,以适应常见情况,例如安静读书、走出门至角落的信箱、短暂休息等,其中没有感测到运动或占位传感器感测的相关指示。在前述一个或多个共同转让专利申请(包括PCT/US11/61457)中提供了离开状态特征(例如而不以限制的方式,建立ASCW,并调节ASCW)的进一步细节。

在图17B~图17D的例子中,提供了在供热方案情况下自动离开操作和手动离开操作的示例性描述,其中有120分钟的ASCW和62度的AST,应当理解的是,鉴于本说明书,用于制冷和其它的ASCW/AST值选择的对应例子对于本领域技术人员将是显而易见的且在本文所描述的实施例的范围内。为了说明的目的,在图17B中示出计划的设定点曲线图1702和实际的运行设定点曲线图1704以及感测活动时间轴(As),该感测活动时间轴示出小的黑色椭圆标记,该小的黑色椭圆标记对应于感测到的活动(即感测到居住的时间的“时段”),当前截至上午11:00。值得注意的是,截至上午11:00,在上午10:00之前,有显著的用户活动被感测到,之后是无活动的1小时间隔1706(或归类为“没有检测到居住”的时段)。由于图17B中无活动间隔仅仅大约1小时,其小于该ASCW,自动离开特征尚未触发状态至离开状态的改变。

在图17C中示出计划的设定点曲线图和直至下午4:00的实际的设定点曲线图。如图17C中说明的,在不活动的120分钟(从上一个“检测到居住”时段以来120分钟)之后的下午12:00,自动触发离开状态(自动离开),实际的运行设定点1704从计划的设定点1702改变至62度的AST温度。直至下午4:00,在触发自动离开之后尚未有活动被感测到,因此自动离开依然有效,且恒温器110将控制HVAC系统维持ASW。

参照图17D,在图17A~图17C中示出且关于图17A~图17C描述的例子之后,示出了直至上午12:00的计划的和实际的设定点曲线图。如图17中说明的,在大约下午5点,对于简短的时间间隔1708开始感测到居住活动,其触发将封闭空间“自动返回”或“自动到达”切换至“在家”状态,此时,运行的设定点1704返回至标准的设定点计划表1702。可替选地,如果手动离开已经被设置,居住活动将触发将恒温器从离开状态“自动返回”或“自动到达”切换至在家或标准状态,将运行设定点404返回至标准的或计划的设定点1702。

对于一些实施例,离开状态将设定点温度维持在能源节约AST温度,直到下面的非限制性的情况之一发生:(i)接收来自用户的手动输入,其将状态改变返回至在家状态,将控制返回到计划温度设定点;(ii)接收来自用户的手动输入,其改变设定点温度,直到计划温度设定点的下一时间之前,该温度将控制,或(iii)基于感测到的居住活动,触发“自动到达”运行模式,其将状态改变返回至在家状态,从而将控制返回到计划的温度。对于本领域技术人员来说其它情况(例如假期离开和睡眠状态)将是显而易见的,在前述一个或多个共同转让申请(包括PCT/US11/61457)中更彻底地描述许多这种情况。

图18~图37描述了用于确定贡献者或代理何时引起HVAC系统的使用或未使用以及用于报告这种使用或未使用的替选实施例。应当理解的是,有可能有许多贡献者引起HVAC系统的激活或不激活,以举例而非限制的方式,所述许多贡献者可以包括离开(自动或手动)、天气、手动设置温度设定点、时间段之间的温度计划表的差异、比较的时间段之间的时间差异(例如月中的不同天)、以及(在到达设定点温度之前关闭空调压缩机)。

图18描述了用于确定并报告贡献者或代理何时引起HVAC系统的使用/未使用的替选方法1800,或替代地论述了HVAC系统的估计的使用/未使用何时被归因于贡献者或代理。在步骤1802中,获得本发明方法的实施例中使用的度量的数据。这可以通过恒温器本身的处理器进行,但更优选地通过恒温器管理服务器520或替代地与恒温器通信的任何其它的处理设备或它们的任意组合进行。例如但不以限制的方式,度量的数据可以包括天气(例如外部温度)、离开状态的时间(t离开.手动.供热,t离开.手动.制冷或t离开.自动.供热,t离开.自动.制冷)、供热/制冷/关闭模式的时间(t供热,t制冷,t关闭)、手动设置温度的时间(t手动.供热,t手动.制冷)、HVAC系统实际运行的时间、或使用时间或运行时间(t使用.供热,t使用.制冷)以及活动的时间量。应当理解的是,下标“供热(heat)”和“制冷(cool)”分别地指系统正在供热或制冷的时候。在步骤1804中,为每个贡献者建立模型。可替选地,该步骤还可以被认为是,表征每一个贡献者或代理在为合格性确定步骤1806做准备。对于优选实施例,模型或表征在数学上表示该贡献者使用优选作为时间的函数的一个或多个度量。以下更充分地说明这些模型或表征的实施例。在步骤1806中,确定用于引起HVAC系统激活或不激活的每一个贡献者的合格性。可替选地论述,步骤1806确定HVAC系统的使用/未使用(替选地,激活/未激活)是否可以归因于特定的贡献者或代理。步骤1806考虑来自步骤1804的模型或表征,如果该模型或表征并没有理解,贡献者实际或很可能引起HVAC系统的激活/未激活,则该特定的贡献者从作为原因或潜在原因的考虑中淘汰。例如,且如下文进一步说明的,如果在一时间段中的平均外部温度升高且在供热模式的HVAC系统的使用上升,则天气很有可能不是引起HVAC激活的贡献者,但如果制冷使用上升,同时在制冷模式,这种情况中,则天气可能是贡献者且将会被认为对于引起在该时间段中的能源使用的改变是合格的。步骤1808计算或量化归因于每一个合格的贡献者的HVAC使用/未使用的估计量。在示例性实施例中且如下文进一步说明的,步骤1808使用经验决定的供热斜率或制冷斜率来数学化地量化归因于一些合格的贡献者的HVAC系统的使用或未使用的量,优选地以时间单位。在以下上下文中描述本文描述的这些实施例:在一个历月与第二历月时间段之间比较实际的HVAC使用时间或运行时间,并且在该时间段中对于任何特定的合格的贡献者估计HVAC使用/未使用时间,其中时间是能源使用的指示或度量。本领域技术人员将理解,其它时间段和其它的能源度量和估计的能源使用可以在本公开和要求保护的发明的范围之内被采用。

应当理解的是,度量数据由于各种原因在任何给定的天或时间可能是不可获得的。例如但不以限制的方式,用户可能已经最近安装恒温器110,数据被删除或其它方式被损坏或由于通过本领域技术人员已知和理解的任何众多原因。本领域技术人员将理解,她可以通过使用来自邻近时间的数据插入或逼近丢失的数据,并且,如果有必要的话,数学地处理数据(例如平均邻近数据)。插入邻近数据以填补丢失的数据常常比分析丢失数据好的多;在一些情况中,不可能或至少极其困难地执行不包括丢失数据的分析。

图19A~图19D描述离开状态贡献者(图19C~19D)与手动地改变至计划温度设定点贡献者(图19A~19B)的模型或表征的实施例。图19A示出计划温度设定点T1 1902,在时间t1处用户手动地降低计划设定点至温度T2 1904,恒温器维持温度T2直到时间t2,在时间t2处温度改变至下一个计划温度T3,计划温度T3与之前的计划温度T1可以相同或可以不相同。阴影线的截面积1903使用方程式1908计算,代表在t1到t2的时间段内将温度设定点维持在T1所需要的“努力”量。方程式1908与作为结果的阴影线的截面积1904是由于将设定点手动降低至低于计划温度的能源节约量的模型或表征。该描述是用于恒温器处于供热模式的时候,如果处于制冷模式,方程式1908与作为结果的阴影线的截面积1903将建模或表征由于将设定点温度降低至低于计划设定点而在t1到t2内来维持新的设定点温度需要的努力量。应当理解的是,并在下文进一步所描述的,手动改变至设定点可以被视为由于用户偏爱性可偶尔发生的局部改变,但不会相当于手动变更计划表,如果这种手动设定点调节是频繁的,它可能使具有可编程学习恒温器的目的完全失败。本领域技术人员将理解,面积1903将有用于能源节约(在供热模式)的负号,且进一步,关于什么代表相对于使用的节约,符号法则是一个选择的问题。对于本文描述的实施例,正面积将代表节约或未使用,且负面积将代表使用。因此,在供热模式中,负号出现在方程式1908中来使面积1903为正数(按照惯例),代表在t1到t2中,潜在的能源节约或HVAC未使用。图19B简单地是图19A所示的相反情况,其中,用户将温度从在1910处初始的计划温度T1升高温度至在1912处T2,且取决于是否在供热或制冷模式,线纹区域1915代表能源使用或节约(未使用)。在供热模式,图19B的情况将导致来自计划表的净能源使用(按照惯例,负面积),并且在制冷模式来自计划表的净能源节约(按照惯例,正面积)。

图19C~图19D示出用于离开状态的类似模型或表征。参照图19C,离开状态(自动或手动)在t1被激活且恒温器控制HVAC系统以降低计划温度T1(1916)至离开状态温度T2(1918),直到时间t2,此时恒温器控制HVAC系统以升高温度至新的计划设定点或用户手动输入设定点温度T2(1920)。像之前图19A~19B的情况,图19C~图19D的阴影线的截面积(分别为1923和1924),通过方程式1922计算,代表离开状态贡献者或代理的模型或表征。应当理解的是,离开状态几乎永远不会导致净能源使用,但是,如果用户设置AST至从节约能源角度看不会有多大意义的值,则是可能的。

图20描述作为能源使用或未使用的潜在原因的改变计划表贡献者和频繁手动-改变设定点贡献者的模型或表征的实施例。用户手动改变该计划点可能频繁发生,其中用户本质上重写了该计划表,因此使得该计划表基本上是多余的。为了这个讨论的目的,计划表2002(实线)与计划表2004(点划线)之间的差异反映了该时间段(在该情况下,为24小时)中的永久的计划表改变,或者这可以是用于历月的日计划表。由于在计划表之间的设定点温度上的这种改变,如果有的话,将会有能源使用结果。为了这个讨论的目的,实线2002将被认为是用于日历月的时间段中的每个日历天的计划表,并且点划线2004将被认为是用于随后的日历计划表的每个日历天的计划表,该随后的日历计划表在日历月中具有相同天数。这意味着用户已经对于月之间的日计划表,改变了恒温器上或与恒温器通信的设备上的计划表。

再次参照图20,对于两条曲线,在上午5点计划温度2006是相同的,并且因此对于实现和保持该温度而言HVAC所需的努力,在这两个计划表之间没有差异。在上午6点,对于计划表2004的计划温度2007依然相同,同时对于计划表2002的计划温度升高至温度2008(例如,为家人起床做准备,计划温度升高),直到上午7点。这导致由HVAC维持该新的计划温度所需要的努力增加,这通过阴影区域2009代表。在上午7点,对于计划表2004,计划温度2007依然相同,同时对于计划表2002的计划温度升高至温度2010直到上午10点(例如,如在早上家庭准备并最后在上午10点离开家,计划温度升高)。与计划表2004相比,与用于该小时的本身相比,对于计划表2012的温度升高导致该计划温度需要的努力(之前关于图18讨论的),而将依然需要HVAC努力,其通过断面线区域2011代表。在上午10点,温度对于计划表2004(在温度2007处)依然相同,同时温度对于计划表2002下降至温度2012(例如因为家人已经离开了房间,因此温度是下降的)。对于计划温度2012的温度下降导致需要较少的HVAC努力来维持计划表2002,但是,相较于计划表2004,将依然需要HVAC努力,通过阴影区域2013代表。在下午4点,计划表2002和计划表2004都升高温度至相同的温度2014,在下午11点之前,该温度保持相同,在下午11点时,两个计划表下降至温度2016。因此,每个计划表从下午4点直到上午6点将有相同的HVAC努力需求来维持计划温度。应当理解的是,区域2009、2011和2013的总和将代表与对于计划表2002所需的HVAC努力相比,计划表2004所需的减少的HVAC努力,或者相反地,计划表2002所需要的超过计划表2004的HVAC努力。

如上所描述的,在温度计划表下的区域表示为了在特定的时间段(在该情况下,是24小时)中保持该温度计划表所需的努力量,或者在给定的24小时的时间段内的子时间段中保持该温度计划表所需的努力量(如通过不同阴影的区域所示出的)。在一些实施例中,这些区域可以相关于某任意选择的参考温度,在相关的时间中计算,该时间段对于每个计划表是相同的。如下文进一步说明的,这允许比较这些区域(即努力),并且最后在该时间段中的HVAC使用或未使用,这是因为参考温度将简单地从该比较中减去。图20中的阴影区域还代表这样一个比较。在图20中,相对于某任意选择的参考温度(例如,0度),计划表2002和计划表2004的这些区域之差仅是区域2009、2011和2013的总和。

一旦期望的贡献者被建模或表征,用于确定归因于任何特定的贡献者的HVAC使用或未使用的估计量的优选实施例首先确定贡献者对于引起这种估计的HVAC使用或未使用是否是合格的。贡献者是否合格在许多情况中不是绝对的,而是,在给定的真实的情况或推断的情况下,确定任何特定的贡献者是否很可能对HVAC能源使用或未使用做出贡献,或者很可能没有做出这样的贡献。图21到图26描述用于确定贡献者或代理对于引起提供的能源使用或未使用是否合格的优选实施方式。

图21说明用于确定天气(例如室外温度或湿度的改变)对于在相关时间段(例如,一个日历月或两个日历月)中引起HVAC使用或未使用是否合格的实施例2100。在步骤2102中,为月1和月2收集外部温度数据,优选地通过恒温器管理服务器520访问用于配对的恒温器110的邮政编码的在线天气数据。在步骤2102中,通过恒温器110、恒温器管理服务器520或与该恒温器通信的其它处理器,还为月1和月2(或其它选择的时间段)收集用于供热模式和制冷模式的HVAC使用时间。实际的使用时间代表在相关时间段内HVAC系统实际地运行的时间量,无论其是正在供热还是制冷(即在供热模式或制冷模式中)。参考回到段0,这里讨论本领域技术人员将怎样填充丢失数据用于分析。在步骤2104A和步骤2104B中,确定从月1到月2或者在选择的时间段中,平均室外温度是否升高或降低。如果对于步骤2104A或步骤2104B答案为是,则分别地,在步骤2106A(即对于2104A为是)中确定实际的HVAC使用(供热)是否减小或实际的HVAC使用(制冷)是否增加,或者在步骤2106B(即对于2104B为是)中确定实际的HVAC使用是否增加或实际的HVAC使用(制冷)是否减少。如果对于步骤2106A或2106B答案为是,如果适用的话,则天气将被认为对于引起这种使用/未使用是合格的。如果对于步骤2106A或2106B答案为否,如果适用的话,则天气将被认为是不合格的且被认为对于HVAC使用/未使用没有做出贡献。如果平均温度没有改变(对于步骤2104A和2104B答案为否),则天气也是不合格的。天气合格性确定背后的基本原理是,如果平均室外温度从月1到月2升高,且HVAC供热使用减少或HVAC制冷使用增加,则可以得出,天气可以合格地作为这种已知的减少或增加的原因。相反地,如果平均室外温度从月1到月2降低,且HVAC供热使用增加或HVAC制冷使用减少,则可以得出,天气可以合格地作为已知的增加或减少的原因。

图22说明用于确定离开状态(例如自动离开或手动离开)对于在相关时间段内引起HVAC使用或未使用(离开状态的典型结果)是否合格的实施例2200。步骤2202对于供热模式和制冷模式,对离开状态的一时间段中保持设定点温度所需的HVAC努力(图19的区域1923)求和。使用图19的方程式1922计算代表相关努力的相关区域。方程式的左侧取对于月2的和对于月1的代表减少的努力的区域差(参照图19所讨论的)。应当理解的是,区域代表对于月2的所有区域1922(图19)的总和,并且代表对于月2的所有区域1922(图19)的总和,在这二者之间的差表征在供热模式时由于离开状态(无论其是手动离开还是自动离开),月2中HVAC所需要的努力与月1相比的差。当恒温器处于制冷模式时,类似的区域用于表征对于月2相较于月1的HVAC努力。在步骤2202中,如果对于离开状态(手动或自动)的区域差的总和大于零,则步骤2204确定在月2和月1之间供热模式的时间差和制冷模式的时间差的总和是否是大于零。如果步骤2202(所要求的HVAC努力降低)和2204(离开模式的时间增加)都为真,则离开状态(自动或手动)贡献者是合格者,引起将HVAC系统的未使用归因于相较于月1HVAC系统在月2的总的实际使用。将要注意的是,步骤2202甚至不考虑离开状态是否将导致净能源使用,因为这种情况将是异常的。如后面将要讨论的,来自手动离开的节约区别于来自自动离开的节约,尽管这种区别是选择的问题。

图23说明用于相比于在时间段之间的实际使用差来确定改变-计划贡献者是否对于在第二个时间段中引起HVAC使用或未使用是合格者的实施例2300。A计划-0代表计划表-温度相对于时间的曲线之下的区域,其中差T2-T1中的第一温度(T1)是参考温度且方便地选择为零,如本文参考图20所描述的。因此,区域差将在月2和月1之间对于各自的计划表提供区域差或需要的HVAC努力差。如果该差不等于零(步骤2302),且在每个月至少有3天处于供热模式或制冷模式时(步骤2304),则改变-计划贡献者将是合格者,作为引起相比于月1,将HVAC系统的使用或未使用归因于在月2中HVAC系统的总的实际使用或未使用的原因,否则计划-贡献者是不合格的。在任一月中仅仅需要处于供热模式或制冷模式的3天的基本原理表示,人们实际上正在使用该系统(例如,在家中,而不是在假期),在计划表中存在差异,导致计划表引起使用或未使用的合格性。

图24说明了,相比于时间段之间的实际的HVAC使用差,用于确定关闭模改变贡献者对于引起第二时间段中的HVAC使用或未使用是否合格的实施例2400。这个实施例中,合格性要求2402简单地确定从月2到月1的关闭模式的时间差是否大于零。如果步骤2402是真,这意味着在第二时间段中更多时间花费在关闭模式,且因此该关闭模式将是合格者,并很可能引起HVAC系统的未使用。如果该差等于或小于零,则关闭模式是不合格的。

图25说明了相比于第一时间段和第二时间段之间的实际使用差,用于确定在达到设定点温度之前关闭空调压缩机(其实施例对于本申请的受让人称为)对于在第二时间段期间引起HVAC系统未使用是否合格的实施例2500。空调机组基于以下原理工作:吹未经调节的或暖的空气经过冷却盘管,在冷却盘管处,冷却盘管与未经调节的空气之间发生热交换,热从空气流动到盘管。压缩机压缩盘管内的气体以便热交换可以发生。热交换至少部分地通过盘管上的冷凝蒸发发生。的概念是,恒温器将在环境温度达到设定点温度之前关闭压缩机,但将继续吹未经调节的空气经过盘管,盘管在它们上依然具有冷凝。甚至在关闭压缩机之后,剩余的冷凝继续蒸发将调节空气。被进一步详细描述在2012年3月29日提交的共同转让美国专利申请序列号13/434,573中,其在此通过引用并入本文。参照步骤2502,如果在第二时间段(月2)期间是活跃的,且恒温器在第二时间段期间处于制冷模式(t制冷>0),则相较于在该两个时间段之间实际HVAC使用差,对于引起第二时间段的HVAC未使用是合格的。

图26说明了相比于时间段之间的实际使用差,用于确定时间阶段(例如日历)对于引起第二时间段中的HVAC系统的使用或未使用是否合格的实施例2600。通过简单地计算是否在该时间段(例如,1月到2月)之间有任何差异确定合格性,并且如果是,则该日历是合格者,以及如果否,则该日历是不合格者。

本领域技术人员将会理解的是,有其它的贡献者可能导致更多或更少的使用HVAC系统以得到封闭空间内的想要的舒适水平。上面提供的那些仅仅是示例性的并且以举例但不以限制的方式提供。根据确定贡献者或代理是否是作为引起使用或未使用的合格者,依照本发明的实施例相比于时间段期间的实际的HVAC使用,确定或量化归因于该贡献者或代理的HVAC使用或未使用的估计量。在优选实施例中,运行时间和估计运行时间被用作能源或估计能源使用的替代,但是其他测量单位可以使用,例如但不限于卡路里、焦耳或瓦特。此外,在这个优选实施例中,在两个时间段(优选地,两个历月)中进行估计运行时间和实际运行时间的比较。

为了转化贡献者的模型至归因于贡献者或代理的估计能源使用或未使用,优选实施例使用经验决定因素,本文中被称为供热斜率和制冷斜率。供热斜率的描述将被提供,其中本领域技术人员将容易地理解怎样从供热斜率的描述决定制冷斜率。一般而言,供热斜率是随时间从封闭空间泄露多少热的测量。参照图27A~27B,曲线2702代表设定点室内温度的曲线(例如计划表),用于一个具有由可编程恒温器110控制的HVAC的封闭空间。尽管曲线2702不是环境室内温度的曲线,在描述的24小时时间段中,其是该封闭空间的环境温度(至少在该恒温器使用的温度传感器周围)的合理近似值。为了这个讨论的目的,将假定曲线2702是设定点温度的计划表,其将在许多个月的每天保持不变。应当理解的是,为了说明目的做出这个假定并且不限于如何经验决定供热斜率。曲线2704’代表在月的第一天的24小时时间段的室外温度(图27A),该信息可以通过访问因特网上用于与恒温器管理服务器520配对的恒温器的邮政编码的天气信息而得到,如上文所描述的。曲线2704”(图27B)代表第二天的24小时时间段的室外温度,其中未提供用于其他天的曲线。需要注意的是,没有为该月的每天提供室外温度曲线,且有不同的高低温度的相同的曲线被提供以便于说明和准备。

应当理解的是,将需要HVAC努力的一定量或替代地描述的HVAC实际运行时间或使用时间的量,以将该封闭空间维持在所需要的或计划的环境室内温度(2702),且努力或运行时间的量将取决于室外温度和所需要的设定点温度之间差的幅度。室外温度和计划的室内温度之间差值越大,将要求越大的努力或更多的HVAC系统运行时间以实现计划的室内温度,通过用于描述的两个不同天的区域2706’和2706”代表。已经经验决定的是,绘制在24小时时间段内所需要的实际HVAC运行时间以实现要求的设定点温度计划表,作为在设定点计划表与室外温度曲线之间随着时间的区域的函数(参照区域2706’和2706”),通过数据的线性拟合导致数据分布被充分地接近。

图28描述假想的数据点2802,每个点代表对于24小时时间段的运行时间(纵轴)以及随着时间室内与室外温度之间的区域或维持所要求的设定点温度所需要的努力(横轴)。该经验数据拟合至线性曲线2804,线性曲线2804具有斜率,在本文中被称为供热斜率。该供热斜率(或制冷斜率)的单位最好描述为)。现在应当理解的是,所需要的或节约的具有单位(度.·时间(deg.·time))的估计的努力乘以该供热斜率,将产生估计的HVAC使用时间以满足该估计的努力。该供热斜率可以通常被认为是封闭空间如何‘泄露’热的测量。因为它是经验决定的且很可能随着时间改变,因而优选随着时间获得新的数据点并更新该供热斜率决定,如本领域技术人员所理解的。如果恒温器已经最近被安装且不充足的数据是可利用的以计算用于该封闭空间的供热斜率,许多不同封闭空间的平均供热斜率的分析已经被计算为且用于制冷斜率,其可以用作默认值,直到足够的数据存在以计算供热斜率和制冷斜率。

参照图29~图35,供热斜率(和制冷斜率)结合所有或部分的合格的贡献者的模型使用,来为每个合格的贡献者量化估计的HVAC使用或估计的HVAC运行时间(图18的步骤1808),该合格的贡献者归因于实际HVAC使用或使用的减少(在本文中也被称为未使用)。该贡献者的模型导致适应或完成对于该系统的一些改变(例如离开状态被激活,用户手动调节温度设定点,外部温度波动等)所需要的或节约的近似的努力。

图29描述量化由于天气(如果合格的话)的估计的HVAC使用或未使用时间的优选实施例。在这个优选实施例中,来自A、B和C的估计的使用被总计在一起以决定对于两个月中的第二个月归因于天气的HVAC系统的估计的使用或未使用。应当理解的是,任何方便的时间段可以被选择用于分析。对于步骤2902(图29),在月1和月2之间平均室外温度的差乘以对于月1或月2的恒温器处于供热模式的时间量的最小值。如果该恒温器在月2处于供热模式500小时且在月1处于供热模式450小时,该温度差将乘以450小时,其乘积是对于这些450小时,导致这些月之间的温度差所需要的估计的努力。然后这个估计的努力乘以供热斜率以得到归因于室外温度的改变的估计的使用或未使用时间。对于制冷使用制冷斜率做一个类似的计算,并且将两个结果总计在一起。

步骤2902考虑对于450小时天气的影响,该时间量是两个月之间共同的。在供热模式有额外的50小时,在给出的例子中,其也可以在关注的时间段内影响HVAC使用。在图28B中描述的方法以及图28C的制冷模拟用于处理在特定模式(供热/制冷)中额外的非重叠时间,但仅仅图28B将被讨论作为相同分析应用于图28C。

步骤2904是阈值决定,即来自两个月在供热模式时间的总和是否大于零。只要恒温器对于任一月处于供热模式,这个条件将是真的,并且如果不是真的,则天气不能对用于供热的任何HVAC使用或未使用负有责任。对于制冷同样将是这样,且如果二者均为零,则天气将贡献零估计的HVAC使用时间,其是有意义的,且步骤2902结果也将为零。在步骤2906中,决定从月2到月1在供热模式实际的HVAC运行时间或使用时间的差,且如果不等于零,执行步骤2908;如果等于零,则天气将对用于供热模式的零估计的HVAC使用时间负有责任。在步骤2908中,决定月1和月2之间在供热模式时间的差,且如果不等于零,则执行步骤2910,如果等于零,则在供热模式没有重叠时间,且归因于供热模式的使用或未使用对于非重叠时间将是零。在步骤2910中,决定用于供热模式的归因于天气的额外的估计的使用或未使用时间。计算在两个月之间在供热模式实际HVAC使用时间的差的绝对值。这个值乘以用于两个月供热模式的时间差与供热模式的时间总和的比值。通过在两个月供热模式的总时间上平均该差,并通过两个月在供热模式的实际的使用之间差的幅度乘以该比值,有导致超过两个月之间供热模式时重叠时间的时间的影响。如果用于月2供热模式的时间大于月1,将指示在月2使用更多的供热且产生的乘积根据采用的符号法则(正的是节约,负的是使用)应该是负的,因此该乘积乘以-1。对于制冷模式做相同的决定且来自A、B和C的结果被总计在一起以提供归因于实际使用的估计的使用(负时间)或未使用(正时间)或在月1和月2之间由HVAC系统的使用的减少(在本文中也被称为未使用)。

图30和图31描述方程式,用于相较于月1,量化HVAC系统用于月2的估计的使用或未使用。参照图19上文讨论计算用于图30和图31中的方程式的这些区域,例如应当理解的是,图19中的区域1923代表作为恒温器进入离开状态的结果的估计的节约的努力,该区域具有单位度.·时间(deg.·time)且是在这些方程式中所使用的相同的区域或估计的努力,除了所有如参照图19所讨论的独立区域被在可应用的时间段中总计在一起以证明图30~图31中所示出的区域。图30和图31的方程式决定用于月1和月2的自动离开和手动离开的区域之间的差,该差乘以可应用的斜率(供热或制冷),导致由月1和月2之间的离开状态(自动和手动)改变引起的估计的HVAC使用或未使用。

图32描述一个方程式,用于量化由于用户改变设定点温度的计划表引起的HVAC系统的估计的使用或未使用。在图33中提供了一个类似的方程式,用于量化由于用户手动改变设定点温度引起的HVAC系统的估计的使用或未使用。还应当理解的是,并根据上文的合格性讨论,图33的方程式将仅仅当用户频繁地手动调节设定点温度,好像没有输入计划表一样时,被使用。参照图20所描述的,关于参考温度(例如0度)计算用于这些方程式的区域。区域(计划温度对时间段的积分)除以在该模式(供热或制冷)中的时间的比值是用于该时间段的加权平均计划温度。对于图33的方程式,区域除以根据手动引导设定点的该系统处于供热模式的时间。图32和图33的方程式拿月1和月2的加权平均计划温度(在图33中手动设置温度)之间的差并将其乘以用于该时间段的在供热(或制冷)模式(图33中手动控制供热模式)的时间。该结果将估计由于计划表改变引起的所需要或节约的努力的量,然后将其乘以可应用的斜率以得出实现该估计的努力所需要的估计的HVAC使用或未使用。

图34描述一个方程式,用于量化用户将恒温器设置为关闭模式引起的HVAC系统的估计的使用或未使用。该方程式取两个时间段之间在关闭模式的时间的差,并该差除以用于两个时间段的在其它两种模式的所有时间的总和。这种运算有效地标准化这两个时间段在关闭模式的差。然后这个比值乘以这两个时间段HVAC实际上运行的所有时间的总和,无论是在制冷模式或供热模式。这种影响是在关闭模式的标准化的时间差乘以实际的使用。

图35描述了一个方程式,用于量化由两个时间段之间的时间差引起的HVAC系统的估计的使用或未使用,两个历月之间在天数的差用于本讨论。类似于图34的方程式,图35的方程式取两个月之间在天数的差,并该差除以两个时间段的所有时间的总和。这种运算标准化这两个月在天数的差。然后该标准化的时间差乘以这两个时间段HVAC实际上运行的所有时间的总和,无论是在制冷模式或供热模式,导致HVAC系统的估计的使用或未使用,作为这两个月之间在天数的改变的结果。

量化由引起的估计的未使用将是在任何给定月实际处于使用的时间。作为直接地归因于任何给定时间段是活跃的时间量的结果,这个时间,如将被理解的,不是作为HVAC系统没有运行的时间的真正的估计值。应当理解的是,除了的过程可以用来达到该目的且归因于这些其它过程的使用的估计的时间量对于本领域技术人员是已知的。

在优选实施例中,对量化的估计的HVAC使用和未使用值将执行所谓的‘理智’检查,以保证数字的幅度和符号(节约或使用能源)在考虑各种实际的情况时是有意义的。图36描述了用于换算估计的HVAC使用/未使用的估计值的过程3600。如果条件3602为真,通过一比值换算所有估计的HVAC使用/未使用值,该比值为实际的HVAC使用差(方程式3603)除以所有合格估计的HVAC使用和未使用值的总和。这个换算的作用是,所有换算过的估计使用和未使用的总和将等于实际的HVAC使用/未使用的差,从而避免报告超出实际的HVAC使用/未使用的估计的HVAC使用/未使用。需要注意的是,不是所有估计的HVAC使用和未使用值都是可换算的。例如,归因于天气的估计的HVAC使用/未使用是不可换算的,以及用于和日历的那些同样地是不可换算的。如果条件3604为假,过程3600设置换算系数为1。如果条件3604为假,意味着所有未-换算的估计HVAC使用和未使用值的总和的符号是与实际使用的差(方程式3603)的符号不同。这种情况将意味着这些数字中的一个数字指示总量的能源节约,而其他指示能源使用,从宏观角度看是站不住脚的情况。在该后一种情况中,估计的HVAC使用和未使用数字被使用其他过程考虑以决定它们是否分别是有意义的,并对于没有意义的那些,它们被忽略和不被报告,或因为这些数字简单地没有意义而可替代地完全中止该过程。

估计的HVAC使用/未使用值的初始换算之后,使用图36的过程3650执行额外换算,以避免报告用于估计的HVAC使用/未使用值的过大数字。在步骤3651中,最大_使用(Max_Usage)被定义为所有换算后的估计HVAC使用/未使用值中的最小值(包括负值),其因为采用的符号法则将很可能为负数。最大_未使用(Max_NonUsage),也在步骤3651中被定义,为所有换算后的估计HVAC使用/未使用值中的最大值,其因为采用的符号法则将很可能为正值。在步骤3652中,如果两个月之间实际使用的差(来自方程式3603的Δ使用Usage))大于零(相较于月1,在月2的净能源使用)且最大_使用(最低负值是最大的估计的HVAC使用值)小于-1.9×Δ使用,则第二换算系数为-1.9乘以Δ使用除以最大_使用(Max_Usage)值的比值。这保证报告的重新换算的估计的HVAC使用数字,当在实际使用增加(Δ使用>0)时,当实际使用差(能源使用为正)和最大估计的使用/未使用值的方向是在相同的方向(在这种情况能源使用)时保持在合理值内。当Δ使用小于零(反映在第二个月实际的净能源的节约或较少的使用)且最大_未使用(Max_NonUsage)值大于-1.9乘以Δ使用(结果为正)时,相同的分析应用于在步骤3654中过程3650的换算。当实际能源使用或未使用(节约)以及估计的HVAC使用值倾向于相同的方向(使用或未使用,作为可能的情况),步骤3652和3654保证最大的(在幅度上)报告的估计的HVAC使用或未使用(分别为步骤3652和步骤3654)是不多于1.9乘以用于报告时间段(月2)在实际使用(Δ使用)的增量或减少量(分别对应步骤3652和步骤3654)。

当实际能源使用或未使用以及估计的HVAC使用/未使用值倾向于相反的方向时,步骤3656和3658试图处理该情况。在步骤3656中(如果条件为真),实际使用差Δ使用小于零(减少的使用)且最大_使用(Max_Usage)小于Δ使用(最大的估计HVAC使用在幅度上大于实际减少的使用)指示最大的估计HVAC使用倾向HVAC使用的实际改变的相反方向。如果步骤3656的条件为真,使用的换算是Δ使用除以最大的估计使用,保证已经换算过的估计的HVAC使用/未使用数字的换算不会超出使用幅度的实际改变。步骤3658是一个类似情况,其中Δ使用大于零(增加的实际HVAC使用)且最大_未使用(Max_NonUsage)小于Δ使用,使得最大估计HVAC未使用的幅度超出实际使用改变的幅度,但指示估计的HVAC使用/未使用与实际使用的改变倾向相反的方向,如上述情况中。在这种情况中,换算被设置为Δ使用除以最大_未使用(Max_NonUsage)的使用/未使用值,保证已经换算过的估计的HVAC使用/未使用值的换算不会超出使用幅度的实际改变。通常地,该换算过程保证报告的和换算过的估计HVAC使用/未使用值保持在1~2乘以在月2的实际的HVAC使用之内。以这种方式,避免了报告荒谬地大的数字。如上所讨论的,过程3650重新换算已经换算过的估计的HVAC使用/未使用值,以避免报告关于实际数据没有意义的值,尤其是从月1到月2在HVAC使用的实际改变。

上述参照图35讨论量化归因于月1与月2之间天数的差的估计的HVAC使用/未使用。这种日历归因的使用/未使用不服从以刚刚描述的这种方式的换算。参照图37,提供了一个优选的过程3700,以保证归因于月1和月2天数差的估计的使用/未使用不会导致无意义的数字,且被上限在最大数字以避免这种情况。例如,如果两个月相差一天,则归因于日历差的估计的HVAC使用/未使用可能不会多于24小时。“设备的数量”指的是在该封闭空间的可编程恒温器的数量,并且日历_使用/未使用(cal_usage/nonusage)是归因于月1和月2的天数差的估计的使用/未使用的值。

尽管上述描述了努力来避免报告没有意义的数字,可能还有余数的估计的HVAC使用/未使用量。也就是换算过的HVAC使用/未使用量的总和很可能不等于Δ使用。在一些情况中,这两个数字可能离得很远,而在许多情况中,也许多数的数字是相当接近,但由于用户查看报告将很可能注意到这个差因而这些差不能或不应该被忽略。用于处理剩余问题的一个实施例,将决定余数是否足够小以归入归因于天气的估计的HVAC使用/未使用。例如但不以限制的方式,如果(假设天气是合格的)余数(=Δ使用-换算过的估计的HVAC使用/未使用值的总和)的绝对值大于0.2*Δ使用的绝对值,则归因于天气的调节过的估计的HVAC使用/未使用将为=Δ使用-所有估计的HVAC使用/未使用值除了归因于天气的总和。如果该余数大于abs(0.2*Δ使用),这将是一个常量且将需要被调查,并且将没有生成报告。

返回参照图18,在步骤1810换算量化的估计的HVAC使用/未使用值以及参照图36~图37上文刚刚描述的之后,归因于合格的贡献者或代理的估计的HVAC使用/未使用值按照它们的幅度从最大到最小排序。值小于Δ使用的5%作为无关紧要的数被丢弃。在步骤1814生成一份报告,该报告可以包括月1和月2之间HVAC实际运行(Δ使用)的差,其可以使用由恒温器收集并通信和/或传输至与该恒温器配对的恒温器管理服务器520的数据来决定。此外该报告可以包括:关于怎样降低HVAC使用并从而节约能源的贴士、两个时间段的实际HVAC运算时间。该报告可以被显示在能够访问网络和/或与恒温器和恒温器管理服务器520通信的任何计算设备(例如,计算机、平板电脑、移动电话等)上。该报告还可以被以pdf或其它对于本领域技术人员已知的图像格式发送电子邮件。

图38提供从加州帕罗奥图(Palo Alto California)的耐斯特实验公司(Nest Labs Inc.)发送至该可编程恒温器的用户/所有者的一封电子邮件的能源报告3800的例子。在这个例子中,提供了公司标志3802、都通过3804参考的报告日期、该的所有者和该的位置。3805指代本月多于上月使用小时数的一个总量(即Δ使用),条3806代表在11月实际HVAC运行时间以及条3808代表在12月实际HVAC运行时间。下一个部分3810提供描述原因(天气3812、手动离开3814和自动离开3816)的图标。每个图标下方是估计的HVAC使用或运行小时数,作为按等级次序排列的贡献者或代理(天气、手动离开和自动离开)的结果。下一个部分3818提供了节约能源的贴士,以及在其下方的该月内用户获得的叶子数。

如将理解的是,用于从用来表征引起HVAC使用的贡献者或代理使用的度量和数据生成报告的本文描述的实施例,可以使用与用来帮助该描述的多个时间段截然相反的单独的时间段。单独时间段实施例的例子可以使用用于合格的贡献者或代理的贡献者、模型、合格性、估计的使用/未使用,确定归因于每个贡献者的估计的HVAC能源(时间或实际能源度量)并将其与该单独的时间段的实际使用比较,其中估计值和实际的使用可以以时间单位(用于HVAC系统的能源好的度量)或对于本领域技术人员已知的任何其它合适的单位(例如,焦耳、卡路里、瓦特等)被报告。

根据一些实施例,描述了一种用于鼓励用户来采取能源节约恒温器设置的方法。该方法包括:接收指示用户想要改变在恒温器上的温度设置的用户输入;当用户具有,将图形信息交互式地显示给用户,例如符号可以进行各种修改而不脱离本发明的精神和范围。因此,本发明并不局限于上述的实施例,还包括由附加的权利要求根据全部等同的范围定义的替代实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1