生产液化天然气的方法

文档序号:4765910阅读:395来源:国知局
专利名称:生产液化天然气的方法
技术领域
本发明通常涉及液化天然气的生产,更具体地说,涉及使用深冷膨胀的液化天然气的生产和供所述工艺使用的天然气的预处理。
背景技术
一般地,天然气输送管道在700-1500psia的压力下运转。天然气减压点经常被称为泄压(let-down)站。上述站使得天然气能够进行区域分配(一般地压力为150-500psia)。通常,泄压站未被设计成可用于回收压力能量。用来使天然气泄压同时将一部分进口气体制成液化天然气的工艺经常被称为膨胀器循环或膨胀器装置。
一般地,天然气传输时,水的剩余量为5-10lbs-H2O/MMscfd,二氧化碳的剩余量为约2.0摩尔%或更多。为了运转深冷工艺(如膨胀器装置),从管道气生产液化天然气,有必要将水和二氧化碳去除至极低水平(分别小于1ppm和小于50ppm)。去除高沸点杂质(水、二氧化碳、硫化氢)经常被称为预净化或预处理。吸附系统经常被用来从管道气物流中去除水、二氧化碳和硫化氢。吸附系统的再生需要使被净化的(不含杂质的)物流通过填料的床以便去除高沸点的杂质。一般地,用于这些系统的再生气体来源于低压闪蒸气体的压缩。当使高度过冷的超临界压力的天然气减压时,产生了这种闪蒸气体。这种方法导致差的液化效率和低的液化天然气收率(一般地,小于10%的进料被液化)。
因此,本发明的目的是提供一种使用低于环境温度的(sub-ambient)膨胀的生产液化天然气的改进方法。

发明内容
当阅读本公开内容时,上述目的和其它目的对于本领域技术人员来说将变得显而易见,所述各种目的是通过以下的本发明获得的一种用于生产液化天然气的方法,其包括(A)在第一吸附单元中从第一天然气物流中去除水而生成脱水的天然气,将脱水的天然气冷却至低于甲烷临界温度的温度而生成冷却的脱水天然气,在低于环境温度的膨胀中使该冷却的脱水天然气膨胀而生成减压的天然气,使该减压的天然气升温,和使用一部分升温的减压的天然气作为第一吸附单元中的再生气体;和(B)在第二吸附单元中从第二天然气物流中去除二氧化碳和水而生成净化的天然气,液化一部分净化的天然气而生成液化天然气,和使用另一部分净化的天然气作为第二变温吸附单元中的再生气体。
如本文中所用,术语“吸附单元”是指这样的系统,其结合了至少一个容器,优选地两个或更多个,包含固体吸附剂如二氧化硅或分子筛,其优选从进料气体中吸附至少一种成分。吸附单元还包括必要的阀以在变化的时间区间使进料和再生气体通过床。
如本文中所用,术语“再生气体”是指一种流体,与吸附单元进料气体相比,其包含基本上更少的吸附杂质。
如本文中所用,术语“焦耳-汤姆逊阀膨胀”是指使用等焓减压装置的膨胀,该装置一般地可以是节流阀、孔口或毛细管。
如本文中所用,术语“涡轮膨胀(turboexpansion)”是指一种膨胀,其使用产生轴功(shaft work)的膨胀装置。上述轴功是通过轴的旋转产生的,该旋转是由流体减压通过连接到轴(如涡轮叶轮)的一个或多个流体管路而产生的。
如本文中所用,术语“低于环境温度的膨胀”是指焦耳-汤姆逊阀膨胀或涡轮膨胀,其产生具有低于环境温度的更低压力的物流。


单独的一张附图是本发明液化天然气生产方法的一种优选的实施方案的简要示意图。
具体实施例方式
本发明涉及一种使用至少一个关于低于环境温度的排气(或出口物)的膨胀的方法,该方法用于使高压天然气减压以便随后分配和/或消费。本发明用于生产至少一部分冷凝液态的进料气体。低于环境温度的排气膨胀可以使用用于生产作业的涡轮。
在实施本发明时,从高压管道取出高压天然气物流。这种物流的一部分被导向至第一吸附单元用于去除水和可能的二氧化碳。使低于环境温度的膨胀的排气/出口物升温产生(至少)一部分使所述第一吸附单元再生所需的气体。直接从管道中或者从第一吸附单元的脱水出口中获得相对于第一高压物流具有更低流速的第二物流。该物流被导向至第二吸附单元,其用来去除二氧化碳和水。用于第二吸附单元的再生气体从不含二氧化碳的产品物流(离开该单元的气体)或从随后下游的低于环境温度的加工中获得。然后将离开第二吸附剂单元的再生气体引入进料或者第一吸附剂单元的产品物流中。优选地,这种引入可以通过使进料或第一物流产品膨胀或者通过压缩来自第二吸附单元的再生气体而进行。预纯化后,第一吸附单元的产品用来产生使第二单元的产品冷却和冷凝所用的制冷。
参考附图,将更详细地描述本发明。现在参考附图,通过天然气输送管道100的天然气的压力一般地为600-1500磅/平方英寸绝压(psia)。天然气物流101取自管道100,用于通入区域性分配管道180,其一般地在100-300psia的压力下运转。供给这种气体的典型途径可以包括这种气体如通过管路102、阀200和加热器201的直接减压。
在实施本发明中,至少一些,优选大部分天然气物流101通过管路103引导,以回收膨胀能量和生产液化天然气。一部分11,一般地占物流103的60-85%,通过阀110并且在物流12中作为第一天然气物流输送到第一吸附单元120,其优选是变温吸附单元,但也可能是变压吸附单元。吸附单元120将一般地使用至少两个吸附床和一组阀结构(未示)以便易于定期的床切换和再生。
在第一吸附单元120中,第一天然气物流经脱水,从而生成脱水的天然气,其在物流13中从第一吸附单元120取出。通过换热器140和150,物流13中的脱水的天然气被冷却到低于甲烷的临界温度(-116.5F)的温度。以低于环境温度的膨胀方式使生成的冷却的脱水的天然气14减压,例如通过焦耳-汤姆逊膨胀阀155。一般地,在阀155出口处,天然气15的压力将为300-500psia。低于环境温度的膨胀将导致生成双相混合物。
两相天然气物流15被通入相分离器容器156中,其中它被相分离,以便分配到换热器150的共同通道中。来自容器156的液体在物流16中被通到换热器150而来自换热器156的蒸气在物流17中被通到换热器150。在换热器150中和随后在换热器140中,使减压的天然气升温,并且通过与前述的冷却的脱水的天然气的间接换热而完全汽化。所得的升温的天然气以基本上过热状态,一般地为30-90F离开换热器140。
一部分升温的减压的天然气在第一吸附单元120中被用作再生气体。附图中举例说明的本发明的实施方案是一种优选的实施方案,其中升温的减压的天然气经过压缩和第二低于环境温度的膨胀,然后回收并用作再生气体。
现在再次参考附图,升温的减压的天然气18从换热器140取出并通到压缩机160,其中它被压缩至压力通常为600-900psia。所得压缩的天然气物流19在后冷却器(aftercooler)161中冷却,一般地冷却至80-100的温度。如果期望的话,一部分20压缩的天然气可循环回物流13。其余的压缩的天然气被通到涡轮膨胀机170,其中它被涡轮膨胀至压力大约高于区域性分配管道180中所存在的最终排出(let-down)压力。取决于进料组成,涡轮膨胀机170的出口物流21可具有边际量的被夹带的冷凝物。这种物流可以被导向至相分离容器147,其中液体和蒸气在分配以及换热器140中升温前分离。在离开换热器140后,涡轮膨胀的气体的一部分22可在换热器125中升温。受热的气体用作吸附单元120的再生气体。剩余部分23可通过阀126减压,与来自吸附单元120的离去再生物流结合并且被导入分配管路180。
另一部分24,一般地占物流103的15-40%,作为第二天然气物流通到第二吸附单元130,其优选是变温吸附单元,但也可以是变压吸附单元。在第二吸附单元130中从第二天然气中去除二氧化碳和水而生成净化的天然气,其在物流40中从第二吸附单元130取出。一部分25净化的天然气40,一般地为25-75%,通过换热器135升温,其中它被加热到400-600,然后用作第二吸附单元130的再生气体。如果期望的话,并且如附图中所举例说明的,生成的再生气体26,离开第二吸附单元130,然后可能通到物流12中进行如上所述的加工。或者,物流26可被通到来自第一吸附单元120的产品物流13中。
部分27进料气体,其在吸附系统130中经过干燥和二氧化碳去除并且未被用于再生,被导向至换热器140用于冷却。这种“液化”物流被冷却至一般地为-40至-80的温度。在这一温度,小部分的重质烃类可能从这一物流28中冷凝,在相分离容器145中与主体物流进行相分离。重烃冷凝物流29可通过减压阀146闪蒸,并且在物流30中通到容器147中,用于随后的汽化/升温。剩余部分31的不含二氧化碳的进料物流在换热器150中被进一步冷却至低于甲烷的临界温度。这种进料物流以基本上密相/冷凝状态32离开换热器150。这种加压的液化天然气物流可直接作为产品获得或者可进一步在换热器190中通过额外间接热交换使其过冷。这种额外过冷的制冷(由一般的工艺装置195所体现)可通过许多系统产生,这些系统包括但不局限于直接气体膨胀冷却和混合气体制冷。离开换热器190的过冷的加压的液化天然气物流可然后通过膨胀阀196减压至大约高于环境的压力。产品液化天然气33可然后导向至合适的存储或运输(未示)。
吸附剂系统120和130可使用多种吸附剂。上述系统也可被设计成从输送管道气中去除痕量的硫化氢。也许可能的是使用各种用于再生的气体的混合物。除使用用于脱水再生的涡轮膨胀气体外,少量的闪蒸气体可从冷端闪蒸(阀196)和储罐加热进口中获得。这种气体可被用来补充再生气体加热和/或冷却的需要。上述气体可任选在使用前被压缩和/或加热。虽然再生气体加热器125和135被显示为间接换热器,但是还可能的是使用电热器或者来自火焰加热器或者其它废热源的间接加热。
相对于运转二氧化碳吸附系统的任选选项包括除去阀110。这可以通过包含压缩机而实现,以便在引入到系统120前将再生气体加压回至管道压力。这样,进料物流的制冷潜能在一定渐增功率消耗的条件下被最大化。使用阀110(进料节流阀)的备选方案包括为二氧化碳净化被提高分数的进料。通过换热器140和150(如所示),可以使这种被提高分数的进料冷却。在换热器150的冷端,这种不含二氧化碳气体的额外流可以被节流和相分离,类似于导向至阀155和分离器156的不含水的气体。所得物流然后可被升温至环境温度并且用来使吸附剂系统130再生。在吸附二氧化碳后,再生气体然后可被导向至含二氧化碳的回路。例如,升温后,含二氧化碳的再生气体可被导入压缩机160的进料物流中。
脱水的进料制冷物流可任选地在换热器140的出口进行相分离(类似于液化进料所示的)。在这种情况下,重质冷凝也可被导向容器147并随后在热交换器140中汽化。
相对于再生脱水系统120的重要的任选选项包括使用除升温的涡轮膨胀排气以外的气体。例如,从分离器156中获得的一部分中压汽化的焦耳-汤姆逊膨胀物流可被用作再生气体。在这种选择中,含水的再生气体然后可被节流至升温的涡轮膨胀排气中。这种方法与本发明实质一致,其中吸附系统120的再生气体是由低于环境温度的膨胀获得的。本主题的膨胀定义为涡轮膨胀(与作业生产一起)或者低于环境温度的焦耳-汤姆逊膨胀(或两者的结合)。虽然将从液化物流中去除的重质物流显示为被再次引入到排出(let-down)物流(涡轮排气)中,但是该重质物流可进行额外的分离过程,以便产生单独的液化石油气或者丁烷产品物流。
权利要求
1.一种用于生产液化天然气的方法,其包括(A)在第一吸附单元中从第一天然气物流中去除水而生成脱水的天然气,将所述脱水的天然气冷却至低于甲烷临界温度的温度而生成冷却的脱水天然气,在低于环境温度的膨胀中使该冷却的脱水天然气膨胀而生成减压的天然气,使该减压的天然气升温,和使用一部分升温的减压的天然气作为第一吸附单元中的再生气体;和(B)在第二吸附单元中从第二天然气物流中去除二氧化碳和水而生成净化的天然气,液化一部分净化的天然气而生成液化天然气,和使用另一部分净化的天然气作为第二变温吸附单元中的再生气体。
2.权利要求1的方法,还包括在第一吸附单元中从第一天然气物流中去除二氧化碳。
3.权利要求1的方法,其中通过与冷却的脱水天然气的间接换热实现减压的天然气的升温。
4.权利要求1的方法,其中通过与液化的净化的天然气的间接换热实现脱水天然气的升温。
5.权利要求1的方法,其中使液化天然气过冷。
6.权利要求1的方法,其中升温的减压的天然气被作为产品回收。
7.权利要求1的方法,其中净化的天然气在第二吸附单元中被用作再生气体,其然后被通到第一吸附单元。
8.权利要求1的方法,其中净化的天然气在第二吸附单元中被用作再生气体,其然后与脱水的天然气混合。
9.权利要求1的方法,其中第一吸附单元和第二吸附单元都是变温吸附单元。
10.权利要求1的方法,其中用作第一吸附单元的再生气体的减压的天然气是通过低于环境温度的焦耳-汤姆逊阀膨胀、随后的压缩和然后的低于环境温度的涡轮膨胀产生的。
全文摘要
一种用于生产液化天然气的方法,该方法使用两个单独的吸附步骤来从天然气中去除水和二氧化碳,使用低于环境温度的膨胀而生成脱水吸附步骤的再生所用的再生气体,此外该方法为净化的天然气的冷却或液化提供制冷。
文档编号F25J3/00GK101040158SQ200580035075
公开日2007年9月19日 申请日期2005年10月12日 优先权日2004年10月13日
发明者H·E·霍沃德, M·M·沙 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1