电解耦合LED光催化串联卤代物脱除的压载水处理装置的制作方法

文档序号:23067937发布日期:2020-11-25 17:55阅读:97来源:国知局
电解耦合LED光催化串联卤代物脱除的压载水处理装置的制作方法

本发明属于压载水处理技术领域,具体涉及一种电解耦合led光催化串联卤代物脱除的压载水处理装置。



背景技术:

船舶压载水的作用是控制船舶吃水、稳性或应力,通过吸入或排放压载水保持船舶压载平衡,是船舶安全航行的必要条件。但是,压载水中携带大量的有害生物和病原微生物,需要经过净化处理后才可排出。

压载水中水生生物包括浮游生物、藻类、微生物、孢子等,压载水的吸入和异地排出会引起生物入侵,破坏生态平衡,威胁海洋生态和人类安全。压载水中部分甲壳类生物会造成船体腐蚀、管路阻塞,对船体造成安全隐患。2017年,国际海事组织(imo)颁布的《国际船舶压载水及沉积物控制和管理公约》开始强制实施,规定排放的压载水中10-50μm活体浮游生物检测限为10个/ml,霍乱弧菌大肠杆菌小于1cfu/100ml或1cfu/g浮游生物样品。

目前,主要的压载水处理技术包括置换法、过滤法、紫外照射法和化学氧化法。置换法要求置换3倍以上体积压载水,需要时间长,应用范围窄。过滤法通过物理截留方式分离污染物。过滤系统一般采用网状过滤器或较厚介质的过滤器,对于病毒(最小直径0.02μm)、细菌(0.1μm)和小型原生动物(2-3μm)难以过滤去除。由于压载水注入和排出时高流速和高流量,对过滤设备和滤料结构要求高。过滤截留的部分生物在滤料中并没有灭活,仍需要进一步处理。化学氧化法通过氧化剂(次氯酸钠、二氧化氯和臭氧等)杀灭水生生物和微生物,其效果取决于水体ph值、水温和接触时间。但是氧化剂不易在船体中储存和管理,且会产生卤代消毒副产物(三卤甲烷、卤乙酸等)和卤酸盐(亚氯酸盐、氯酸盐和溴酸盐)等致癌物质具有较大毒性风险,且可能带来腐蚀船体等不利影响。紫外线照射压载水可以杀灭水中细菌和其他有害水生生物,处理过程不会产生二次污染。当压载水进水浊度高时,水体紫外光透射率低,紫外光利用率低,单独紫外灭菌或高级氧化灭菌效率大幅降低,紫外灯套管结垢也会对杀菌和自由基生成造成不利影响。

中国发明专利申请cn200510046991.8(船舶压载水电解处理系统)中将压载水在电解处理器1中直接电解,产生高效氧化剂,包括氯气cl2,次氯酸hclo分子,二氧化氯clo2,游离的氧o·,羟基oh·中的一种或多种物质,连同电场的作用,将船舶压载水中的生物杀灭或抑活。降低了海水cod和toc的含量,并增加了海水的溶解氧。改善了海水的性质。其中电极材料中,阳极为dsa电极(涂层钛电极),阴极为不锈钢。但是单纯的电化学氧化处理方法,对压载水的处理作用有限,处理效果欠佳。为了达到更好的处理作用,还需再进行处理,导致处理成本提高。

中国实用新型专利cn201821923695.0(光电催化处理船舶压载水处理器)中,该处理器包括中空壳体,壳体内设有光电催化单元,光电催化单元中包括阴极基底、阳极基底、及外电路电连接的紫外光光源,阳极基底和阴极基底上分别设有若干个水流孔,阳极基底朝向紫外光光源的侧面贴附有用于处理压载水的光催化薄膜层,阳极基底、阴极基底通过导线连通。采用光电催化处理法,可杀灭压载水中的有害生物藻类。中国实用新型专利cn201621134461.9(一种船舶压载水紫外线杀菌电解处理装置)中,利用紫外杀菌和电解共同作用,在紫外线灯管和过滤装置的中间固定有阳极单元,且紫外线灯管的下方设置有电解池,所述石英套管的右端安装有电解槽,所述导电装置的内部镶嵌有阳极单元,且阳极单元的下方镶嵌有过滤装置,所述阴极单元的右端设置有冷却装置,所述换热器的两端镶嵌有镇流器。上述两件专利申请中均利用了紫外和电解的共同作用,但是仅仅是简单叠加,并未有效利用两者之间的协同作用,因此处理效果较差。



技术实现要素:

本发明欲解决的问题是现有技术中的压载水处理装置在对压载水进行处理时,处理方法较为单一,处理效果较差等技术问题。

为了解决上述技术问题,本发明公开了一种电解耦合led光催化串联卤代物脱除的压载水处理装置,能够高效灭活水生生物和微生物、环境友好且适于船上作业。

该装置包括电氧化-led光催化装置,所述电氧化-led光催化装置包括led紫外光源、电极、氧化剂投加装置;所述led紫外光源中,多个led灯珠均匀布置在电氧化-led光催化装置的内侧壁上;所述电氧化-led光催化装置中的电极中,阳极和阴极交错排列形成过水渠道;所述氧化剂投加装置的投药口与电氧化-led光催化装置的进水端相连。

进一步地,所述压载水处理装置还包括过滤单元、卤代物脱除装置,过滤单元和卤代物脱除装置分别位于电氧化-led光催化装置的两侧;在过滤单元中的滤料为市售石英砂。所述过滤单元的进水端与压载水进水口相连,出水端与电氧化-led光催化装置的进水端相连;所述电氧化-led光催化装置的出水端与卤代物脱除装置的进水端相连;所述卤代物脱除装置的出水端与压载水排水口相连。

进一步地,所述压载水处理装置中还设有超越管路,所述超越管路的进水端与压载水进水口相连,出水端与电氧化-led光催化装置的进水端相连,在超越管路上设有阀门。

进一步地,所述过滤单元的出水端通过排水管路连接压载水排水口,排水管路上设有阀门;所述电氧化-led光催化装置的出水端通过排水管路连接压载水排水口,排水管路上设有阀门。

进一步地,在所述电氧化-led光催化装置和卤代物脱除装置之间设有氧化剂浓度检测装置。

进一步地,所述led灯珠首选波长为265mm的led灯珠;或者由波长分别为265nm和300nm的led灯珠按照1:1或2:1个数比例复配使用。更进一步地,波长分别为265nm和300nm的led灯珠彼此之间交叉均匀布置。

所述氧化剂投加装置中的氧化剂为次氯酸盐、二氧化氯、氯化钠、氯化铝中的一种或几种。其中氯化钠和氯化铝加入后,可直接在压载水中电离产生氯离子。

进一步地,电氧化-led光催化装置中的电极中,阳极为钌铱氧化涂层电极,阴极为不锈钢网。利用水中氯离子和溴离子等电解质,电解产生次氯酸和次溴酸等杀生剂。

进一步地,在卤代物脱除装置中也设置有电极,其中阳极为石墨电极,阴极为镀铅电极。

本发明中,压载水处理工艺的具体顺序为:压载水先进入过滤单元,再进入电氧化-led光催化装置进行水生生物灭活,最后进入卤代物脱除装置。具体而言,利用过滤装置去除泥沙和悬浮颗粒,初步净化压载水,提高压载水透光性。电氧化-led光催化单元中,通过电解氯离子产生高活性氧化物质,其中高活性氧化物质包括氯气、次氯酸、次溴酸、二氧化氯、羟基自由基、含氯自由基、含溴自由基,还包括电氧化-led光催化装置中的电极上的吸附态自由基,例如oh·、cl·等;也即含氯和含溴的氧化物质,以及自由基。利用寿命长不易形成水垢的紫外led灯珠促进自由基(羟基自由基、含氯自由基和含溴自由基等)形成,并协调紫外杀菌,促进水生生物和微生物灭活。卤代物脱除装置中,卤代毒性物质被脱卤还原降低压载水中余氯和卤代毒性物质对自然水体的毒性危害。

与现有产品相比,本发明的电解耦合led光催化串联卤代物脱除的压载水处理装置具有如下优点:

(1)过滤装置、电氧化-led光催化单元和卤代物脱除装置串联组合,提高水生生物灭活效率,降低毒性污染物排放。

(2)在电氧化-led光催化单元中,采用钌铱氧化涂层氧化电极强化产氯水平,采用led紫外光促进活性氯光解产生含氯自由基等高选择性氧化自由基,通过光灭活、电场效应、含卤氧化剂(氯气、次氯酸、次溴酸、二氧化氯等)、自由基(羟基自由基、含氯自由基和含溴自由基等)协同作用,多渠道确保水生生物灭活。

(3)电氧化-led光催化单元中采用led紫外灯珠,实现光源波长和光强灵活配置,确保活性氧化物质生成水平。

(4)增设脱卤装置,利用镀铅阴极还原脱卤,降低出水毒性风险。

附图说明:

图1:电解耦合led光催化串联卤代物脱除的压载水处理装置的示意图。

图2:电氧化-led光催化装置的放大图。

图3:图2中1-1剖面图。

图4:图2中2-2剖面图。

图5:电氧化-led光催化装置中不同电流密度的除藻率。

图6:电氧化-led光催化装置中不同电流密度的氧化物质浓度。

图7:过滤、电氧化以及电氧化-led光催化分别单独使用,以及联合使用时对四种典型压载水藻类生物的去除效能。

图8:电氧化-led光催化装置以及脱卤装置处理后水中总氯浓度的比较。

附图标记说明:1:过滤单元、2:电氧化-led光催化装置、3:卤代物脱除装置、4:进水泵、5:排水泵、21:药剂池、211:药剂泵、22:管式混合器、23:电源a、24:led灯珠、25:不锈钢阴极、26:钌铱氧化涂层电极、31:电源b、32:氧化剂浓度检测装置、33:镀铅阴极、34:石墨电极、61-63:阀门、7:超越管路。

具体实施方式

下面通过具体实施例进行详细阐述,说明本发明的技术方案。

如图1所示,给出了电解耦合led光催化串联卤代物脱除的压载水处理装置的示意图,具体包括过滤单元1、电氧化-led光催化装置2、卤代物脱除装置3、管路系统、压载水进水口、压载水排水口,电氧化-led光催化装置2和卤代物脱除装置3共用一个氧化剂浓度检测装置32。图1中的箭头给出了压载水或氧化剂的流向。

在过滤单元1中,滤料为市售石英砂。压载水处理装置中还设有超越管路7,超越管路7的进水端与压载水进水口相连,出水端与电氧化-led光催化装置的进水端相连,在超越管路7上设有阀门63。压载水进水也可以通过超越管路7直接进入电氧化-led光催化装置2进行生物灭活。

过滤单元1的出水端通过排水管路连接压载水排水口,排水管路上设有阀门61;因此,在对压载水进行处理时,可根据实际情况打开阀门61,此时完成了过滤处理的压载水经过排水管路直接从压载水排水口5排出。

电氧化-led光催化装置的出水端通过排水管路连接压载水排水口,排水管路上设有阀门62。因此,在对压载水进行处理时,可根据实际情况打开阀门62,此时完成了电氧化-led紫外氧化处理的压载水经过排水管路直接从压载水排水口5排出。

图2给出了电氧化-led光催化装置的放大图,图3和图4分别给出了图2中不同截面的剖面图,电氧化-led光催化装置2包括有电极、led紫外光源、氧化剂投加装置、电源a、电源控制装置等。其中,电氧化-led光催化装置中的电极中阳极为钌铱氧化涂层电极26,阴极为不锈钢网阴极25,阳极和阴极交错排列形成过水渠道,供压载水流过,利用水中氯离子和溴离子等电解质,电解产生次氯酸和次溴酸等杀生剂。

led紫外光源为led灯珠24,led灯珠24均匀布置在电氧化-led光催化装置2的侧壁上,使光辐照每个电解单元。在一个特定的实施例中,led灯珠的波长为265nm;在另一个特定的实施例中,led灯珠有265nm和300nm两种波长,两种波长的led灯珠按照1:1或2:1个数的比例交叉均匀布置。

氧化剂投加装置包括药剂池21、药剂泵211、阀门、流量计。电源a23在电源控制装置的控制作用下对进入到电氧化-led光催化装置2中的压载水进行电解处理。药剂池21中的氧化剂为(次氯酸盐或二氧化氯)或氯离子(氯化钠、氯化铝等),通过药剂泵将药剂投加入电氧化-led光催化单元。打开阀门,药剂池21内的氧化剂在药剂泵211的作用下流出至管式混合器22中,与从过滤装置1中流出的压载水混合后进入电氧化-led光催化装置2中进行处理。

当压载水为淡水或杀生要求高的压载水时启动电氧化-led光催化装置2,当压载水为海水等高盐度水体时无需启动。

卤代物脱除装置3中包括电源b31、电源控制装置、电极,电极中阴极为镀铅阴极33,阳极为石墨电极34,能够针对性脱卤。处理后水中余氯浓度由氧化剂浓度检测装置32测定,氯浓度过高的压载水通过管线循环(图中未画出)进入进水口重复脱氯,直至氯浓度满足要求,对于氯浓度是多少需要重复脱氯,需根据压载水处理地的法律政策等确定。当电氧化-led光催化单元出水余氯浓度高于10mg/l时启动卤代物脱除装置,低于10mg/l时无需启动卤代物脱除装置。

压载水处理工艺的具体顺序为:压载水先进入过滤装置1,再进入水生生物灭活装置也即电氧化-led光催化装置2,最后进入卤代物脱除装置3。具体而言,利用过滤装置1去除泥沙和悬浮颗粒,初步净化压载水,提高压载水透光性。电氧化-led光催化装置2中,通过电解氯离子产生高活性氧化物质,利用寿命长不易形成水垢的紫外led灯珠促进自由基形成,并协调紫外杀菌,促进水生生物和微生物灭活。卤代物脱除装置3中,卤代毒性物质被脱卤还原降低压载水种余氯和卤代毒性物质对自然水体的毒性危害。

图5为电氧化-led光催化装置中不同电流密度下,压载水中铜绿藻的去除率。本实施例采用led灯珠特征波长为265nm,氧化剂选用氯化钠,其加入量以进水中氯离子浓度300mg/l为准,氯化钠在电解装置中产生次氯酸和次氯酸根离子等氧化物质,总氧化剂浓度见图6。由图5可见,电氧化-led光催化装置除藻效果良好,除藻率随电流密度增加而增大,随水力停留时间增大而提高。在电流密度为150ma/cm2时,水力停留时间为3秒的除藻率为-3.54,出水中活藻数约为3cell/ml,达到imo的出水标准。当电力密度大于150ma/cm2时,水中检测不到活藻细胞。在水力停留时间为1秒时,电流密度为200ma/cm2时的除藻率为-3.68,出水中活藻数约为2cell/ml,达到imo的出水标准。

图6为电氧化-led光催化装置中不同电流密度下总氧化剂浓度变化,可反映反应装置的氧化能力。本实施例采用led灯珠特征波长为265nm,氧化剂选用氯化钠,其加入量以进水中氯离子浓度300mg/l为准。由图6可见,电氧化-led光催化装置产生总氧化物质随电流密度增加呈线性增大,并且随水力停留时间增大而提高。在水力停留时间为1秒时,电流密度为从10ma/cm2增大到200ma/cm2总氧化物质浓度从1.25升高到40.65mg/l。水力停留时间为3秒时,电流密度为从10ma/cm2增大到200ma/cm2总氧化物质浓度从4.57显著升高到140.38mg/l。说明电流密度对氧化物质生成和水生生物灭活均具有显著影响。

图7为过滤、电氧化以及电氧化-led光催化单独使用和联合使用对四种典型压载水藻类生物的去除效能,可反映反应装置的生物灭活能力。本实施例采用两种led灯珠复配使用,特征波长分别为265nm和300nm,两种灯珠各24颗均匀交错安装。氧化剂选用氯化钠,以进水中含有氯离子浓度200mg/l为准,另向进水中投加氧化剂二氧化氯,其加入量以进水中二氧化氯浓度10mg/l为准。电解装置中水力停留时间1.0秒,电流密度200ma/cm2,电解装置中总氧化剂浓度为30mg/l左右。进水中藻类初始浓度在2×105个/毫升。由图7可见,过滤-电氧化-led光催化对四种藻类的灭活效能最高。单独过滤对4种藻类去除率均低于10%;单独电解产物的氧化剂会被水中其他物质消耗,对藻类的去除效果有限(约40%),过滤和电氧化耦合能有效提高除藻效果(约60%)。电氧化耦合led光催化对藻类去除能明显提升效果,进一步地,过滤--电氧化-led光催化处理后四种典型藻类的灭活率均高于80%。说明过滤、电氧化和led光催化三种处理方式表现出协同效果。

图8为电氧化-led光催化装置以及脱卤装置处理后水中总氯浓度的比较,可反映反应装置的脱卤能力。本实施例采用两种led灯珠复配使用,特征波长分别为265nm和300nm,两种灯珠各24颗均匀交错安装。氧化剂选用氯化钠,以进水中含有氯离子浓度200mg/l为准,另向进水中投加氧化剂二氧化氯,其加入量以进水中二氧化氯浓度10mg/l为准。电解装置中水力停留时间1.0秒,电流密度200ma/cm2,电解装置中总氧化剂浓度为35mg/l。进水中藻类初始浓度在2×105个/毫升。由图8可见,电氧化处理四种含藻压载水后产生的总氯浓度在30mg/l左右,而电氧化-led光催化体系的总氯浓度略有增大(35mg/l)。这说明电氧化与led光催化具有一定的协同作用,能够促进电氧化过程中含氯氧化物质的生成。

另外,经过脱卤装置处理后,无论是对于单独电氧化处理,还是电氧化和led光催化协同处理,压载水中总氯浓度均显著降低,均低于2mg/l。说明电解脱卤能有效降低水中氯代物质浓度。

以上所述仅为本发明的较佳实施例,并不用于限制发明,凡在本发明的设计构思之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1