热交换器及空调机的制作方法

文档序号:23746356发布日期:2021-01-26 16:09阅读:100来源:国知局
热交换器及空调机的制作方法

[0001]
本公开涉及一种热交换器及具备热交换器的空调机。


背景技术:

[0002]
例如,在风机盘管单元(fan coil unit)及空气处理单元(air handling unit)等用于空气调和机的热交换器中会具备使空调用空气和热交换介质之间进行热交换的热传导部。例如,热交换器构成为通过增减热交换介质的流量来调节热交换量,从而控制冷却或加热空调用空气的能力。例如,如日本特开2001-280859号公报所公开,具有具备导热管群的热传导部。例如,热传导部的导热管群通过均分为两个组(group)来降低热交换介质的流量的下限,由此,能扩大热交换器的能力的下限的控制范围。


技术实现要素:

[0003]
然而,由于导热管群均分为两个组,所以热交换介质的流量的下限有限度。例如,在很少的热交换量(贯流热量)便足够的低空调负荷的情况下,热交换器因能力过强导致发生过冷或过热,从而存在热传导部内热交换产生的热交换前后的热交换介质的温度差不为一定的问题。因此,产生了能量的浪费及舒适性的降低的问题。由此,本公开提供一种能改善节能性和舒适性的热交换器及具备热交换器的空调机。
[0004]
根据本公开一形态的热交换器具备使空调用空气与热交换介质热交换的热传导部和调节所述空调用空气与所述热交换介质的热交换量的控制装置,所述热传导部具备构成为将所述热交换介质流通的导热管群分为多个组且使分组比例不同的分流回路,所述控制装置构成为在低空调负荷的情况下在所述多个组中所述分组比例较少的第一组内增减所述热交换介质的流量。
[0005]
根据本公开,能改善节能性和舒适性。
附图说明
[0006]
图1是示出实施形态的热交换器的立体图;
[0007]
图2是示出图1中以箭头da方向观察的热交换器的截面的一个示例的概略说明图;
[0008]
图3是示出图1中以箭头db方向观察的热交换器的截面的一个示例的概略说明图;
[0009]
图4是示出实施形态的空调机的结构的一个示例的底面侧立体图;
[0010]
图5是图4所示的空调机的仰视图;
[0011]
图6是图5所示的空调机的vi-vi截面图;
[0012]
图7是图6所示的空调机的vii-vii截面图;
[0013]
符号说明:
[0014]1ꢀꢀ
热传导部
[0015]2ꢀꢀ
控制装置
[0016]4ꢀꢀ
分流回路
[0017]6ꢀꢀ
导热管群
[0018]
9a、9b
ꢀꢀ

[0019]
12
ꢀꢀ
阀控制器
[0020]
100
ꢀꢀ
热交换器
[0021]
200
ꢀꢀ
空调机
[0022]
201
ꢀꢀ
辐射单元
[0023]
203
ꢀꢀ
风扇
[0024]
207
ꢀꢀ
贯通孔
[0025]
208
ꢀꢀ
蓄热部
[0026]
209
ꢀꢀ
导热板
[0027]
f
ꢀꢀ
不重复区域
[0028]
g、g1、g2
ꢀꢀ

[0029]
s
ꢀꢀ
被空调空间。
具体实施方式
[0030]
以往,用于空气调和机的热交换器中会具备使空调用空气和热交换介质之间进行热交换的热传导部。例如,热交换器构成为通过增减热交换介质的流量来调节热交换量,从而控制冷却或加热空调用空气的能力。例如,如日本特开2001-280859号公报所公开,热交换器所具备的导热管群被分为两个组从而降低热交换介质的流量的下限,由此,能扩大该热交换器的热交换线圈的能力的下限的控制范围。然而,导热管群被二等分时,热交换介质的流量的下限被限制于某个限度。例如,在仅需很少的热交换量(贯流热量)的低空调负荷域内,热交换器因能力过强导致出现发生过冷或过热,从而存在热交换器的热交换所产生的热交换前后的热交换介质的温度差不为一定的问题。因此,本发明人意在研究改善节能性和舒适性的热交换器。
[0031]
又,日本特开2011-145045号公报公开的空气式辐射空调机具备:设置为使热交换器冷却或加热的空气射流的空气供给部,设置为通过从空气供给部放出的射流空气的诱引作用吸入被空调空间的空气的空气诱引部,和设置为将空气供给部的射流空气和空气诱引部的诱引空气的混合空气向被空调空间放出且向被空调空间辐射混合空气的热量的空气混合部。由上述的空气式辐射空调机的结构产生的热辐射作用及诱引再加热作用,能实现没有气流(draft)感及温度不均的舒适的空气调节,但结构复杂成本升高。因此,本发明人研究了一种通过热交换器改善节能性和舒适性同时省略诱引再加热的功能且以超过露点温度的吹出温度制冷的简易的空气式辐射空调机。
[0032]
因此,根据本公开一形态的热交换器具备使空调用空气与热交换介质热交换的热传导部和调节所述空调用空气与所述热交换介质的热交换量的控制装置,所述热传导部具备构成为将所述热交换介质流通的导热管群分为多个组且使分组比例不同的分流回路,所述控制装置构成为在低空调负荷的情况下在所述多个组中所述分组比例较少的第一组内增减所述热交换介质的流量。
[0033]
根据上述形态,热交换器在低空调负荷的情况下在分流回路的第一组内增减热交换介质的流量,由此能进一步降低热交换介质的流量的下限。因此,能将热交换器的能力的
控制范围向下限方向扩大,低空调负荷的情况下热交换器的能力也不会过强。因此,能降低能量浪费以及过冷及过热,改善节能性和舒适性。
[0034]
例如,载热交换介质为水且低空调负荷的情况下,热交换器也能将热交换前后的热交换介质的温度差控制为一定。因此,这样的热交换器用于空调机时,能进行空调机的少水量大温度差运转。少水量化能使空调机的配管及空调设备简略化,大温度差化能使相对于热交换器输送接收作为热交换介质的水且调节该水的温度的热源机节能化。
[0035]
也可以是,在根据本公开一形态的热交换器中,从通过所述热传导部的所述空调用空气的气流方向观察时,所述多个组中所述分组比例比所述第一组多的第二组内形成不与所述第一组重合的不重复区域,所述不重复区域夹着所述第一组地配置。
[0036]
根据上述形态,在热交换器制冷时使热交换介质流通第一组而不流通第二组的情况下,通过第一组从而被过冷却除湿的过冷却除湿空气通过不重复区域且能被比上述过冷却除湿空气高温的旁通空气再加热。由此,能获得没有不舒适的冷感的干燥空气。此时,过冷却除湿空气以无法逃窜的形式被旁通空气夹着,从而促进了与旁通空气的混合。因此,过冷却除湿空气能被切实地再加热。从而,即使在湿度较高潮乎乎的中间期,也能进行没有冷气流(cold draft)的干爽气流下的空气调节,舒适性改善。而且,由于不需要用于调节旁通空气的流量的旁通气门(bypass damper)等机器,所以能谋求低成本和紧凑化。
[0037]
也可以是,在根据本公开一形态的热交换器中,所述第一组为所述分组比例最少的组。
[0038]
根据上述形态,热交换器通过增减第一组内的热交换介质的流量,以此能使热交换介质的流量的下限为最少,能将热交换器的能力的控制范围向下限方向扩大。
[0039]
也可以是,根据本公开一形态的热交换器还具备设于各个所述组且调节流入的所述热交换介质的流量的阀和控制各个所述阀的动作的阀控制器,所述控制装置使所述阀控制器控制所述阀,增减各个所述组内的所述热交换介质的流量。
[0040]
根据上述形态,热交换器通过阀的控制能实现使热交换介质流通的组的控制和该组内的热交换介质的流量的控制。
[0041]
也可以是,在根据本公开一形态的热交换器中,所述导热管群由多根椭圆管构成。
[0042]
根据上述形态,导热管群的死水区域减少。此外,导热管群的通风阻力变小从而能节能化。此外,导热管群和空调用空气的接触面积(贯流热量)增加从而热交换效率改善。由此,例如,热交换介质为水时,不使热交换器的导热面积增加(大型化),而能实现热交换器所应用的空调机的少水量大温度差运行。
[0043]
根据本公开一形态的空调机具备:根据本公开一形态的热交换器,将所述空调用空气放出至被空调空间的同时辐射所述空调用空气的热量的辐射单元,和将所述空调用空气送至所述辐射单元的风扇。
[0044]
根据上述形态,可获得与本公开一形态的热交换器相同的效果。
[0045]
也可以是,在根据本公开一形态的空调机中,所述辐射单元具备将所述空调用空气放出至所述被空调空间的贯通孔的群组和蓄热部,所述蓄热部具备隔着所述空调用空气通过的间隙地配置的导热板的群组,所述导热板的群组如下构成:使所述空调用空气分流扩散且整流状地通过而从所述贯通孔向所述被空调空间放出,并且储蓄所述空调用空气的热量而从所述贯通孔向所述被空调空间辐射。
[0046]
根据上述形态,能得到使热交换器、风扇及辐射单元一体化的空调机,所以空调机的制造及施工能变得简单且成本低。蓄热部能兼用于空调用空气的蓄热和整流,能改善热辐射能力且实现无风量不均及温度不均的舒适的空气调节。
[0047]
(实施形态)
[0048]
以下参照附图说明本公开的实施形态。另,以下说明的实施形态均是示出总体或具体的示例。又,以下的实施形态中的构成要素中,表示最上位概念的独立权利要求中未记载的构成要素可被说明为任意的构成要素。又,附加的说明书附图中的各图是示意性的图,未必严格图示。此外,各图中实质相同的构成要素标以相同符号,有时会省略或简略重复说明。
[0049]
[热交换器]
[0050]
说明实施形态的热交换器100的结构。本实施形态的热交换器100也称为空气调和用热交换器。图1~图3示出了实施形态的热交换器100的结构的一个示例。如图1~图3所示,热交换器100具备:使空调用空气a和热交换介质m热交换而冷却或加热空调用空气a的热传导部1;和调节空调用空气a和热交换介质m的热交换量的控制装置2。各图中的白色空心箭头表示空调用空气a的气流方向。
[0051]
热传导部1具备翅片群3和分流回路4。翅片群3包括许多板翅(plate fin)5,许多板翅5以使空调用空气a从其间通过的形式隔着间隙配置。例如,板翅5间的间隙可在空调用空气a的气流方向延伸。分流回路4构成为将热交换介质m流通的作为多个导热管的群组的导热管群6分为亦即区分为多个组g,此外使多个组g间的分组比例不同。由此,能使一部分或全部的组g之间导热面积(热交换量)不同。
[0052]
例如,如图2及图3所示,分流回路4将导热管群6如下划分作为组g:由较粗的单点划线表示的第一组g1;和由除第一组g1外的导热管群6构成且由较细的单点划线表示的第二组g2。本实施形态中,分流回路4将导热管群6分为2个组。
[0053]
第一组g1为分组比例较少的组。分组比例较少的组可以是与多个组中某个组相比分组比例少的组。例如,第一组g1也可为分组比例最少的组。这样的分组比例为最少的组可在多个组之中为单个。另,分组比例最少的组的数量在多个组中可仅为一个,也可为两个以上。第二组g2为分组比例较多的组,例如,是比第一组g1分组比例多的组。这样的比第一组g1分组比例多的组的数量在多个组中可为两个以上。
[0054]
导热管群6以横穿空调用空气a的气流方向的形式,例如之字形蛇行,并与翅片群3的板翅5可热传导地连结。构成导热管群6的导热管的直管部分优选由椭圆管构成但由圆形管构成亦可。
[0055]
另,上述的分组比例可为导热管的比例。导热管的比例可以是:各组的导热管的界限流量的总量相对于全部的导热管的界限流量的总量的比例,各组的上述数量相对于导热管的总数量的比例,各组的流路截面积相对于导热管的总流路截面积的比例,各组的导热管的全长相对于导热管的总全长的比例,各组的导热面积相对于导热管的总表面积等的总导热面积的比例,及各组的上述容积相对于导热管的可热交换的区域的总容积的比例等。导热管的界限流量可以是能在该导热管内流动的热交换介质m的流量的上限。
[0056]
第一组g1的热交换介质m的入口与分支集管(header)7中的第一分支集管7a连接。第二组g2的热交换介质m的入口与第二分支集管7b连接。第一组g1的热交换介质m的出口和
第二组g2的热交换介质m的出口两者都与合流集管8连接。因此,第一组g1及第二组g2的各组g由通过分支集管7a或7b等形成相互连通且连续的管的导热管的群组构成。
[0057]
此外,分支集管7a及7b分别通过阀9a及9b与送配管10连接。合流集管8与返配管11连接。由此,第一组g1及第二组g2各自的热交换介质m的入口与送配管10连通,第一组g1及第二组g2各自的热交换介质m的出口与返配管11连通。例如,送配管10及返配管11内流动有作为热交换介质m的热交换用水,热交换用水通过图示省略的冷水机及锅炉等的热源机进行温度调节。例如,可构成为送配管10内流通有从热源机送来的温度调节后的热交换用水,返配管11内流通有从热交换器100送至热源机的热交换后的热交换用水。
[0058]
控制装置2具备调节热交换介质m的流量的阀9a及9b以及控制阀9a及9b的动作的阀控制器12。阀9a及9b可以是能无级地调节流量(例如,阀开度)的比例控制阀,设于每个分流回路4的组g上。阀控制器12在低空调负荷的情况下,通过控制阀9a的动作来增减分流回路4的第一组g1内的热交换介质m的流量,将热传导部1内的热交换产生的热交换介质m的热交换前后的温度差控制为一定。
[0059]
此外,阀控制器12在高空调负荷的情况下,通过控制阀9a及9b的动作来增减全部的组g内的热交换介质m的流量,将热传导部1内的热交换前后的热交换介质m的温度差控制为一定。此外,阀控制器12在高空调负荷和低空调负荷域之间的通常空调负荷的情况下,通过控制阀9b的动作来增减第二组g2内的热交换介质m的流量,将热传导部1内的热交换前后的热交换介质m的温度差控制为一定。由此,热交换器100能从盛夏及严冬等需要最大的热交换量的高空调负荷的情况,到中间期等只需很少的热交换量便足够的低空调负荷的情况,广泛地应对采用热交换器100的空调机的少水量大温度差运行。
[0060]
例如,控制装置2的功能的一部分或全部可通过由cpu(central processing unit;中央处理单元)等的处理器、ram(random access memory;随机存取存储器)等易失性存储器及rom(read-only memory;只读存储器)等非易失性存储器等构成的计算机系统(图示略)来实现。这样的功能可通过cpu使用ram作为工作区域并执行存储于rom的程序来实现。或者,控制装置2的功能的一部分或全部可通过电子回路或集成回路等专用的硬件回路来实现,也可通过上述计算机系统及硬件回路的组合来实现。又,阀控制器12的功能的一部分或全部可通过专用的硬件回路来实现,也可通过计算机系统及硬件回路的组合来实现。
[0061]
又,如图2所示,分流回路4在从通过热传导部1的空调用空气a的气流方向(图2的白色空心箭头的方向)观察时,在第二组g2内形成有作为不与第一组g1重合的区域的多个不重复区域f。多个不重复区域f配置为不重复区域f夹着第一组g1。
[0062]
[空调机]
[0063]
说明实施形态的空调机200的结构。图4是示出实施形态的空调机200的结构的一个示例的底面侧立体图。图5是图4所示的空调机200的仰视图。图6是图5所示的空调机200的vi-vi截面图。图7是图6所示的空调机200的vii-vii截面图。本实施形态中,空调机200作为具备实施形态的热交换器100且为空气式辐射空调机而进行以下的说明。
[0064]
如图4~图7所示,空调机200具备:将空调用空气向被空调空间s放出的同时辐射空调用空气的热量的辐射单元201;将外气、回气或它们的混合空气作为空调用空气与热交换介质热交换的热交换器100;和将空调用空气送至辐射单元201的风扇203。此外,空调机200具备排水盘204、壳体205和控制装置2。壳体205容纳辐射单元201、热交换器100、风扇
203及排水盘204。空调机200以使辐射单元201的底面朝向被空调空间s露出的状态设于被空调空间s的顶棚cb等。图4~图7中的粗虚线的箭头表示空调用空气的流动方向。
[0065]
辐射单元201具备空调用空气流通的腔部212、形成于腔部212的底部的贯通孔207的群组和设于腔部212内的蓄热部208。蓄热部208具备能储蓄所接触的空调用空气的热量并从贯通孔207向被空调空间s辐射的导热板209的群组。导热板209的群组隔着空调用空气通过的间隙地配置。导热板209的群组构成为能使空调用空气分流扩散且整流状通过,并从贯通孔207向被空调空间s放出。空调用空气的热量向导热板209的群组热传导,被传导的热量通过贯通孔207的群组从导热板209的群组向被空调空间s辐射。
[0066]
壳体205具有回气入口部210和外气入口部211。回气入口部210构成为通过顶棚隔层形成的顶棚腔t及图示省略的管道等吸入被空调空间s的空气(回气)。外气入口部211以吸入外气的形式构成,通过管道223与屋外连接。
[0067]
风扇203对从回气入口部210吸入的回气和从外气入口部211吸入的外气进行送风,从而使该回气及外气通过热交换器100,并使通过后的回气及外气抵达辐射单元201。
[0068]
热交换器100可具有:使作为热交换介质的冷水或温水与空调用空气热交换的结构;使作为热交换介质的氟利昂等制冷剂与空调用空气热交换的结构;或者,使其他热交换介质与空调用空气热交换的结构等,但图例中具有使冷水或温水与空调用空气热交换的结构。热交换器100使空调用空气与热交换介质热交换从而冷却或加热空调用空气。
[0069]
控制装置2具备:调节流入热交换器100的热交换介质的流量的阀9a及9b;控制阀9a及9b的动作的阀控制器12;以及温度差检测部(图示省略)。此外,温度差检测部根据流入热交换器100的分支集管7a及7b的热交换介质的温度和从合流集管8流出的热交换介质的温度,检测热交换器100中与空调用空气的热交换所产生的热交换介质的热交换前后的温度差。控制装置2基于检测到的热交换介质的热交换前后的温度差,在各空调负荷下与上述控制同样地使阀控制器12控制阀9a及9b,增减导热管群6的各组g内的热交换介质的流量。
[0070]
(其他实施形态)
[0071]
以上,说明了本公开的实施形态的例子,但本公开不限于上述的实施形态。即,可在本公开的范围内进行各种变形和改良。例如,在实施形态内应用各种变形及不同实施形态中的结构要素相组合而构成的形态均包含于本公开的范围内。
[0072]
例如,实施形态中,如附加的说明书附图所例示,热交换器100的分流回路4将导热管群6分为两个组g1及g2作为多个组g,但分为三个以上的组g亦可。此外,其中一个组g为分组比例最少也是自由的。又,热交换器100也可自由地构成为作为热交换介质除水以外还使用水溶液及氟利昂等制冷剂以及其他热交换介质的结构。热交换介质可为气体及液体的任一种。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1