液氧、液氮互换生产装置及生产工艺的制作方法

文档序号:12355591阅读:988来源:国知局
液氧、液氮互换生产装置及生产工艺的制作方法

本发明涉及空气分离技术领域,特别是液氧、液氮互换生产装置及生产工艺。



背景技术:

目前,许多液体空气分离装置在由于市场对液氧和液氮产品量的不同需求,装置负荷调节能力较差,或者是有一定的负荷调节能力,但存在单位能耗较高的情况,同时由于液体贮存设备容量的限制,在液氧或液氮的贮存量到最大值的情况下,装置不得不停运,特别是在液氧、液氮量需求差异大时,装置连续生产时间很短,由于装置较频繁的开停,增加了生产能耗,同时对装置的使用寿命不利。



技术实现要素:

本发明的目的在于克服现有技术的缺点,提供液氧或液氮连续生产、能耗小、设备使用寿命高的液氮、液氧氧气互换生产装置及生产工艺。

本发明的目的通过以下技术方案来实现:液氧、液氮互换生产装置,包括精馏塔、过冷器、液化换热器、循环压缩机、低温冷气机组、增压膨胀机和增压机后冷却器,所述的循环压缩机的输出端与增压膨胀机增压端相连,循环压缩机的输入端与管A相连,管A为干燥空气进气管,管A上设有阀门,增压膨胀机增压端通过管B连接在增压机后冷却器输入端上,增压机后冷却器的输出端连有管C,管A和管C之间设有管D,管D上设有阀门,管C穿过液化热换器后连接在低温冷气机组输入端上,低温冷气机组的输出端通过管E连接在液化换热器上,管C与管E之间设置有管F且在管F上设有阀门,位于液化换热器内部的管E分成管道G、管H,管G连接在增压膨胀机膨胀端上且管G上设有阀门,管H直接连接在精馏塔上且管H上设有阀门,增压膨胀机的膨胀端通过管I连接在精馏塔上,管I上连接有管J,在管J上靠近管I的位置设有阀门,管J穿过液化换热器分为两部分,穿过液化换热器的管J一部分直接与大气相连而另一部分连接在管A上,未穿过液化热换器的管J还通过两根管道分别与液氮储槽和液氧储槽相连,液氮储槽和液氧储槽在输出端处均设有阀门;

所述的精馏塔包括上塔、下塔,上塔和下塔之间设置有主冷凝蒸发器,管I和管H均连接在下塔上,下塔的底部设有管道且该管道穿过过冷器后连接在上塔的中部,下塔的中部设有管道且该管道穿过过冷器后连接在上塔的上部,主冷凝蒸发器的液氮输出端设有管道且该管道穿过过冷器后分为两支,一支与液氮储槽相连,另一只与上塔的顶部相连,主冷凝蒸发器的液氧输出端设有管道且该管道穿过过冷器后连接在液氧储槽上,主冷凝蒸发器的输入端与下塔的上部相连,主冷凝蒸发器的液氮输出端与下塔的上部相连,上塔的上部还设有管K,管K穿过过冷器和液化换热器且在管K出口处设有调节阀门,上塔的顶部还设有管L,管L穿过过冷器和液化换热器且在管L出口处设有调节阀门;

所述的管C上设有阀门,在管F和低温冷气机组输入端之间的管D上设有阀门,在管F和低温冷气机组的输出端之间的管E设置有阀门,在主冷凝蒸发器的液氮输出端相连的管道上靠近上塔顶部处设有阀门,在与下塔相连的管道上靠近上塔上部处设有阀门,在与下塔底部相连的管道上靠近上塔中部处设有阀门。

所述的液氮储槽为带压储槽或常压贮槽,液氧储槽为带压储槽或常压贮槽。

所述的主冷凝蒸发器的液氮输出端还与液氮储槽的输出端通过管道相连且在该管道上设有阀门。

所述的管K穿过过冷器后还与上塔的底部通过管道相连且该管道上设有阀门。

液氧、液氮互换生产装置的生产工艺,包括以下步骤:

S1、空气的液化,先将原料空气输送至循环压缩机和增压膨胀机的增压端进行压缩,再将压缩后的空气通过增压机后冷却器、液化换热器和低温冷却机组进行冷却,冷却后的空气一部分直接输送至精馏塔中精馏,另一部分被冷却后的空气进入增压膨胀机的膨胀端膨胀制冷,膨胀后的空气再次分为两部分,一部分膨胀空气进入精馏塔参与精馏,另一部分膨胀空气进入液化换热器复热,从而降低液化换热器内部温度,进入精馏塔的空气经过精馏后得到富氧液态空气、液态空气和液态氮气;

S2、空气的精馏,富氧液态空气从下塔的底部抽出进入过冷器中冷却后输送至上塔的上部参与精馏,液态空气从下塔底部抽出进入过冷器中冷却后输送至上塔的上部,液态氮气从主冷凝蒸发器抽出经过过冷器冷却,冷却后的液态氮气一部分输送至液氮储槽中储存,另一部分冷却后的液态氮气送入上塔的顶部参与精馏,精馏后产生的液态氧气从主冷凝蒸发器中抽出后进入过冷器过冷,过冷有的液态氧气输送至液氧储槽中储存,精馏过程中主冷凝器中会产生污氮气和氮气,污氮气和氮气分别从上塔上部和顶部被抽出,被抽出的污氮气和氮气依次流穿过过冷器和液化热换器而被复热,降低过冷冷和液化热换器内部温度;

S3、液氧、液氮的互换生产:

利用液氮生产液氧,将原料空气直接输送到液化换热器中,打开液氮储槽端口的阀门,关闭增压膨胀机膨胀端处管G上的阀门,液氮在液化换热器中气化,从而使原料空气冷却并部分液化,液气混合空气直接进入精馏塔中,进入精馏塔的空气经过精馏后得到富氧液态空气、液态空气和液态氮气,再重复步骤S2进行生产液氧;

利用液氧生产液氮,将原料空气直接输送到液化换热器中,打开液氧储槽端口的阀门,关闭增压膨胀机膨胀端G上的阀门,液氧在液化换热器中气化,从而使原料空气冷却并部分液化,液气混合空气进入精馏塔中,进入精馏塔的空气经过精馏后得到富氧液态空气、液态空气和液态氮气,再重复步骤S2进行生产液氧。

所述的精馏塔不限于液氧和液氮的互换生产,还适用于空气中其他气体成分的互换生产。

本发明具有以下优点:

(1)通过将精馏塔、液化换热器、液氮储槽和液氧储槽有机结合,使得装置中大部分机构能够连续正常运行,从而保证液氮或液氧能够连续生产,减小了由于装置频繁启停而需要的能耗,从而也提高了装置的实用寿命;

(2)在液氮贮存量过大,而需生产液氧时,液氮作为生产液氧所需冷源,停运循环压缩机、低温冷气机组和增压膨胀机,以保证液氧的生产;在液氧储存量过大,而需要生产液氮时,液氧作为生产液氮所需冷源,停运循环压缩机、低温冷气机组和增压膨胀机,以保证液氮的生产。

附图说明

图1 为本发明的结构示意图;

图2 为实施例二的结构示意图;

图3 本发明的流程框图;

图中,1-精馏塔,2-过冷器,3-液化换热器,4-循环压缩机,5-低温冷气机组,6-增压膨胀机,7-增压机后冷却器,8-管A,9-管B,10-上塔,11-下塔,12-主冷凝蒸发器,13-管C,14-管D,15-管E,16-管F,17-管G,18-管H,19-管I,20-管J,21-液氮储槽,22-液氧储槽,23-管K,24-管L。

具体实施方式

下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:

【实施例一】:

如图1所示,一种液氧、液氮互换生产装置及生产工艺,该实例是在空气循环的液体空分工艺中实施,包括精馏塔1、过冷器2、液化换热器3、循环压缩机4、低温冷气机组5、增压膨胀机6和增压机后冷却器7,所述的循环压缩机4的输出端与增压膨胀机6增压端相连,循环压缩机4的输入端与管A8相连,管A8为干燥空气进气管,通过管A8向装置中注入原料空气,管A8上设有阀门,循环压缩机4和增压膨胀机6的增压端都起到压缩空气的作用,增压膨胀机6增压端通过管B9连接在增压机后冷却器7输入端上,增压机后冷却器7的输出端连有管C13,增压机后冷却器7起到初步降低压缩空气温度的作用,管A8和管C13之间设有管D14,管D14上设有阀门,管D14的设置使得原料空气不经过循环空气压缩3、增压膨胀机6的增压端和增压机后冷却器7而直接与液化热换器3相连,管C13穿过液化热换器3后连接在低温冷气机组5输入端上,低温冷气机组5的输出端通过管E15连接在液化换热器3上,液化热换器3和低温冷气机组5将压缩并初步降温的空气进一步降温,管C13与管E15之间设置有管F16且在管F16上设有阀门,当利用液氮生产液氧或利用液氧生产液氮时,无需进入低温冷气机组5降温,直接通过管F16再次进入液化热换器13中,从而降低能耗,位于液化换热器3内部的管E15分成管G17、管H18,管G17连接在增压膨胀机6膨胀端上且管G17上设有阀门,管H18直接连接在精馏塔1中的下塔11的中部且管H18上设有阀门,增压膨胀机6的膨胀端通过管I19连接在精馏塔1上,管I19上连接有管J20,在管J20上靠近管I19的位置设有阀门,管J20穿过液化换热器3分为两部分,穿过液化换热器3的管J20一部分直接与大气相连而另一部分连接在管A8上,未穿过液化热换器3的管J20还通过两根管道分别与液氮储槽21和液氧储槽22相连,液到储槽21和液氧储槽22在输出端处均设有阀门;当利用液氮生产液氧或利用液氧生产液氮时,增压膨胀机6不启动,且管G17和管I19均不参与工作;

所述的精馏塔1包括上塔10、下塔11,上塔10和下塔11之间设置有主冷凝蒸发器12,管H18和管I19均连接在下塔11上,下塔11的底部设有管道且该管道穿过过冷器2后连接在上塔10的中部,下塔11的中部设有管道且该管道穿过过冷器2后连接在上塔10的上部,主冷凝蒸发器12的液氮输出端设有管道且该管道穿过过冷器2后分为两支,一支与液氮储槽21相连,另一只与上塔10的顶部相连,主冷凝蒸发器12的液氧输出端设有管道且该管道穿过过冷器2后连接在液氧储槽22上,主冷凝蒸发器12的输入端与下塔11的上部相连,主冷凝蒸发器12的液氮输出端与下塔11的上部相连,主冷凝器12的液氮输出端还通过管道与液氮储槽21相连且该管道上设置有阀门,该管道用于释放参与精馏的液氮,上塔10的上部还设有管K23,管K23穿过过冷器2和液化换热器3且在管K23出口处设有调节阀门,穿过过冷器2后的管K23上还通过管道与上塔10的底部相连且该管道上设有阀门,该管道用于氧气的排放,上塔10的顶部还设有管L24,管L24穿过过冷器2和液化换热器3且在管L24出口处设有调节阀门;

所述的管C13上设有阀门,在管F16和低温冷气机组5输入端之间的管D14上设有阀门且通过该阀门控制实现原料空气的流经线路,在管F16和低温冷气机组5的输出端之间的管E15设置有阀门,在主冷凝蒸发器12的液氮输出端相连的管道上靠近上塔10顶部处设有阀门,在与下塔11相连的管道上靠近上塔10上部处设有阀门,在与下塔11底部相连的管道上靠近上塔10中部处设有阀门。

如图1所示,所述的液氮储槽21为带压储槽或常压储槽,液氧储槽22为带压储槽或常压储槽,当液氮储槽21中压力较低时,通过在液氮储槽21的自增压装置或出口处设置泵且通过该泵将液氮输送至液化热换器3中,当液氧储槽22中压力较低时,通过在液氧储槽22的自增压装置或出口处设置泵且通过该泵将液氧输送至液化热换器3中。

如图1所示,所述的增压膨胀机6数量为一个、两个或多个。

液氧、液氮互换生产装置的生产工艺,包括以下步骤:

S1、空气的液化,原料空气通过管A8进入循环压缩机4进行压缩,压缩后的空气进入增压膨胀机6的增压端增压,增压后的空气通过管B9进入增压机后冷却器7进行冷却,冷却后空气的压力为30bar.A、温度为313K,再通过管C13进入液化换热器3中继续冷却至253K,此时管F16上的阀门处于关闭状态,被继续冷却的空气通过管C13输送至低温冷却机组5上进一步冷却至243K变为低温空气,低温空气通过管E15再次输送至液化换热器3中继续冷却,冷却后的空气分为两部分,小部分低温空气液化后通过管H18直接进入精馏塔1的下塔11参与精馏,其余的低温空气通过管G17进入增压膨胀机6膨胀端膨胀制冷,膨胀后空气再次分为两部分,一部分空气通过管I19进入精馏塔1的下塔11参与精馏,另一部分空气通过管J20进入液化换热器3复热,从而降低液化换热器3中原料空气的温度,进入精馏塔1的空气经过精馏后得到富氧液态空气、液态空气和液态氮气;

S2、空气的精馏,富氧液态空气从下塔11的底部抽出进入过冷器2中冷却,冷却后的富氧液态空气进入上塔10的上部参与精馏,液态空气从下塔11底部抽出进入过冷器2中冷却,冷却后的液态空气进入上塔10的上部,液态氮气从主冷凝蒸发器12抽出后进入过冷器2中冷却,冷却后的液态氮一部分被抽出输送至液氮储槽21中储存,另一部分冷却后的液态氮进入上塔10的顶部参与精馏,被精馏后产生的液态氧气从主冷凝蒸发器12中以750kg/h的质量流量被抽出后进入过冷器2中冷却,过冷后的液氧以750kg/h的质量流量被抽出并输送至液氧储槽22中储存,精馏过程中会产生污氮气和氮气,上塔10通过管K23和管L24分别将污氮气和氮气抽出,抽出的污氮气和氮气在流经过冷器2和液化热换器3时与原料空气进行热交换以回收冷量,管K23出口排出的为污氮,污氮包括氮气、氧气和氩气等混合气体,排出的污氮作为干燥再生气,管L24出口排出的为氮气,排出的氮气直接供用户使用;

S3、液氧、液氮的互换生产:

利用液氮生产液氧,原料空气通过管D14直接进入到液化换热器3中,打开液氮储槽21端口的阀门,液氮通过管J20进入液化换热器3中被气化,液氮气化时吸收大量的热,与正流原料空气热交换而被复热,被复热的氮气放空,液氮的汽化使得原料空气被冷却部分液化,原料空气在液化换热器3中初步冷却后直接通过管F16再次进入液化换热器3中进一步冷却,进一步冷却后的空气通过管H8进入精馏塔1的下塔11参与精馏,进入精馏塔1的空气经过精馏后得到富氧液态空气、液态空气和液态氮气,再重复步骤S2进行生产液氧,在利用液氮生产液氧过程中,停运循环压缩机4、低温冷气机组5和增压膨胀机6,液氮作为冷源被使用,降低了设备运行的能耗,提高了设备的使用寿命,并且保证了液氧的连续生产;

利用液氧生产液氮,原料空气通过管D14直接进入到液化换热器3中,打开液氧储槽22端口的阀门,液氧通过管J20进入液化换热器3中被气化,液氧气化时吸收大量的热,与正流原料空气热交换而被复热,被复热的氧气直接排放到空气中,液氧的气化使得原料空气被冷却部分液化,原料空气在液化换热器3中初步冷却后直接通过管F16再次进入液化换热器3中进一步冷却,冷却后的空气通过管H18进入精馏塔1的下塔11参与精馏,进入精馏塔1的空气经过精馏后得到富氧液态空气、液态空气和液态氮气,再重复步骤S2进行生产液氧,在利用液氧生产液氮过程中,停运循环压缩机4、低温冷气机组5和增压膨胀机6,液氧作为冷源被使用,降低了设备运行的能耗,提高了设备的使用寿命,并且保证了液氮的连续生。

所述的精馏塔1不限于氧气氮气的互换生产,还适用于空气中其他气体成分的互换生产。

【实施例二】:

如图2所示,该实例是在氮气循环的液体空分工艺中实施,除管A8直接穿过液化热换器3连接到精馏塔1、管A8和管C13之间不设置管D14、下塔11顶部设置有氮气管路连接管I19、管I19不直接连接下塔11、主冷凝蒸发器12和下塔11均通过管道连接在管20上、管H18连接下塔11顶部外,其他均不变。

工作时,原料空气直接进入液化换热器3中进行冷却,冷却后的空气通过管A8进入精馏塔1中精馏,液化换热器3中的制冷循环气取自下塔11中的氮气,氮气经过管J20进入循环压缩机4中,从循环压缩机4出来的氮气依次经过增压膨胀机6增压端、增压机后冷却器7、液化换热器3、低温冷气机组5后,再进入液化换热器3中冷却后,大部分通过管G17进入增压膨胀机6膨胀端进行膨胀,膨胀后的氮气与下塔11来的氮气混合返回到液化换热器3复热再进入循环压缩机4,进行下一次循环,其余增压氮气继续冷却液化后通过管H18,节流后进入下塔。其他步骤均匀实施例一相同。

本发明不仅适用于液氧、液氮互换生产,还适用于空气中其他气体成分的互换生产。

以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他工艺组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1