铜基非晶态合金作为催化功能材料在废水处理中的应用的制作方法

文档序号:12703931阅读:534来源:国知局
铜基非晶态合金作为催化功能材料在废水处理中的应用的制作方法与工艺

本发明涉及非晶合金材料及废水处理技术领域,具体涉及一种铜基非晶态合金作为催化功能材料在废水处理中的应用。该铜基非晶态合金具有优异的催化性能和良好的耐腐蚀性能,可广泛应用于染料废水的治理。



背景技术:

水是生命之源,是人类赖以生存的最基本物质。然而随着工业的迅猛发展,废水的排放与日俱增,给人类的健康和生命安全造成了严重威胁。因此,如何高效治理工业废水已成为亟待解决的问题。在众多的处理方法中,零价铁粉还原法因成本低廉,操作方便,适用范围广而备受关注。然而,零价铁在处理废水时在一定的pH范围内才能起到明显作用,且降解反应缓慢,另外还原铁粉或铁屑在废水中的锈蚀消耗使得成本升高,这都限制了该方法的广泛应用。

非晶合金具有独特的长程无序、短程有序的结构特征以及优异的力学性能,由于结构和成分上的均匀性,相比传统的晶态合金而言,非晶合金具有更强的耐腐蚀性能,同时体系处于的高能量状态又赋予其良好的化学以及催化性能。近来,铁基非晶合金代替商业铁粉在废水处理领域取得了优异的成效,为非晶合金作为功能材料的应用开辟了新的方向。然而,金属元素Fe的腐蚀损耗仍然难以避免。这一方面降低了铁基非晶合金在废水处理应用中的使用寿命,而且长此以往,水中元素Fe的含量也会升高,加重了废水处理的负担。



技术实现要素:

针对目前Fe基非晶腐蚀损耗大,使用寿命短的问题,本发明提供一种具有催化功能的铜基非晶态合金降解废水的方法,该铜基非晶合金在废水处理的过程中具有优异的催化性能和很好的稳定性,在使工业废水达到很高的降解效率的同时还实现了自身的近零损耗。

为实现上述目的,本发明所采用的技术方案如下:

一种铜基非晶态合金作为催化功能材料在废水处理中的应用,将铜基非晶态合金应用于废水处理,通过铜基非晶态合金的催化作用实现废水降解。

所述铜基非晶态合金中,Cu元素的原子百分比为30~80%,Cu元素优选为30~70%,其他合金元素为Zr、Hf、Al、Ti、Ni、Ag、Nb、P、Sn、Zn和RE中的一种或几种,RE为稀土元素;RE为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的一种或几种,RE优选为Y、La、Ce、Sm、Gd和Er中的一种或几种。

所述铜基非晶态合金为条带,通过铜辊甩带法制备,条带厚度为10μm~200μm。

所选废水为染料废水,废水溶液的浓度为10mg/L~2000mg/L,废水的温度为环境温度到100℃,废水溶液为酸性。铜基非晶态合金条带在废水中的投加量大于0.01m2/L。

所述铜基非晶态合金应用于废水处理后,非晶结构不改变,几乎无腐蚀损耗。

所述铜基非晶态合金重复使用10次以上后,与首次使用时的降解效率相同。

本发明的优点如下:

1、本发明所述的铜基非晶态合金作为催化材料应用于染料废水处理,该铜基非晶合金在降解废水的过程中表现出优异的催化活性,可以达到很高的降解效率。

2、铜基非晶态合金具有优异的耐腐蚀性能,在降解废水的过程中几乎没有由于氧化还原等造成的合金质量损失,在降解废水时实现了非晶合金的近零腐蚀损耗,且能够保持其非晶结构,具有优异的长期稳定性,大大延长了其使用寿命。

3、本发明涉及的铜基非晶态合金生产工艺成熟,制造成本低廉,处理废水的工艺操作简单,具备很好的应用前景。

附图说明:

图1为制备的实施例1和实施例17的非晶合金条带XRD图谱。

图2为制备的实施例1、2、4、5、6、12、13、17的铜基非晶合金条带DSC曲线。

图3为实施例6非晶态合金条带降解酸性橙Ⅱ,溶液的紫外-可见光吸收光谱随反应时间的变化曲线。

图4为实施例6、12、13、17非晶态合金条带降解酸性橙Ⅱ,降解效率随反应时间的变化曲线。

图5为实施例19非晶态合金条带降解酸性橙Ⅱ,条带投加量对降解的影响。

图6为实施例20非晶态合金条带重复降解酸性橙Ⅱ的降解效率。

具体实施方式

以下结合附图及实施例详述本发明。

本发明利用铜辊甩带法得到铜基非晶态合金条带,主要集中在Cu-Zr、Cu-Ti、Cu-Zr-Ti、Cu-Zr-Ag、Cu-Zr-Al、Cu-Zr-Hf-Al、Cu-Zr-Al-Ag、Cu-Zr-Nb、Cu-Zr-Al-RE(RE为稀土元素)、Cu-P-Ni-Sn和Cu-P-Ni-Zn等合金体系,并应用于染料废水的降解实验。

以下结合附图和实施例对本发明做详细说明。

实施例1-18:不同体系非晶态合金条带降解酸性橙Ⅱ。

按表1合金成分制备非晶条带,经XRD表征均呈现非晶的漫散射特征,图1所示为实施例1和实施例17的XRD图谱,其它合金条带XRD特征与此相似。此外,部分合金的DSC曲线如图2所示,可见明显的晶化特征。

表1实施例1-18对应合金成分

降解过程采用非晶态合金条带的表面积为50cm2,酸性橙Ⅱ溶液浓度为0.1g/L,溶液体积为30mL,控制溶液温度为60℃。将条带投入溶液,并以200rpm的转速对染料溶液进行搅拌。反应开始后每间隔一定时间取出约3mL溶液进行紫外-可见光吸收光谱检测。

图3为非晶态合金条带Cu46Zr46.5Al7.5(at.%)降解酸性橙Ⅱ,溶液的紫外-可见光吸收光谱随反应时间的变化曲线。484nm处吸光度随反应时间逐渐降低,意味着偶氮键(-N=N-)不断断裂,酸性橙Ⅱ不断被降解。

图4为部分非晶对酸性橙Ⅱ降解的动力学曲线,进行非线性拟合后发现,降解过程满足假一级反应:

其中,Ct和C0分别为t时刻和初始时刻的溶液浓度,Cult为溶液最终残余浓度,t为反应时间,k为反应速率常数,降解效率η=(1-Ct/C0)。

由此可见该系列铜基非晶态合金条带对染料废水均有较好的降解效率。另外,反应后的各溶液pH=2,说明溶液中的H+并没有消耗,也就是说合金没有腐蚀损耗。

实施例19:条带投加量对降解效率的影响

与实施例12不同之处在于,降低条带的投加量进行实验(染料溶液体积、浓度、温度等都不改变),分别选取30cm2、20cm2、10cm2的Cu46Zr44.5Al7.5Gd2(at.%)进行实验,结果如图5所示,表明该系列铜基非晶态合金条带在少量投加量的情况下依然能够达到很高的降解效率。

实施例20:条带重复使用次数对降解效率的影响

将实施例12中降解酸性橙Ⅱ后的条带进行回收后再次应用于酸性橙Ⅱ的降解实验(其他各实验条件不改变),研究条带降解染料废水的可使用寿命,结果如图6所示。可以看出Cu46Zr44.5Al7.5Gd2(at.%)条带在重复使用第10次时依然能够保持与第1次使用时相当的降解效率,表明铜基非晶合金在降解染料废水时有着良好的稳定性和长久的使用寿命。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1