空气调节器的制作方法

文档序号:15337464发布日期:2018-09-04 21:45阅读:194来源:国知局

本发明涉及空气调节器,特别地,本发明涉及使用外部空气或循环水作为热源的空气调节器。这种空气调节器也可被称为热泵。另外,空气调节器可用于冷却和/或加热待调节的空间。更特别地,本发明涉及一种用于此空气调节器的压缩机单元和此空气调节器的热源单元。



背景技术:

一般来讲,空气调节器由通过制冷剂管道连接的一个或更多个室外单元和一个或更多个室内单元组成。室外单元和室内单元各自包括热交换器,热交换器一方面与热源进行热交换,另一方面与待调节的空间进行热交换。空气调节器的室外单元大多数情况下安装在建筑物外面,例如,屋顶或正面处。然而,在某些情况下,从美学角度来看,这被认为是不利的。因此,ep2108897a1建议将室外单元集成到建筑物的天花板中,以便隐藏在其中,而不能从建筑物外部注意到。

然而,本文献中建议的室外单元具有一定的不足。一个负面方面在于,室外单元可能会产生能被建筑物内的人察觉到的干扰性噪声。第二个负面方面在于安装和维护,这是因为室外单元相对较重并且因为其构造的原因而相对于其高度来说需要相对较大的安装空间。

引用列表

专利文献

ptl1:ep2108897a1



技术实现要素:

技术问题

为了克服这些不足,本申请的申请人已经考虑到将热源单元分成压缩机单元和热源热交换器单元。另外,一些电器需要将副冷却部分集成到制冷剂回路中以提高效率。然而,将副冷却部分集成到分离的热源单元中需要在热源热交换器单元和压缩机单元以及室内单元之间安装更多管件,从而导致安装更复杂且安装成本成高。此外,需要更多管件以供气态制冷剂从中流过。这种管件由于需要较大的直径并因此需要更多的材料而更昂贵。此外,必须用更多的时间进行安装。最后,如果压缩机单元和热源热交换器单元之间的气态制冷剂管件变得太长,则效率可能会有损失。在将副冷却热交换器靠近热源热交换器设置(即,设置在热源热交换器单元中)的情况下,已经认识到以上不足。

问题的解决方案

因此,本发明意图解决的一个目的是提供一种包括热源单元和至少一个室内单元的空气调节器。这里,热源单元包括作为热源单元的一部分的压缩机单元。既使集成了副冷却部分,具有这种压缩机单元的热源单元也能够减少管件,尤其是能够将用于连接若干这些单元的气态制冷剂管件减少到最少,由此确保安装便利且安装成本较低。

根据本发明的一个方面,提供了一种用于调节建筑物内的空间的空气调节器,所述空气调节器包括热源单元和至少一个室内单元。所述热源单元具有热交换器单元和压缩机单元,所述热交换器单元包括设置在第一壳体中并且被构造成与热源交换热的第一热交换器,所述压缩机单元包括设置在与所述第一壳体分离的第二壳体中的压缩机。所述至少一个室内单元具有第二热交换器,所述第二热交换器被构造成与待被调节的所述空间交换热并被流体连通至所述热交换器单元和/或所述压缩机单元。所述热交换器单元被设置在所述建筑物的内部并被流体连通至所述建筑物的外部。

根据上述空气调节器的另一个优选实施方式,所述第一壳体和/或所述第二壳体是隔音的。

根据上述空气调节器的又一个优选实施方式,所述压缩机单元被设置在所述建筑物的内部。

根据上述空气调节器的又一个优选实施方式,所述第二壳体的宽度和/或高度和/或深度符合用于厨房家具和厨房电器的dinen1116。

根据上述空气调节器的又一个优选实施方式,所述第一壳体相对于所述建筑物的内部被完全封闭。

根据上述空气调节器的又一个优选实施方式,所述热交换器单元、所述压缩机单元和所述室内单元借助于制冷剂管件而被流体连通。

根据另一个方面,建议了一种用于空气调节器的压缩机单元。空气调节器被配置成调节诸如建筑物内的房间的空间,对其进行加热或冷却。压缩机单元包括设置在第一壳体中的压缩机。因此,第一壳体容纳压缩机,优选地,封装压缩机。另外,可在壳体内或壳体外设置声音隔离件,以避免压缩机产生的噪声被传递到其中安装有压缩机单元的环境。另外,设置第一热源端口和第二热源端口,并且优选地,第一热源端口和第二热源端口能被从壳体外触及,以便于连接。第一热源端口和第二热源端口被配置成利用制冷剂管件将压缩机连接到空气调节器的热源单元的热源热交换器。第一热源端口和第二热源端口可以是能够将制冷剂管件连接到压缩机的任何种类的端口(诸如,一端开口并且在该端具有外螺纹的管)。然而,也可使用所谓的自密封连接器或快速紧固件。然而,在大多数情况下,这将是由于使用花边或凸起连接件所需的规范而导致的。热源热交换器设置在与第一壳体分离的第二壳体中并且被配置成与热源交换热。在该背景中,“分离”意味着这些壳体代表分开的组件或单元并且不应该包括一个壳体设置在另一个壳体内这样的意思。在特定实施方式中,热源热交换器单元使用外部空气(即,建筑物外部的空气)作为热源。出于此目的,优选地,第二壳体在热交换器的一侧具有第一连接件而在热交换器的对置侧具有第二连接件。第一连接件和第二连接件优选地连接到与建筑物的外部流体连通的管道,使得外部空气可经过第一热交换器。此外,压缩机单元包括第一室内单元端口和第二室内单元端口,第一室内单元端口和第二室内单元端口被配置成借助于制冷剂管件将压缩机连接到空气调节器的至少一个室内单元的室内热交换器。第一室内单元端口和第二室内单元端口可以与第一热源端口和第二热源端口是相同的种类或不同的种类。另外,压缩机单元包括优选地设置在第一壳体内的第一制冷剂管件。第一制冷剂管件流体连接第一热源端口和第一室内单元端口。因此,第一热源端口和第一室内单元端口用于使用制冷剂管件将热源热交换器单元流体连接到一个或更多个室内单元。即使可以引导热源热交换器单元和室内单元之间的连接,一方面也建议经由压缩机单元连接这些单元,使得制冷剂管件的连接这些单元的那一部分经过压缩机单元的第一壳体。此外,副冷却热交换器设置在第一壳体内并且流体连接到第一制冷剂管件,以使副冷却制冷剂流过该第一制冷剂管件。由于第一制冷剂管件经过第一壳体,所以副冷却热交换器可被集成到空气调节器中,而无需连接压缩机单元和热源热交换器单元(特别地,热源热交换器和压缩机的经过副冷却热交换器的吸入侧)所需的附加的气态制冷剂管件。该附加的长气态制冷剂管件被集成到压缩机单元中,因此短得多,使得所需的材料更少并且所需的安装时间更少。因此,实现了便利的安装并且降低了安装成本。

根据该实施方式,压缩机单元还包括第二制冷剂管件。第二制冷剂管件流体连通或连接第二热源端口和第二室内单元端口。压缩机和优选的四通阀被插置在第二热源端口和第二室内单元端口之间,或者更具体地,压缩机和优选的四通阀被插置在连接这些端口的第二制冷剂管件中。收集器可被包括在压缩机的吸入侧。此外,旁路通道在压缩机和四通阀之间在压缩机的吸入侧连接到第二制冷剂管件,并且副冷却热交换器流体连接到旁路通道,以便在流入旁路管路中的制冷剂和流过第一制冷剂管件的制冷剂之间进行热传递。因此,与副冷却单元相关的所有管件都被容纳在第一壳体中,使得在一个实施方式中,为了连接压缩机单元、热源热交换器单元和一个室内单元,在压缩机单元中只需要四个端口。特别地,通过将副冷却热交换器放置在压缩机单元中并且使经由压缩机单元将热源热交换器模块连接到室内单元的制冷剂管件形成环,可以避免热源热交换器单元和室内单元之间的附加路线。将副冷却热交换器设置在压缩机模块中的附加优点在于,可以避免通常供气态制冷剂从中流过所需的大直径管。

根据一个方面,压缩机单元不包括空气调节器的主膨胀阀。空气调节器的“主膨胀阀”被定义为在冷却期间制冷剂回路中的全部制冷剂所经过的膨胀阀。

在加热时,主膨胀阀限定热源热交换器之后的过热。在冷却时,主膨胀阀一直完全打开,以避免高压降。在冷却时,全部制冷剂经过主膨胀阀。在加热时,全部制冷剂被分成流过副冷却热交换器和热源热交换器之间。

在加热操作中,因为将副冷却热交换器连接到热源热交换器的相对长的制冷剂管件的原因,所以存在相对大的压降。因为在压缩机单元中没有设置主膨胀阀,所以可补偿压缩机单元和热源热交换器单元之间的制冷剂压降并且可以减少两相流动噪声。

根据一个实施方式,压缩机单元可包括在压缩机和四通阀之间位于压缩机的排出侧的油分离器。

根据另一个方面,提出了一种用于空气调节器的热源单元,该热源单元包括上述压缩机单元和热源热交换器单元。如上所述,热源热交换器单元具有设置在与第一壳体分离的第二壳体中的热源热交换器。热源热交换器被配置成与热源(特别地,外部空气)交换热,并且经由第一热源端口和第二热源端口流体连接或连通压缩机单元。在该背景下,因为第一制冷剂管件连接第一热源端口和第一室内单元端口的原因,热源热交换器单元和室内单元的连接经由压缩机单元(第一壳体)而形成环。由此,可以将副冷却单元集成到压缩机单元中,而无需连接压缩机单元与热源热交换器单元所需的附加管件。

如前所述,空气调节器的主膨胀阀设置在第二壳体中,即,设置在热源热交换器单元中。因此,压缩机单元与热源热交换器单元之间的压降保持尽可能低并且可避免两相流动噪声。

如前所述,一个或更多个室内单元可经由第一室内单元端口和第二室内单元端口与压缩机单元流体连接或连通。在该背景下,第一室内单元端口用于将室内单元(特别地,室内热交换器)连接到热源热交换器单元(特别地,热源热交换器)。第二室内单元端口用于将室内单元(特别地,室内热交换器)连接到第二制冷剂管件进且因此连接到压缩机。如果设置不止一个室内单元,则室内单元可并联连接。

可从以下对实施方式的描述中获得热源单元的其它特征和效果。在对这些实施方式进行描述时,参考了附图。

附图说明

[图1]图1示出了空气调节器的示意性电路图,

[图2]图2是安装在建筑物中的图1中示出的空气调节器的示意性草图,

[图3]图3示出了热源热交换器单元的立体图,

[图4]图4是压缩机单元的立体图,

[图5]图5示出了图3的热源热交换器单元的纵剖面,以及

[图6]图6示出了根据图1中示出的配置的变型的空气调节器的示意性电路图。

具体实施方式

图1示出了空气调节器的电路图。空气调节器具有热源单元30,热源单元30包括热源热交换器单元31和压缩机单元32。

热源热交换器单元31包括热交换器5,热交换器5由相对于彼此设置的上部热交换器元件6和下部热交换器元件7组成,以在侧视图或剖视图形成“v”形(见图5)。热源热交换器单元31还包括制冷剂回路的主膨胀阀33。如在图1中变得清楚的,包含在回路中的制冷剂的全部量也在冷却期间也通过主膨胀阀33。换句话讲,从压缩机37输送或供应的全部制冷剂在冷却期间流过主膨胀阀33。

还在图3和图5中更详细地示出热源热交换器单元。

图3和图5示出了可以是热源单元30的部分的热源热交换器单元31。

热源热交换器单元31包括被配置成与空气调节器的外部空气管道连接的壳体2(第二壳体)。特别地,热源热交换器单元被配置为空气调节器的“室外”单元,然而,室外单元特别地设置在建筑物的天花板内。因此,在壳体2上设置第一连接件3,第一连接件3与空气管道连接,从而将热源热交换器单元31与建筑物的外部连通并且使得能够将室外空气带入壳体2内。在壳体2的对向端部设置连接件4(参见图5),连接件4被设置用于将热源热交换器单元31再次连接到通向建筑物外部的空气管道,并且能够将通过热交换器5的空气排出到外部。

壳体2是大体矩形和平坦的,这意味着,高度h小于宽度w和长度l。在一个实施方式中,高度h不大于50cm,优选地不大于45cm,更优选不大于40cm并且最优选地不大于35厘米。

热源热交换器单元31还包括在图3中也可见的热交换器5(热源热交换器)。然而,在图5中可最好地看到热交换器5的构造。图5还表示本申请意义上的热交换器5的侧视图。

热交换器5包括上部热交换器元件6和下部热交换器元件7。上部热交换器元件6和下部热交换器元件7都是平坦的或平面成形的,并且以其间的角度α定位。从图1可看出的,上部热交换器元件6和下部热交换器元件7与制冷剂管件平行地流体连接。因此,热交换器5具有v形,其中,“v”水平地取向。通过“v”的顶点8的线cl水平地取向,也就是说,沿着热源热交换器单元31的长度l伸长取向。线cl也是热交换器5的中心线,或者换句话讲,是关于换热器元件6、7的对称线。

热交换器5布置在由壳体2形成的空气管道内,使得通过连接件3处的开口吸入的所有空气都在宽度方向上在热交换器5的顶部或底部或侧面处流过热交换器5,而没有任何空气绕过热交换器5。

上部热交换器元件6和下部热交换器元件7通过连接元件9彼此连接于顶点8处。连接元件对于空气是不能渗透的,并且也用于机械地或物理地连接上部热交换器元件6和下部热交换器元件7。上部热交换器元件6和下部热交换器元件7中的每个包括设置在其间的热交换器盘管10(管件的回路)和散热片11。本实施方式的热交换器适用于户外应用,即,作为空气调节器的热源单元的部分。在这种情况下,上部热交换器元件6和下部热交换器元件7的散热片优选地是蛋饼型散热片。既使百叶窗型散热片因设置有允许空气流过散热片的几个孔而优选地用于通过热交换器的优质空气流,但冷凝水会积存在这些孔中并且当环境温度低于大约7摄氏度时,会导致加热操作期间形成霜的问题。为了防止这些问题,在这些情况下,优选地使用蛋饼型散热片。

两个向后弯曲的离心风扇20设置在壳体内。这些向后弯曲的离心风扇20各自具有吸入开口21。在侧视图(图5)中,吸入开口21进而风扇20的中轴与热交换器5的中线cl大致一致或对准。然而,在一些电器中,所描绘的实施方式中可能充分的是,吸入开口21的中轴和热交换器5的中线cl平行,但在水平方向上彼此相对移位。

在使用中,风扇20在吸入开口21处产生吸力,从而在方向f上引起流体流动(气流)。因此,空气特别是外部空气通过连接件3被朝向热交换器5的开口端12引入,穿过上部热交换器元件6和下部热交换器元件7,并且通过吸入开口21被吸入,以通过连接件4流出。因此,壳体2限定了从连接件3经由热交换器5和风扇20通向连接件4的管道。在此背景下,连接件3和连接件4限定入口开口13和出口开口14。

此外,排水盘15设置在壳体内。排水盘15在侧视图中沿壳体2的长度l被分成两个半部16、17。在图5中,用虚线来标识这两个半部16、17,一半位于虚线的左侧而一半位于其右侧。排水盘15具有最低位置18,排水口19设置在最低位置18处。排水盘15的底部朝向排水开口19进而朝向最低位置18倾斜。因此,从任何组件落入排水盘中的水直接被导向最远离风扇20的排水开口19和最低位置18。因此,防止积存在排水盘内的水可被吸入风扇20中,因此通过开口14被吸入管道中。排水开口19直接连接到排水系统,使得水被直接排出。

此外,在壳体2内,在相对于线cl与排水盘15对向的一侧,设置声音和/或热隔离件22。在横截面进而在侧视图(图5)中,分别指向热交换器15的排水盘15和隔离件22的内表面应该近似,使得在壳体2内形成的管道尽可能地对称。

另外,顶点8与吸入开口21的入口之间的距离应该尽可能短,以减小长度。特别地,风扇的高速率区域在侧视图中不应该与热交换器5和/或排水盘15重叠。

在壳体2的一侧,可看到用于将热源热交换器单元31连接到制冷剂回路的制冷剂管件的第一制冷剂管件连接件34和第二制冷剂管件连接件35。另外,用于将排水开口19连接到排水系统(未示出)的连接端口36从壳体2的与制冷剂管件连接件34和35相同的侧表面延伸。

除了连接件3和4以及制冷剂管道连接件34和35以及通向排水系统的连接件36之外,壳体2完全封闭。因此,如从图5可以看出的,壳体可以是隔音的,因此被封装,以防止例如来自风扇的任何噪声被传输到待调节的空间。另外,因为压缩机37没有设置在壳体2而是如下所述的压缩机单元32中,所以没有引起并经由流过热源热交换器单元31流入与建筑物外部连接的空气管道中的空气传递压缩机的噪声。

压缩机单元32具有壳体44(第一壳体),其中,在图4中,壳体44的前壁和对应的隔音件已被去除,以部分示出壳体44的内部。压缩机37(参见图1)设置在壳体44中。此外,以下描述(如果存在的话)的压缩机单元的所有其它组件也将设置在壳体44中。另外,压缩机单元可包括可选的收集器38和四通阀39。

另外,压缩机单元32包括副冷却热交换器40和副冷却膨胀阀41。副冷却热交换器是管式热交换器。

压缩机单元32还包括如图4中所示的第一制冷剂管道连接件42和第二制冷剂管道连接件43(第一热源热交换器单元端口和第二热源热交换器单元端口)。

可以分别靠近第一制冷剂管道连接件42和第二制冷剂管道连接件43设置截止阀45(两个截止阀,每个连接件42、43有一个)。

另外,第三制冷剂管件连接件46和第四制冷剂管件连接件47(第一室内单元端口和第二室内单元端口)被设置用于连接与待调节空间流体连通设置的一个或更多个室内单元50(在本实施方式中,一个)。还分别靠近第一制冷剂管道连接件46和第二制冷剂管道连接件47设置截止阀48(两个截止阀,每个连接件46、47一个)。

端口42、43和46、47都靠近压缩机单元的前部设置,以改善可维护性。特别地,如图4中所示,如果去除了壳体44的前壁和对应的绝缘体,则容易触及端口。

此外,制冷剂管件80(第二制冷剂管件)将制冷剂管件连接件42和制冷剂管件连接件47与依次插入的四通阀39、压缩机37、收集器38、通向制冷剂管件57的连接件81、通向制冷剂管件52的连接件82和四通阀39相连。

考虑到冷却操作(图1中的实线箭头),上述组件按照从制冷剂管件连接件47到制冷剂管件连接件42的以下次序进行设置:四通阀39、收集器38、压缩机37、四通阀39和制冷剂管件连接件42。考虑到加热操作(图1中的虚线箭头),上述组件按照从制冷剂管件连接件42到制冷剂管件连接件47的以下次序进行设置:四通阀39、收集器38、压缩机37、四通阀39和制冷剂管件连接件47。

此外,制冷剂管件49将第一制冷剂管件连接件43与第三制冷剂管件连接件46相连。副冷却热交换器40被配置用于制冷剂管件49中流动的制冷剂与在制冷剂管件52中流动的制冷剂之间的热交换。副冷却膨胀阀41设置在副冷却热交换器和制冷剂管件连接件43之间的制冷剂管件52中。换句话说,副冷却膨胀阀41设置在制冷剂管件52与制冷剂管件49和副冷却热交换器40的连接之间。在任何情况下,在加热和冷却操作期间,副冷却膨胀阀41设置在制冷剂管件52的副冷却热交换器40的上游。

制冷剂管件51将收集器38和四通阀39相连。另外,制冷剂管件52(气态制冷剂管件)的一端与制冷剂管件49连接,另一端与制冷剂管件51连接。另外,制冷剂管件57将制冷剂管件49和制冷剂管件51相连,使压力调节阀58被集成到制冷剂管件57处的中间位置。

压缩机单元32的壳体44可被隔音,使得可防止压缩机37产生的噪声从壳体漏出干扰建筑物内的人。此外,壳体44可因为其紧凑的大小而被设置在地板上,以便于安装和维护,甚至在厨房或其它技术设备室的橱柜之下。壳体44还可包括如图4中所示的腿部59,腿部59用于将壳体44布置并且固定在水平支撑表面上。壳体44的大小(特别是与其高度、宽度和深度有关)符合用于厨房家具和厨房电器的dinen1116。

室内单元50的一个示例包括分别经由第三制冷剂管件连接件54和第四制冷剂管件连接件55和通向压缩机单元32的第三制冷剂连接件46和第四制冷剂连接件47的制冷剂管件分别连接的室内热交换器53(第二热交换器)。可选地,室内单元50可包括设置在室内热交换器53和第三制冷剂管件连接件54之间的室内膨胀阀56。原则上,室内单元50可在原理上被配置为在这些空气调节器中使用的公共室内单元。

如在图2中可最佳看出的,空气调节器可被安装在建筑物70中。在一个可能的实施方式中,热源热交换器单元31可设置在待调节空间72的天花板71中并且被隐藏在天花板71内。连接件3和4优选地连接到空气管道73,使得热源热交换器单元31的壳体2形成空气管道73的部分。空气管道73的端部在两个端部74和75处敞露于建筑物的外部,使得外部空气可通过端部74被吸入,通过热源热交换器单元31的热交换器5并且通过端部75排出。

热源热交换器单元31使用制冷剂管路连接件34、35以及43、42分别通过制冷剂管件76与压缩机单元32连接。压缩机单元32再次分别使用第三制冷剂管件连接件至第四制冷剂管件连接件46、47和54、55与室内单元50连接。

上述的空气调节器的操作如下。在制冷操作(图1中的实线箭头)期间,在制冷剂管件连接件47处的进入压缩机单元32的制冷剂流经过四通阀39并且被引入收集器38中。当经过收集器时,关联的液体制冷剂与气态的制冷剂分离并且液体制冷剂被暂时储藏在收集器38中。

随后,气态制冷剂被引入压缩机37中并且被压缩。压缩后的制冷剂经由第一制冷剂管道连接件42、35和制冷剂管件71被引入热源热交换器单元31中。制冷剂经过具有热源热交换器单元31的板6、7的热交换器5,由此制冷剂发生冷凝(热交换器5用作冷凝器)。因此,热被传递到平行穿过热交换器5的热交换器元件6、7的外部空气。膨胀阀33完全打开,以避免冷却期间有高压降。然后,制冷剂经由第三制冷剂管件连接件34、43和制冷剂管件而流入压缩机单元32中。在压缩机单元32中,制冷剂部分地流过制冷剂管件52,进而流过副冷却膨胀阀41和副冷却热交换器40,部分地流过经由第三制冷剂管件连接件46引入的制冷剂管件49、制冷剂管件和第三制冷剂连接件54,进入室内单元50。然后,制冷剂被室内膨胀阀56进一步膨胀,在热交换器53(热交换器53用作蒸发器)中蒸发,从而冷却待调节空间72。因此,热从待调节空间中的空气传递到流过热交换器53的制冷剂。在冷却时,副冷却热交换器40的主要目的是对通过制冷剂管件49流向室内单元50的液体制冷剂进行副冷却。最后,再次将制冷剂经由第四制冷剂管件连接件55、47和制冷剂管件引入压缩机单元32。

众所周知,室内的空气调节器的性能等于焓流和质量流的乘积。因此,当焓流增加时,可使用减少的质量流。副冷却热交换器用于增加室内的焓流。因此,可在不损害性能的情况下,减少质量流。结果,可减少液体管路中的压降,使得压缩机37需要传递的工作减少,从而提高整个系统的效率。

在加热期间,该电路是反向的,其中,用图1中的虚线箭头示出加热。这个过程在原理上是相同的。然而,在加热期间,第一热交换器5用作蒸发器,而第二热交换器53用作冷凝器。特别地,制冷剂经由第一制冷剂管件连接件42被引入压缩机单元32中,经由四通阀39流入收集器38中,然后在压缩机37中被压缩,之后流入四通阀39中并且通过第四制冷剂管件连接件47、55和制冷剂管件,进入其中制冷剂被冷凝的室内单元50(具体地,室内热交换器53)(室内热交换器53用作冷凝器)。随后,制冷剂被膨胀阀56膨胀,然后经由第三制冷剂管件互连件54、46被再次引入,进入压缩机单元32中,在压缩机单元32中,制冷剂流入管件49中并且经过副冷却热交换器40。

通过在蒸发器之后进行制冷剂注入,可优化在压缩机之前的吸入过热。结果,可以降低排出温度,随之带来系统效率更好和寿命延长的有益效果。在加热时,副冷却热交换器40用于提高经由与压缩机37上游的制冷剂管件51连接的制冷剂管件52的压缩机入口处的制冷剂质量,压缩机37在制冷剂管件52的吸入侧。另外,副冷却热交换器40用于根据需要使制冷剂管件49中的两相制冷剂蒸发。

随后,制冷剂中的部分流入制冷剂管件52中,在副冷却膨胀阀41中膨胀并且流过副冷却热交换器40,之后被再次引入收集器38上游的制冷剂管件51中,由此对流过经过副冷却热交换器40的制冷剂管件49的制冷剂进行预冷却。剩余部分经由第二制冷剂管件连接件43、34和制冷剂管件流入热源热交换器单元31中。制冷剂被热源热交换器单元31中的主膨胀阀33进一步膨胀,然后在热交换器5(换热器5用作蒸发器)中蒸发,之后经由第一制冷剂管件连接件35和42和制冷剂管件被重新引入压缩机单元32中。

因为压缩机单元32和热源热交换器单元31的分离,所以压缩机单元32可被安装在对噪声不敏感的区域中,使得既使设置在室内,也不会因压缩机而引起噪声干扰。另外,可利用隔音将压缩机单元32的壳体44很好地隔离。另外,由于可被传递到待调节空间中的热源热交换器单元31和压缩机单元32之间的分离构思,导致流过热源热交换器单元31的空气中没有压缩机噪音。

因为热源热交换器单元31和压缩机单元32的单位重量较轻,所以安装得以改善。另外,压缩机单元32可被安装在地板上,使得不需要提升重型压缩机单元。因为压缩机单元32的占用面积(宽度和深度)相对较小并且压缩机单元32特别是其壳体的高度较低,所以压缩机单元32甚至可在被布置在待调节房间内时被隐藏,诸如在橱柜或柜台下方。

热源热交换器单元31也具有没有噪声干扰的优点。因为热源热交换器单元31中不包含压缩机,所以可夹带在气流中的唯一声音是风扇的噪音,从而气流中的噪声急剧减小。此外,壳体2可被完全封闭,成为待调节空间72,使得没有声音被传递到空间中。另外,可利用隔音件将该壳体很好地隔离。因为热源热交换器单元31的高度较低,容易将单元隐藏在例如天花板中。因此,单元31从外部是看不见的。与在同一壳体中具有压缩机的单元相比,因为热源热交换器单元31的高度较低,所以安装也得以改善。特别地,较低的高度以使用“v”形状的热交换器5作为辅助,从而使得能够高效而且高度相对低。

因为副冷却单元特别是副冷却热交换器被集成到压缩机单元而非热源热交换器单元中,所以将热源热交换器与压缩机的吸入侧连接的一个长气态制冷剂管路可被压缩机单元中包含的较短管线52代替。因此,可缩短使气态制冷剂流动所需的大直径管路。换句话讲,可通过将副冷却热交换器放置在压缩机单元中并且成环连接将热源热交换器模块通过压缩机单元与室内单元连接的制冷剂管件来避免热源热交换器单元和室内单元之间的附加路线。

如果副冷却热交换器设置在热源热交换器模块中并且单元31和50之间的流体连接将不会环绕通过压缩机单元32的壳体44而是直接连接,则第三热源热交换器必须在压缩机单元32处具有将压缩机单元32和热源热交换器单元31连接以实现管路52的附加线路。因此,与本情况相比,本实施方式得以改进,带来的结果是安装更简单并且安装成本更低。

此外,因为主膨胀阀33设置在热源热交换器单元31中,所以可补偿由压缩机单元32和热源热交换器单元31之间的相对长制冷剂管件引起的制冷剂压降并且两相流噪声可减小至至少一定程度。

图6示出了根据图1中示出的配置的变型的空气调节器的电路图。图1和图6中的配置之间的不同之处在于,使用被配置成利用水热源的热源热交换器模块31'。

根据该变型的空气调节器具有热源单元30,热源单元30包括热源热交换器单元31’、冷却塔90和压缩机单元32。热源热交换器单元31'与冷却塔90配合进行工作,以用作热水源。

在冷却操作期间(图6中的实线箭头),气态制冷剂被引入压缩机37中并且被压缩。压缩后的制冷剂经由第一制冷剂管件连接件42、43和制冷剂管件76被引入热源热交换器单元31’中。制冷剂经过热源热交换器单元31’的水-制冷剂热交换器5’的冷却剂回路部分,由此制冷剂发生冷凝(水-制冷剂热交换器5’用作冷凝器)。因此,热被传递给通过水-制冷剂热交换器5'的水回路部分的水。膨胀阀33完全打开,以避免冷却期间有高压降。然后,制冷剂经由第三制冷剂管件连接件34、43和制冷剂管件而流入压缩机单元32中。

水循环通过包括冷却塔90和水-制冷剂热交换器5'的水回路部分的水回路。在冷却塔90处,循环水释放热量,从而被冷却。

关于安装,热源热交换器单元31'可设置在待调节空间的天花板中,而冷却塔90可例如布置在建筑物的屋顶上。

为了进行加热操作,也可采用用于加热循环水的锅炉设备(未示出)来作为冷却塔90的替代或补充。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1