冰箱的制作方法

文档序号:4766196阅读:111来源:国知局
专利名称:冰箱的制作方法
技术领域
本发明涉及一种冰箱,其设有分别专门对冷冻储藏空间和冷藏空间进行冷却的冷却器和对冷气进行循环的风扇,通过流路切换阀对所述冷冻和冷藏储藏空间进行交替冷却。
背景技术
图8表示现有冰箱的制冷循环,作为对制冷剂进行压缩、排出的压缩机12,使用能力可变式的压缩机,将冷凝器13、由三通阀14构成的制冷剂流路切换装置、第1节流装置15和冷藏用冷却器9与压缩机12连接,将第2节流装置16和冷冻用冷却器7、储能器17及单向阀18与所述第1节流装置15及冷藏用冷却器9并联连接,构成制冷循环20。
并且,根据对冷藏室、冷冻室的室内温度进行检测的温度传感器的检测温度,利用所述流路切换装置14将制冷剂流路交替地切换为由第1节流装置15和冷藏用冷却器9构成的冷藏侧回路21、以及由第2节流装置16和冷冻用冷却器7、储能器17及单向阀18所构成的冷冻侧回路22进行运转,通过配设在所述各自的冷却器7、9附近的冷气循环风扇的旋转,对冷藏室空间及冷冻室空间分别独立而交替地进行冷却控制,并在从冷冻侧回路22的冷却运转向冷藏侧回路21的冷却运转切换时,作成在一定时间关闭三通阀14、对冷藏侧回路21和冷冻侧回路22都不流动制冷剂的状态,通过运转压缩机12的所谓抽吸运转,来吸引滞留于冷却器内的制冷剂,确保对冷藏用冷却器9的制冷剂循环量,然后制冷剂流向冷藏侧回路21对冷藏空间进行冷却。
采用该抽吸运转,从三通阀14吸引滞留于低压侧的冷却器7的制冷剂,强制使其转移到处于高压侧的冷凝器13,抽吸后,制冷剂迅速供给于冷藏用冷却器9,因此具有保持制冷剂循环量、可提高冷藏空间的冷却效率的优点。
另外,如本案专利申请人申请的专利文献1记载的图9所示,在从由前述同样的制冷循环结构构成的制冷循环结构中冷冻侧回路的冷却运转向冷藏侧回路的运转切换时,与前述以往例子相反,通过将流路切换装置全开,制冷剂在冷冻侧回路和冷藏侧回路的双方中流动,将规定的制冷剂量储存于冷藏室侧回路后切换成冷藏室冷却,就不会在一开始发生制冷剂延迟。
专利文献1日本特开2002-267312公报。
但是,所述以往例子的抽吸运转本身不仅无益于室内的冷却,而且在冷藏箱的周围温度为高温的场合或将高温食品放入箱内时等压缩机12的转速较高时,若就这样以该转速进行抽吸运转,则在抽吸运转后为了进行冷藏侧冷却运转而将三通阀14切换成冷藏侧回路21的场合,通过抽吸运转而储存于冷凝器13的制冷剂就由高转速的压缩机12大量地被压送到处于空隙状态的冷藏用冷却器9内。其结果,制冷剂流动声急剧变大成为噪声,另外,具有因间歇性的制冷剂流动异常声响的发生而使使用者在听觉上感到不适的问题。
另外,采用专利文献1,虽可防止从冷冻侧回路的冷却运转切换至冷藏侧回路的运转时发生冷藏用冷却器的制冷剂延迟,但由于制冷剂在冷冻及冷藏侧回路双方中流动,故制冷能力下降,对某些冷藏室内的负荷条件,存在同时冷却运转的时间带变长、效率差的缺点。并且,朝向冷藏用冷却器的制冷剂流路,其流路阻力设定得比朝向冷冻用冷却器的制冷剂流路小,以在制冷剂仅在冷藏用冷却器中流动的冷藏冷却模式时,在高的蒸发温度下运转,因此,当制冷剂朝双方流动时,存在着更多的制冷剂朝冷藏用冷却器侧流动的问题。

发明内容
鉴于上述问题,本发明的目的在于提供这样一种冰箱在三通阀等制冷剂流路切换装置所进行的从冷冻侧回路的冷却运转向冷藏侧回路的运转切换时,降低流路切换时制冷剂延迟所产生的冷却损失从而进行高效率的冷却运转,同时使制冷剂适当地向冷冻用及冷藏用的各冷却器流动,防止异常声响的发生。
为实现上述目的,本发明技术方案1的冰箱是,设有分别专门对冷冻储藏空间及冷藏储藏空间进行冷却的冷冻用冷却器及冷藏用冷却器和使冷气进行循环的冷却风扇,通过流路切换阀将制冷剂流路交替地切换至所述冷冻用冷却器及冷藏用冷却器进行冷却,并在将制冷剂流路从冷冻用冷却器向冷藏用冷却器进行切换时,在制冷剂向双方的冷却器流动的同时冷却模式运转后进行冷藏空间冷却模式运转,在同时冷却模式运转时,冷藏用冷却器的制冷剂出入口部的温度差若是小于等于规定值,则增大向冷藏用冷却器的流路阻力,若是大于等于规定值,则减小该流路阻力,本发明技术方案2的冰箱是,设有分别专门对冷冻储藏空间及冷藏储藏空间进行冷却的冷冻用冷却器及冷藏用冷却器和使冷气进行循环的冷却风扇,通过流路切换阀将制冷剂流路交替地切换至所述冷冻用冷却器及冷藏用冷却器进行冷却,并在从冷冻用冷却器向冷藏用冷却器切换制冷剂流路时,在制冷剂向双方的冷却器流动的同时冷却模式运转后进行冷藏空间冷却模式运转,朝向冷藏用冷却器的流路阻力比冷冻用冷却器的流路阻力小,在同时冷却模式运转时,朝向冷藏用冷却器的流路阻力比通常运转时的流路阻力大。
采用本发明的结构,由于通过在冷藏侧冷却运转前进行使冷冻及冷藏侧冷却回路流通制冷剂的同时冷却模式运转,使制冷剂滞留于冷藏用冷却器,因此可在冷藏侧冷却运转开始时迅速将制冷剂供给于冷藏用冷却器,可消除制冷剂延迟所造成的冷却损失,并均衡地使制冷剂流向冷冻用冷却器及冷藏用冷却器,获得可提高冷却效率的优点。另外,可消除冷藏侧冷却运转开始时的制冷剂流动噪声,可降低使用者对发生异常声响的不适感。


图1是表示本发明实施例1的冰箱的运转控制时图。
图2是表示一般冰箱的纵剖视图。
图3是表示本发明的同时冷却模式状态的制冷循环概略图。
图4是表示图3的冷藏冷却模式的制冷循环概略图。
图5是表示图3的冷藏冷却模式的制冷循环概略图。
图6是表示相对于图3的其他实施例的冰箱的制冷循环概略图。
图7是表示图3的同时冷却模式之后的抽吸运转的制冷循环图。
图8是表示以往冰箱的制冷循环的概略图。
图9是以往冰箱的运转控制时图。
具体实施例方式
下面根据

本发明的一实施例。图2是冰箱的纵剖视图,将由隔热箱体形成的冰箱本体1的内部作为储藏空间,分别独立地在最上部配置冷藏室2,在冷藏室2的下方配置蔬菜室3,在最下部配置冷冻室4,在冷藏室2与蔬菜室3之间通过隔热分隔壁而左右并列设置自动制冰室5和未图示的多温度切换室,在各储藏室的前面开口,分别设有专用的门6,以开闭自如地将其封住。
在冷冻室4的后部配置冷冻室和制冰室等冷冻储藏空间用的冷却器7及通过管道将该冷却器7生成的冷气在储藏室内进行循环的风扇8,在冷藏室2的背面设置对冷藏室2和蔬菜室3进行冷却的冷藏储藏空间用冷却器9和风扇10,通过设置在本体下部的机械室11内的制冷剂压缩机12的驱动,利用风扇8、10的旋转将由所述冷却器7、9冷却后的冷气送向各储藏室,并将它们各自冷却控制在规定温度。
如图3所示,所述各储藏室由制冷循环20冷却,该制冷循环20是如下结构从将高温高压的制冷剂气体排出的压缩机12、将制冷剂气体散热液化的冷凝器13、作为制冷剂流路的切换装置的三通阀14串联连接第1节流装置15和高温侧的冷藏用冷却器9从而形成返回所述压缩机12的回路,同时,从所述三通阀14把冷冻侧回路22与冷藏侧回路21并联地连接,其中所述冷藏侧回路21由所述第1节流装置15和高温侧的冷却器9构成,所述冷冻侧回路22是按顺序将第2节流装置16与低温侧的冷冻用冷却器7、储能器17及单向阀18连接而成。
该制冷循环20的各配管在所述机械室11内各自连接形成循环,作为制冷剂,封入了不会破坏臭氧层、地球温室化系数低但为可燃性的异丁烷等烃类的HC制冷剂。
并且,根据设在冷藏室2和冷冻室4等的未图示的温度传感器的检测温度,通过所述三通阀14将流路交替地切换成冷藏侧回路21或冷冻侧回路22,以供给制冷剂进行冷却运转,而冷藏侧回路21具有第1节流装置15和冷藏用冷却器9,冷冻侧回路22具有第2节流装置16、冷冻用冷却器7、储能器17及单向阀18,同时,通过分别配置在所述冷冻用冷却器7及冷藏用冷却器9附近的风扇8、10的旋转,对高温侧的冷藏室2和蔬菜室3等的冷藏储藏空间、及低温侧的冷冻室4和自动制冰室5等冷冻储藏空间各自独立地冷却控制成规定温度。
对与图3相同的部分标上相同的符号的图4表示所述冷藏侧回路21进行冷却运转的冷藏冷却模式的制冷循环,通过对该冷藏冷却模式和与图4同样的图5的制冷循环所表示的冷冻侧回路22进行冷却运转的冷冻冷却模式予以交替进行的交替冷却运转,从而将冷藏温度带与冷冻温度带的双方的储藏空间交替冷却,在双方的储藏空间都冷却到规定温度时,压缩机12停止,然后因储藏室内温度上升使得任一个储藏室温度高于设定温度的场合,再次使压缩机12及风扇8、10起动,对该储藏空间循环冷气加以冷却。
如图1的时图所示,所述冷却运转的控制是根据分别配置在所述冷藏空间及冷冻空间的储藏室温度传感器的检测温度和各自的储藏室内的设定温度、其运转时刻的压缩机12和风扇8、10转速等的运转状态进行修正计算,利用室内的热负荷使制冷能力可变,并以冷冻冷却模式和冷藏冷却模式对冷冻储藏空间和冷藏空间交替进行冷却运转。
另外,在所述冷冻冷却模式的状态下,制冷剂蒸发温度是比冷冻空间温度低的温度。相反,设在冷藏室2背面的冷藏用冷却器9的周围温度是大于等于0℃,冷藏用冷却器9内的制冷剂就蒸发,故处于不存在液态制冷剂的状态。
因此,从该状态即使用三通阀14切换成使制冷剂在冷藏侧回路21流通的冷藏冷却模式,所述冷冻侧回路22中的制冷剂也仍被储存在冷冻用冷却器7及储能器17中,相应地使用来冷却冷藏用冷却器9的制冷剂量不足,刚切换后的冷藏用冷却器9的管内无制冷剂,因此,有利于冷却的制冷剂的流入延迟,从而冷却作用延迟。
为防止制冷剂延迟,在从冷冻侧回路22的冷却运转向冷藏侧回路21进行运转切换时,将三通阀14全开规定时间,如图3所示,无论冷藏侧回路21还是冷冻侧回路22都作成使制冷剂流动的状态,实施使压缩机12运转的同时冷却模式运转,在所述规定时间后,通过三通阀14将制冷剂流动回路切换为冷藏侧回路21,进行冷藏储藏空间的冷却。
此时,在三通阀14与冷藏用冷却器9间连接的由毛细管构成的第1节流装置15因其流路阻力比冷冻用冷却器7侧的第2节流装置16小而容易流入制冷剂。并且,流路刚切换后,由于冷藏用冷却器9的温度高,故流入的制冷剂因促进蒸发而很少流至冷却器9出口,但随着时间的推移,液态制冷剂就逐渐增加流动,在充分流到出口部附近的规定时间后的阶段,将制冷剂流路切换成冷藏冷却模式。
如上所述,在从冷冻冷却模式切换成冷藏冷却模式时,通过插入使制冷剂在冷藏侧回路21和冷冻侧回路双方中流动的同时冷却模式,可降低冷却损失从而进行高效率的冷却运转,消除以往的抽吸运转后向冷藏侧冷却切换时的制冷剂延迟,并可防止制冷剂流动产生的噪声。
同时冷却模式运转的目的是通过在冷藏用冷却器9中流动必要量的制冷剂来实现的,其运转时间最好尽可能短,因此,在本发明中,在冷藏用冷却器9的入口和出口设置温度传感器23、24,对其温度进行测定,从而检测出冷藏用冷却器9内部的制冷剂流入状况,在温度差比规定值小的时刻,结束同时冷却模式。
即,在刚向同时冷却模式切换后,虽然冷藏用冷却器9入口的温度变低,但由于制冷剂流入量不充分,故成为在直到出口部的冷却器管内所蒸发的过热状态,出口部的温度不降低。当冷藏用冷却器9内的制冷剂量随时间的推移而变得充分时,由于出口部的过热现象消失,故通过检测该低温并检测出与入口温度互相间的温度差,从而作为从同时冷却模式切换成冷藏冷却模式运转的时间,上述的同时冷却模式的运转时间是大约1个循环的冷冻冷藏运转时间即40~60分钟中的5分钟左右。
此时控制成,出入口的温度传感器23、24的温度差小于一定值时,增大制冷剂流路阻力,温度差大于一定值时,减小流路阻力。
本来,如上述实施例所述,在将冷冻侧回路22与冷藏侧回路21并联连接的并联循环中,通过提高冷藏冷却模式的蒸发温度,可提高循环效率,因此,将冷藏用冷却器9侧的第1节流装置15的流路阻力作成比冷冻用冷却器7侧的第2节流装置16小的平缓的节流度。而且,在该状态下,当进入到所述同时冷却模式运转时,制冷剂不流入流路阻力大的冷冻侧回路22,仅流入阻力小的冷藏侧回路21。此外,当大量制冷剂流动时,通常在无储能器的冷藏侧回路21中制冷剂来不及全部蒸发,有发生液态制冷剂返回压缩机12的现象的问题。
因此,在同时冷却模式运转中,必须防止制冷剂过多向冷藏用冷却器9流动,使制冷剂均衡地在冷冻用冷却器7及冷藏用冷却器9的双方中流动,为此,可调节制冷剂更加容易流动的冷藏侧回路21的第1节流装置15的节流度。
第1节流装置15的节流调节如与前述同样地标上了符号的图6所示那样,在冷藏侧回路21中制冷剂流路的切换装置即三通阀14下游侧的流路上配置自动膨胀阀等的制冷剂控制阀25,通过检测设于冷藏用冷却器9中的制冷剂入口和出口部的温度传感器23、24的温度差,从而根据温度差将制冷剂控制阀25的阀开度设定成规定值,对在节流装置15中流动的制冷剂量进行控制。
即,冷藏用冷却器9的制冷剂入口和出口温度相等时,因为表示流动的制冷剂量过多,液态返回压缩机12,故将制冷剂控制阀25的开度相对于通常时节流5~20%左右,将流路阻力调节成冷藏用冷却器9的出口侧的温度成为比入口侧高2~4℃的弱过热的状态。
相反,入口与出口侧温度差较大时,由于制冷剂不足成为过热状态,故扩大制冷剂控制阀25的开度,减小流路阻力,调节成与前述相同的弱过热状态,通过作成这种结构,可防止制冷剂延迟所产生的冷却损失,且不会发生液态返回,可使制冷剂均衡地在冷冻用冷却器7及冷藏用冷却器9中流动。
在所述实施例中,通过测定冷藏用冷却器9的入口与出口温度,来调节向冷藏用冷却器9的制冷剂流路阻力,但并不限于此,也可某种程度地将流路阻力做大的状态下进行固定、且以一定时间使制冷剂在双方的冷却器7、9中流动。此时,在一定时间内,调节成液态制冷剂未充满到冷藏用冷却器9出口的制冷剂流路阻力,或事先设定流路阻力然后决定制冷剂在双方冷却器7、9中流动的时间。
采用上述结构,是控制成将同时冷却模式运转进行到液态制冷剂被充满冷藏用冷却器9出口处的时刻为止,可不需要对冷藏用冷却器9的温度进行测定的温度传感器23、24。
另外,在上述实施例中,是将制冷剂控制阀25作成另外部件的,但并限于此,也可在对流路切换的三通阀14的出口部开口一体地形成流量控制机构。
如前所述,在将三通阀14全开、进行制冷剂在冷藏侧及冷冻侧回路21、22双方中流动的同时冷却模式运转的期间,与此后将制冷剂流路切换至冷藏侧回路21所进行的冷藏冷却模式相比,制冷剂的蒸发温度因沿着低压的冷冻用冷却器7而变低,制冷效率变低,同时由于制冷剂在冷冻侧和冷藏侧双方中流动,故流向冷藏用冷却器9的制冷剂量变少,作为冰箱整体的制冷能力就变低。
因此,同时冷却模式运转中,为了应对制冷能力的下降和通常时任一方的风扇的旋转变成冷冻和冷藏用的2个风扇8、10的旋转,故将冷冻及冷藏冷却器用的风扇8、10的转速控制成低转速,例如控制成通常时的40~70%,通过作成低转速,就可抑制冷冻冷藏双方的风扇8、10进行旋转所产生的噪声增大。
另外,为了缩短所述同时冷却模式的运转时间并应对前述的制冷能力的下降,也可通过增加压缩机12的转速,来保持冷冻及冷藏空间的冷却能力,期间,使通常以50Hz~76Hz驱动的压缩机12的转速增加20~50%左右进行运转。
此外,所述同时冷却模式中,也可将对设在机械室11的压缩机12和冷凝器13进行冷却有助于散热的散热风扇19的转速设置得高于通常转速,提高制冷能力,缩短同时冷却模式的运转时间。
也可设置抽吸模式,在所述同时冷却模式运转结束时,如图7所示,在压缩机12继续运转的状态下通过关闭制冷剂流路切换阀14,来切断向冷冻侧回路22及冷藏侧回路21的制冷剂流通,将制冷循环低压侧的制冷剂予以回收。
如上所述,以往在从冷冻冷却模式切换成冷藏冷却模式时,将流路切换阀14关闭,在关闭状态下通过运转压缩机12而实施将低压侧的制冷剂回收的抽吸运转,但本发明在其之前,设置制冷剂在冷冻侧回路22和冷藏侧回路21双方中流动的同时冷却模式,与以往方法相比,通过在滞留于冷冻用冷却器7中的制冷剂量较少的状态下进行抽吸,就可在短时间内进行制冷剂回收。
因此,可缩短无益于储藏空间冷却的无用的时间即制冷剂回收模式的运转时间,可快速切换到冷藏冷却模式。由于制冷剂回收时间随压缩机12的制冷剂吸入力而变化,因此,在回收制冷剂时,通过使压缩机的转速进行变化,例如转速为25rps的场合作成90秒,转速为75rps的场合作成45秒,从而可进行最佳的制冷剂回收。
在所述的抽吸运转时,压缩机12的转速也可如图1所示那样不下降为中速,而仍是同时冷却时的转速,冷冻用风扇8在本实施例中以低速进行运转,以促进冷冻用冷却器7内的制冷剂回收,但并不限于此,也可使冷冻用风扇8停止。
本发明可利用于设有对冷冻储藏空间和冷藏储藏空间分别专门进行冷却的冷却器和使冷气进行循环的风扇,通过流路切换阀将制冷剂流路交替切换至所述冷冻用冷却器和冷藏用冷却器进行冷却的冰箱。
权利要求
1.一种冰箱,其特征在于,设有分别专门对冷冻储藏空间和冷藏储藏空间进行冷却的冷冻用冷却器及冷藏用冷却器和使冷气进行循环的冷却风扇,通过流路切换阀将制冷剂流路交替切换至所述冷冻用冷却器及冷藏用冷却器进行冷却,在将制冷剂流路从冷冻用冷却器向冷藏用冷却器进行切换时,在制冷剂向双方的冷却器中流动的同时冷却模式运转后进行冷藏空间冷却模式运转,在同时冷却模式运转时,冷藏用冷却器的制冷剂出入口部的温度差若是小于等于规定值,则增大向冷藏用冷却器的流路阻力,若是大于等于规定值,则减小该流路阻力。
2.一种冰箱,其特征在于,设有分别专门对冷冻储藏空间和冷藏储藏空间进行冷却的冷冻用冷却器及冷藏用冷却器和使冷气进行循环的冷却风扇,通过流路切换阀将制冷剂流路交替切换至所述冷冻用冷却器和冷藏用冷却器进行冷却,在将制冷剂流路从冷冻用冷却器向冷藏用冷却器进行切换时,在制冷剂向双方的冷却器中流动的同时冷却模式运转后进行冷藏空间冷却模式运转,使向冷藏用冷却器的流路阻力比冷冻用冷却器的流路阻力小,在同时冷却模式运转时,使向冷藏用冷却器的流路阻力比通常运转时的流路阻力大。
3.如权利要求1或2所述的冰箱,其特征在于,向冷藏用冷却器的流路阻力的调节,用兼作流路切换阀的制冷剂控制阀来进行。
4.如权利要求1或2所述的冰箱,其特征在于,在同时冷却模式运转时,冷冻用冷却器及冷藏用冷却器的冷气循环风扇的转速是比通常时低的转速。
5.如权利要求1或2所述的冰箱,其特征在于,在同时冷却模式运转时,压缩机的转速是比通常冷却时高的转速。
6.如权利要求1或2所述的冰箱,其特征在于,在同时冷却模式运转结束后进行制冷剂回收模式运转,通过流路切换阀阻止制冷剂向冷冻用冷却器及冷藏用冷却器的流动,将各冷却器内的制冷剂回收到压缩机内。
全文摘要
一种冰箱,设有分别专门对冷冻空间及冷藏空间进行冷却的冷却器(7、9)和冷气循环风扇(8、10),通过流路切换阀(14)将制冷剂流路交替切换至冷冻用冷却器和冷藏用冷却器进行冷却,在将制冷剂流路从冷冻用冷却器(7)切换至冷藏用冷却器(9)时,在双方冷却器的同时冷气模式运转后进行冷藏冷却模式运转,在同时冷却模式运转时,冷藏用冷却器的制冷剂出入口部的温度差若是小于等于规定值,则增大向冷藏用冷却器的流路阻力,若是大于等于规定值,则减小该流路阻力。在利用三通阀等制冷剂流路切换装置从冷冻侧回路的冷却运转向冷藏侧回路的运转切换时,可降低流路切换时制冷剂延迟所造成的冷却损失,进行高效率的冷却运转,同时使制冷剂均衡地流向冷冻用及冷藏用的各冷却器,防止异常声响的发生。
文档编号F25D11/02GK1818521SQ200610003769
公开日2006年8月16日 申请日期2006年2月9日 优先权日2005年2月10日
发明者野口好文, 天明稔, 仁木茂, 塚本惠造 申请人:株式会社东芝, 东芝电器营销株式会社, 东芝家电制造株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1