一种液化天然气联产液氦的工艺装置及方法与流程

文档序号:15823421发布日期:2018-11-02 23:21阅读:1355来源:国知局

本发明涉及从含有氮、氦气的天然气中生产液化天然气和液氦的工艺装置及方法,特别适用于天然气中含有氦气的气质条件,达到同时生产液化天然气和液氦的目的。

背景技术

大部分天然气液化工厂产品仅为lng和少量轻烃,而天然气中还有一定量的氦气并没有加以回收和利用。氦气的应用主要是作为保护气体,气冷式核反应堆的工作流体和超低温冷冻剂等等。氦气在卫星飞船发射、导弹武器工业、低温超导研究、半导体生产等方面具有重要用途。但氦气最主要的来源不是空气,而是天然气。氦气在干燥空气中含量极微,平均只有百万分之五,天然气中最高则可含7.5%的氦,是空气的一万五千倍。即使是氦气含量很低的天然气,也比空气中氦气含量高数万倍,因此天然气仍是目前世界上氦气的主要来源。

由于氦气资源匮乏、提取氦气的成本较高,因此开发一种液化天然气联产液氦的工艺装置及方法已非常必要。



技术实现要素:

为了克服现有技术的缺点,本发明提供了一种液化天然气联产液氦的工艺装置及方法,具有原料气适用范围较广、液化天然气产品质量高和液氦收率高能耗低的优点。

本发明所采用的技术方案是:一种液化天然气联产液氦的工艺装置,包括主换热器、脱氮塔、氦-氮分离塔、甲烷回收塔、回流罐和氦液化器,所述主换热器与脱氮塔连接,所述脱氮塔的气相出口依次与主换热器、氦-氮分离塔连接,所述脱氮塔的液相出口与主换热器连接,所述氦-氮分离塔的气相出口与氦液化器连接,所述氦-氮分离塔的液相出口与甲烷回收塔连接,所述甲烷回收塔的气相出口依次与氦液化器、回流罐连接,所述甲烷回收塔的液相出口依次与主换热器、氦-氮分离塔连接,所述回流罐的气相出口与主换热器连接,所述回流罐的液相出口与甲烷回收塔连接;所述主换热器与混合冷剂压缩机、水冷器和节流阀组成混合冷剂制冷循环系统;所述主换热器与氮气压缩机、水冷器和节流阀组成氮气制冷循环系统;所述主换热器与氦气压缩机、水冷器、节流阀和氦液化器组成氦气开式制冷循环系统。

本发明还提供了一种液化天然气联产液氦的工艺方法,包括如下步骤:

含氮气、氦气的原料天然气经过主换热器4被冷却至约-65℃时,从中抽出两股,一股作为脱氮塔塔底的重沸器加热热源,一股作为甲烷回收塔塔底的重沸器加热热源,其余原料气继续在主换热中冷却冷凝至约-123.6℃后与出重沸器的两股天然气混合,然后经节流降压至1.6mpa、-127.5℃后进入脱氮塔中进行精馏,其中:

从脱氮塔底部流出的-113.7℃的液相物流进入主换热器中被过冷至-158℃,然后经节流降压进入lng储罐;从脱氮塔顶部流出的气相物流送至主换热器中继续冷凝冷却至约-178℃后从塔底进入氦-氮分离塔,其中:

从氦-氮分离塔顶部流出的气相物流送至氦气开式制冷循环系统的氦液化器中,与经过主换热器预冷后的氦气一起在氦液化器中冷却冷凝,然后一部分经过节流阀降压后作为制冷剂返回氦液化器中,另一部分经过节流阀节流至常压后作为液氦产品进入液氦储罐储存,液氦储罐中的氦气闪蒸气返回氦气开式制冷循环系统的氦液化器中;从氦-氮分离塔底部流出的-174℃的液相物流进入甲烷回收塔进行精馏,回收其中的甲烷。

与现有技术相比,本发明的积极效果是:

在保证lng产品的同时,回收氦气并进行液化,在实现天然气产品多元化的同时能回收得到液氦产品。

本发明设置三套独立的制冷系统,可以根据原料气的不同气质条件做出相应的调整,所以具有广泛的适应性,根据氮气、氦气的含量和下游产品的需求,既可以进行生产液氦,也可以对天然气脱氮,生产液氮,只需要调整相应的制冷系统即可。

本发明中液化天然气中氮含量严格控制在1%以下,氦气回收率高达到99%以上。

附图说明

本发明将通过例子并参照附图的方式说明,其中:

图1是本发明的工艺原理流程示意图。

具体实施方式

一种液化天然气联产液氦的工艺装置,如图1所示,包括:混合冷剂压缩机1、氮气压缩机2、氦气压缩机3、主换热器4、水冷器5、节流阀6、脱氮塔7、重沸器8、氦-氮分离塔9、甲烷回收塔10、回流泵11、回流罐12、氦液化器13和液氦储罐14等,其中:

主换热器4依次与混合冷剂压缩机1、氮气压缩机2、氦气压缩机3、脱氮塔7、氦-氮分离塔9、甲烷回收塔10和氦液化器13连接;脱氮塔7的液相出口和主换热器1相连,回流罐12的气相出口和主换热器1相连。

脱氮塔7塔底液相出口与主换热器4相连。塔顶气相出口依次与主换热器4和氦-氮分离塔9连接。

氦-氮分离塔9塔底液相出口与甲烷回收塔10相连,气相出口与氦液化器13、回流罐12和回流泵11相连。

甲烷回收塔10塔底液相出口依次与主换热器4、回流泵11和氦-氮分离塔9相连。

所述主换热器4与混合冷机压缩机1、氮气压缩机相连2;所述氦气压缩机3依次与主换热器4和氦液化器13相连。

本发明还提供了一种液化天然气联产液氦的工艺方法,包括如下步骤:

经过干燥的含氮气、氦气的原料天然气约41℃,4.4mpa,经过主换热器4被冷却至约-65℃时,从中抽出两股,一股作为脱氮塔7底的重沸器8加热热源,一股作为甲烷回收塔10塔底重沸器加热热源,其余原料气继续在主换热4中冷却冷凝至约-123.6℃。经过重沸器加热后的原料天然气与被主换热器4冷却冷凝的天然气混合,然后经过节流阀节流降压至1.6mpa,约-127.5℃后进入脱氮塔7中进行精馏,其中:

从脱氮塔7的底部流出的液相物流约-113.7℃,进入主换热器4中被过冷至约-158℃,然后经过节流阀6节流降压进入lng储罐;从脱氮塔7的顶部流出的气相物流送至主换热器4中继续冷凝冷却至约-178℃后作为氦-氮分离塔9塔底进料,其中:

从氦-氮分离塔9底部流出的液相物流约-174℃,然后经过节流阀6节流降压进入甲烷回收塔10;从氦-氮分离塔9顶部流出的气相物流送至氦气开式制冷循环中,与经过预冷后的氦气一起在氦液化器13中冷却冷凝,一部分经过节流阀6降压后作为制冷剂返回氦液化器13中,另一部分经过节流阀6节流至常压后作为液氦产品,进入液氦储罐14储存。作为液氦产品的物流经过节流降压至常压后,液氦储罐14中的氦气闪蒸气返回氦气开式制冷循环的氦液化器13中。从氦-氮分离塔9底部流出的液相物流直接进入甲烷回收塔10进行精馏,回收其中的甲烷,其中:

从甲烷回收塔10塔顶出来的气相物流经过氦液化器13冷却冷凝后,进入回流罐12进行两相分离,液相通过回流泵11返回甲烷回收塔10,富氮气相返回主换热器4复热回收冷量后直接放空。甲烷回收塔10底液相约-135℃,通过泵送也返回主换热器4进行过冷至约-185℃,然后进入氦-氮分离塔9顶部作为塔顶吸收液进料。

本发明中与主换热器4和氦液化器13相连的三个制冷系统分别为三个不同温位的制冷系统,三者之间相互独立,互不干扰,可根据产品需求决定制冷系统的开启。同时也增加了装置的抗干扰能力和原料气的适应性。

本发明中由混合冷剂压缩机1、水冷器5、节流阀6和主换热器4组成的混合冷剂制冷循环中,混合冷剂一般由甲烷、氮气、乙烯、丙烷和异戊烷组成的制冷剂,主要为天然气液化、预冷氮气制冷循环和氦气制冷循环提供冷量。

本发明中由氮气压缩机2、水冷器5、节流阀6和主换热器4组成的氮气制冷循环中,其介质主要为氮气,为氦-氮分离塔9和预冷氦气制冷循环提供冷量。

本发明中由氦气压缩机3、水冷器5、节流阀6、主换热器4和氦液化器13组成的氦气开式制冷循环中,其介质主要为氦气,为氦液化提供冷量,氦气既作为制冷剂也作为液氦产品的原料气。

本发明中脱氮塔7、氦-氮分离塔9和甲烷回收塔10既可以是板式塔也可以是填料塔,可以根据物料流量具体选择塔器型式。

本发明中脱氮塔7和甲烷回收塔10均在塔底设置有重沸器8,重沸器热源采用原料气天然气。

本发明氦-氮分离塔9或甲烷回收塔10产生的低温富氮气还可以根据需要进行液氮生产,实现产品的多元化。

本发明的工作原理是:从含有氮气、氦气的天然气中生产液化天然气和液氦。含氮、氦天然气经过预冷首先进入脱氮塔,将天然气中的中氮气、氦气脱除,脱氮塔塔顶气主要为氦气和氮气,脱氮塔塔底即为液化天然气,该液化天然气经过冷却、过冷、节流至常压后即为lng产品。脱氮塔既控制塔底液化天然气中含氮量,确保lng产品质量,避免lng储罐发生翻滚事故,同时塔顶得到低温的富氦气流。富含氦气流经过进一步冷却后进入氦-氮分离塔中进行分离提纯,氦-氮分离塔塔顶气即为精氦气,氦-氮分离塔塔底产品进入甲烷回收塔,回收塔底产品中的甲烷。最后将提纯后的精氦气制备成高纯度液氦产品。本发明的积极效果是:含氦天然气液化的同时,回收其中的稀有气体氦气并液化,液氦用于超低温冷却,在超导技术等领域有较广泛的应用。具有良好的战略效益和经济效益,且产品收率高。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1