具有内部次级反应器的氧化系统的制作方法

文档序号:5033971阅读:238来源:国知局
专利名称:具有内部次级反应器的氧化系统的制作方法
技术领域
本发明一般地涉及一种多羧酸组合物的生产方法。本发明的一方面涉及二烷基芳族化合物(例如对-二甲苯)的部分氧化来制备粗制芳族二羧酸(例如粗制对苯二甲酸),粗制芳族二羧酸随后可以进行纯化和分离。本发明的另一方面涉及提供更有效和更经济的 氧化方法的改进型反应系统。
背景技术
各种现有商业方法中采用氧化反应。例如,液相氧化目前经常用于醛氧化为酸(例如丙醛氧化为丙酸),环己烷氧化为己二酸,和烷基芳烃氧化为醇、酸或二酸。在后一类(烷基芳烃的氧化)中特别重要的商业氧化工艺为对-二甲苯液相催化部分氧化为对苯二甲酸。对苯二甲酸是一种具有多种应用的重要化合物。对苯二甲酸的主要用途为生产聚对苯二甲酸乙二醇酯(PET)的进料。PET为一种在全球范围内大量用于生产诸如瓶子、纤维和包装的产品的公知塑料。在典型的液相氧化方法中,包括对-二甲苯部分氧化为对苯二甲酸,将液相进料物流和气相氧化剂物流引入反应器并且在反应器中形成多相反应介质。引入反应器的液相进料物流含有至少一种可氧化的有机化合物(例如对-二甲苯),同时气相氧化剂物流含有分子氧。至少一部分引入反应器的分子氧作为气体溶解到反应介质的液相中,由此提供液相反应可获得的氧。如果多相反应介质的液相含有不足浓度的分子氧(例如,如果一部分反应介质为“缺氧的”)时,不期望的副反应可以产生杂质和/或预期的反应的速率方面可被延迟。如果反应介质的液相含有太少可氧化的化合物时,反应速率可能慢得不合需要。另外,如果反应介质的液相含有过高浓度的可氧化的化合物时,额外的不期望的副反应可以产生杂质。传统的液相氧化反应器装配有用于混合其中所含的多相反应介质的搅拌设备。提供反应介质的搅拌是为了促进分子氧溶解到反应介质的液相中,在反应介质的液相中保持浓度相对均匀的溶解氧,和在反应介质的液相中保持浓度相对均匀的可氧化的有机化合物。进行液相氧化的反应介质的搅拌经常通过容器中的机械搅拌设备来提供,例如连续搅拌槽反应器(CSTR)。虽然CSTR可提供反应介质的彻底搅拌,但是CSTR存在许多缺陷。例如,CSTR由于它们需要昂贵的电动机、流体密封型轴承和传动轴、和/或复杂的搅拌机理而具有相对高的投资成本。另外,传统CSTR的旋转和/或摆动机械元件需要定期维护。与该维护相关联的劳动力和停车时间增加了 CSTR的操作成本。但是,即使进行定期维护,CSTR中采用的机械搅拌系统也容易出现机械故障,并且经过相对短的时间可能需要更换。鼓泡塔反映器提供了 CSTR和其它机械搅拌型氧化反应器的一种有吸引力的替换方式。鼓泡塔反应器提供了反应介质的搅拌,不需要昂贵和不可靠的机械设备。鼓泡塔反应器通常包括其中含有反应介质的伸长的立式反应区。反应区中反应介质的搅拌主要通过上升穿过反应介质液相的气泡本身的浮力来提供。相对于机械搅拌型反应器来说,这种在鼓泡塔反应器中提供的自身浮力搅拌降低了投资和维护成本。另外,与鼓泡塔反应器相关的,基本上不存在移动的机械部件提供了相对于机械搅拌型反应器更加不容易出现机械故障的氧化系统。当在传统氧化反应器(CSTR或鼓泡塔)中进行对-二甲苯的液相部分氧化时,从反应器中排出的产物通常为含有粗制对苯二甲酸(CTA)和母液的浆料。CTA含有相对高浓度的杂质(例如4-羧基苯甲醛、对-甲苯甲酸、芴酮、和其它发色体),使得其不适宜作为生产PET的进料。由此,通常将传统氧化反应器中生成的CTA进行纯化工艺,将CTA转化为适·用于生产PET的纯化对苯二甲酸(PTA)。一种用于将CTA转化为PTA的典型纯化方法,包括下列步骤(I)用水置换含有CTA的浆料的母液,(2)加热CTA/水浆料,以将CTA溶解于水中,(3)催化氢化CTA/水溶液,由此将杂质转化为更期望的和/或容易分离的化合物,(4)通过多级结晶步骤从氢化的溶液中沉淀获得的PTAJP (5)从剩余液体中分离结晶的PTA。虽然有效,但是这类传统纯化方法可能是非常昂贵的。导致传统CTA纯化方法的高成本的各种因素包括例如,促进CTA溶解于水所需的热能,氢化所需的催化剂,氢化所需的氢气流,由于一些对苯二甲酸的氢化而导致的产率(yield)损失,和多级结晶所需的多个容器。由此,期望提供一种氧化系统,其能够生产可以无需热量促进的溶解于水、氢化和/或多级结晶就可以纯化的CTA产物。发明目的由此,本发明的目的是,提供一种更有效的和更经济的液相氧化系统。本发明的另一目的是,提供一种用于对-二甲苯液相催化部分氧化为对苯二甲酸的、更有效的和更经济的反应器和方法。本发明的仍另一目的是,提供一种鼓泡塔反应器,其促进杂质形成较少的改进的液相氧化反应。本发明的仍另一目的是,提供一种用于制备纯对苯二甲酸(PTA)的、更有效的和更经济的系统,其通过液相氧化对-二甲苯制得粗制对苯二甲酸(CTA)并且随后将CTA纯化为PTA。本发明的另一目的是,提供一种用于氧化对-二甲苯和生产CTA产品的鼓泡塔反应器,其能够无需加热促进CTA溶解于水、氢化溶解的CTAJP /或多步结晶氢化的PTA来进行纯化。应当指出的是,如所附权利要求所限定的本发明的范围,并非局限于能够实现所有上述目的的方法或设备。而是,所要求的本发明的范围可以包含未实现全部或任意上述目的的多种系统。在阅读下列详细说明和附图的基础上,本发明的其它目的和优点对于本领域技术人员来说将是容易显而易见的。

发明内容
本发明的一种实施方案涉及一种用于制造多元羧酸组合物的方法,所述方法包括以下步骤(a)使第一部分的多相反应介质在外部反应容器中限定的第一反应区中进行氧化;(b)使第二部分的多相反应介质在内部反应容器中限定的第二反应区中进行氧化,其中内部反应容器至少部分设置在外部反应容器中;和(c)从所述第二反应区中取出所述反应介质的至少一部分的浆料相用于随后的下游加工处理。本发明的另一实施方案涉及一种鼓泡塔反应器。鼓泡塔反应器包括外部反应容器和内部反应容器。内部反应容器至少部分设置在外部反应容器中。第一反应区限定在外部反应容器内部并且在内部反应容器外部,第二反应区限定在内部反应容器内部。内部反应容器限定一个或多个直接开口,其提供了第一和第二反应区之间的直接的流体相通。内部反应容器具有最大高度(Hi),并且引导开口所限定的总开口面积的小于约50%距内部反应容器的顶部间隔大于约O. 5Hi0


下面参照附图详细描述本发明的优选实施方案,其中图I为依据本发明一种实施方案构造的氧化反应器的侧视图,特别地描述了将进料、氧化剂、和回流物流引入反应器,反应器中存在多相反应介质,和分别从反应器顶部和底部提取气体和浆料;图2为沿着图3中线2-2获得的鼓泡塔反应器底部的放大的剖面侧视图,特别地描述了用于将氧化剂物流引入反应器的氧化剂喷雾器的位置和构造;图3为图2氧化剂喷雾器的俯视图,特别地描述了氧化剂喷雾器顶部中没有氧化剂排出开口;图4为图2氧化剂喷雾器的仰视图,特别地描述了氧化剂喷雾器底部中的氧化剂排出开口的构造;图5为沿着图3中的线5-5获得的氧化剂喷雾器的剖面侧视图,特别地描述了氧化剂喷雾器底部中的氧化剂排出开口的朝向;图6为鼓泡塔反应器底部的放大的侧视图,特别地描述了用于在多个纵向间隔的位置将进料物流引入反应器的系统;图7为沿着图6中线7-7获得的剖面俯视图,特别地描述了图6中所示的进料引入系统如何将进料物流分布于优选的放射状进料区(FZ)和一个以上的方位象限(Q1、Q2、Q3、Q4)中;图8为类似于图7的剖面俯视图,但是描述了用于将进料物流进料到反应器中的替换方式,采用各自具有多个小进料口的卡口管;图9为替换系统的等视轴图,该系统用于在多个纵向间隔的位置将进料物流引入反应区,无需多个容器贯穿(penetration),特别地描述了进料分布系统可以至少部分地支撑在氧化剂喷雾器上;图10为图9中所示单贯穿进料分布系统和氧化剂喷雾器的侧视图;图11为沿着图10中线11-11获得的剖面俯视图,且进一步描述了支撑在氧化剂喷雾器上的单贯穿进料分布系统;
图12是装备有内部和外部反应容器的鼓泡塔反应器的侧视图;图13是沿线13-13获得的图12的鼓泡塔反应器的放大的剖视图,其特别地描述了内部和外部反应容器的相对朝向。图14是装备有内部和外部反应容器的另一鼓泡塔反应器的侧视图,特别地描述了外部反应容器具有分段直径;图15是装备有外部次级氧化反应器的鼓泡塔反应器的侧视图,所述外部次级氧化反应器在初级氧化反应器中从侧线接收浆料;图16是装备有开口端的外部次级氧化反应器的鼓泡塔反应器的侧视图,所述开口端的外部次级氧化反应器从初级氧化反应器的侧面中的扩大的开口接收浆料;图17a是装备有用于提高反应器的流体力学的内部结构的鼓泡塔反应器的示意侧视图; 图17b是沿图17a中的线17b_17b获得的图17a的反应器的剖视图;图18a是装备有用于提高反应器的流体力学的第一备选内部结构的鼓泡塔反应器的示意侧视图;图18b是沿图18a中的线18b_18b获得的图18a的反应器的剖视图;图19a是装备有用于提高反应器的流体力学的第二备选内部结构的鼓泡塔反应器的示意侧视图;图19b是沿图19a中的线19b_19b获得的图19a的反应器的剖视图;图20a是装备有用于提高反应器的流体力学的第三备选内部结构的鼓泡塔反应器的示意侧视图;图20b是沿图20a中的线20b_20b获得的图20a的反应器的剖视图;图21a是装备有用于提高反应器的流体力学的第四备选内部结构的鼓泡塔反应器的示意侧视图;图21b是沿图21a中的线21b_21b获得的图21a的反应器的剖视图;图22a是装备有用于提高反应器的流体力学的第五备选内部结构的鼓泡塔反应器的示意侧视图;图22b是沿图22a中的线22b_22b获得的图22a的反应器的剖视图;图23a是装备有用于提高反应器的流体力学的第六备选内部结构的鼓泡塔反应器的示意侧视图;图23b是沿图23a中的线23b_23b获得的图23a的反应器的剖视图;图24a是装备有用于提高反应器的流体力学的第七备选内部结构的鼓泡塔反应器的示意侧视图;图24b是沿图24a中的线24b_24b获得的图24a的反应器的剖视图;图25a是装备有提高流体力学的内部结构的分段直径鼓泡塔反应器的示意图;图25b是沿图25a中的线25b_25b获得的图25a的反应器的剖视图;图26为含有多相反应介质的鼓泡塔反应器的侧视图,特别地描述了理论上将反应介质分割为30个等体积的水平分层,由此在反应介质中量化一定的梯度;图27为含有多相反应介质的鼓泡塔反应器的侧视图,特别地描述了第一和第二离散的20%连续体积的反应介质,其具有基本上不同的氧浓度和/或耗氧速率;
图28A和28B为依据本发明一种实施方案生产的粗制对苯二甲酸(CTA)颗粒的放大图,特别地描述了每个CTA颗粒为由多个松散结合的CTA亚-颗粒组成的低密度、高表面积颗粒;图29A和29B为传统生产的CTA的放大图,特别地描述了传统的CTA颗粒比图28A和28B的本发明CTA颗粒的颗粒尺寸更大、密度更高、和表面积更小;图30为用于制备纯化的对苯二甲酸(PTA)的现有技术方法的简化工艺流程图;和图31为依据本发明的一种实施方法来制备PTA的方法的简化工艺流程图。详细说明本发明的一种实施方案涉及可氧化的化合物的液相部分氧化。该氧化优选地在一
个或多个搅拌反应器中所含的多相反应介质的液相中进行。适宜的搅拌反应器包括,例如,气泡搅拌型反应器(例如鼓泡塔反应器)、机械搅拌型反应器(例如连续搅拌槽反应器)、和流动搅拌型反应器(例如射流反应器)。在本发明的一种实施方案中,该液相氧化是使用至少一个鼓泡塔反应器进行的。如本文中所使用的那样,术语“鼓泡塔反应器”表示用于促进多相反应介质中化学反应的反应器,其中反应介质的搅拌主要通过气泡从反应介质中向上运动来提供。如本文中所使用的那样,术语“搅拌”表示消耗到反应介质中的导致流体流动和/或混合的作功。如本文中所使用的那样,术语“大部分(majority) ”、“主要地(Primarily) ”和“主要为(predominately) ”表示大于50%。如本文中所使用的那样,术语“机械搅拌”应表示通过刚性或柔性元件相对于反应介质或者在其中的物理运动而导致的反应介质的搅拌。例如,机械搅拌可以通过位于反应介质中的内部搅拌器、桨、振动器、或声学隔膜(acousticaldiaphragm)的旋转、摆动和/或振动来提供。如本文中所使用的那样,术语“流动搅拌”表示反应介质中一种或多种流体的高速注射和/或再循环而导致的反应介质的搅拌。例如,流动搅拌可以通过喷嘴、射流器和/或喷射器来提供。在本发明的优选实施方案中,氧化期间小于约40%的鼓泡塔反应器中的反应介质的搅拌通过机械和/或流动搅拌来提供,更优选地小于约20%的搅拌通过机械和/或流动搅拌来提供,最优选地小于5%的搅拌通过机械和/或流动搅拌来提供。优选地,氧化期间赋予多相反应介质的机械和/或流动搅拌的量小于约3千瓦/立方米反应介质,更优选地小于约2千瓦/立方米,和最优选地小于I千瓦/立方米。现在参照图1,描述优选的鼓泡塔反应器20,其包括具有反应段24和脱离段26的容器壳体22。反应段24限定反应区28,同时脱离段26限定脱离区30。通过进料入口 32a、
b、c、d将主要为液相的进料物流引入反应区28。通过位于反应区28下部中的氧化剂喷雾器34将主要为气相的氧化剂物流引入反应区28。液相进料物流和气相氧化剂物流在反应区28中共同地形成多相反应介质36。多相反应介质36包含液相和气相。更优选地,多相反应介质36包含具有固相、液相和气相组分的三相介质。反应介质36的固相组分优选地由于在反应介质36的液相中进行的氧化反应的作用而沉淀在反应区28中。鼓泡塔反应器20包括位于反应区28底部附近的浆料出口 38和处于脱离区30顶部附近的气体出口 40。包含反应介质36的液相和固相组分的浆料流出物通过浆料出口 38从反应区28中取出,同时主要为气态的流出物通过气体出口 40从脱离区30中取出。通过进料入口 32a、b、c、d引入鼓泡塔反应器20的液相进料物流优选地包含可氧化的化合物、溶剂和催化剂系统。存在于液相进料物流中的可氧化的化合物优选地包含至少一个烃基。更优选地,该可氧化的化合物为芳族化合物。仍更优选地,该可氧化的化合物为具有至少一个连接的烃基或者至少一个连接的取代的烃基或者至少一个连接的杂原子或者至少一个连接的羧酸官能团(-C00H)的芳族化合物。甚至更优选地,该可氧化的化合物为具有至少一个连接的烃基或者至少一个连接的取代的烃基的芳族化合物,其中每个连接的基团包含1-5个碳原子。仍更优选地,可氧化的化合物为具有正好两个连接的基团的芳族化合物,其中每个连接的基团包含正好一个碳原子且由甲基和/或取代的甲基和/或至多一个羧酸基团组成。甚至更优选地,可氧化的化合物为对-二甲苯、间-二甲苯、对-甲苯甲醛、间-甲苯甲醛、对-甲苯甲酸、间-甲苯甲酸、和/或乙醛。最优选地,可氧化的化合物为对-二甲苯。本文中所定义的“烃基”为仅仅键合于氢原子或其它碳原子的至少一个碳原子。本文中所定义的“取代的烃基”为键合于至少一个杂原子和至少一个氢原子的至少一个碳原 子。本文中所定义的“杂原子”为碳和氢原子之外的所有原子。本文中所定义的芳族化合物包括芳环,优选地具有至少6个碳原子,甚至更优选地仅具有作为环部分的碳原子。该芳环的适宜实例包括但并不限于苯、联苯、三联苯、萘和其它碳基稠合芳环。如果液相进料物流中存在的可氧化的化合物为常规固体化合物(即,在标准温度和压力下为固体),优选该可氧化的化合物当引入到反应区28中时基本上溶解于溶剂中。优选该可氧化的化合物在大气压下的沸点至少为约50°C。更优选地,该可氧化的化合物的沸点为约80-约400°C,并且最优选地为125-155°C。液相进料中存在的可氧化的化合物的量优选为约2-约40wt%,更优选为约4-约20wt%,最优选为6-15wt%。现在要注意的是,液相进料中存在的可氧化的化合物可以包含两种或者多种不同的可氧化的化学品的组合。这些两种或多种不同的化学材料可以在液相进料物流中混合进料或者可以在多个进料物流中分别进料。例如,可以通过单一的入口或多个独立的入口将包含对-二甲苯、间-二甲苯、对-甲苯甲醛、对-甲苯甲酸和乙醛的可氧化的化合物进料到反应器中。液相进料物流中存在的溶剂优选地包含酸组分和水组分。优选地,液相进料物流中存在的溶剂的浓度范围为约60-约98wt %,更优选为约80-约96wt %,最优选为85-94wt%。该溶剂的酸组分优选主要地为具有1-6个碳原子、更优选2个碳原子的有机低分子量单羧酸。最优选地,该溶剂的酸组分主要地为乙酸。优选地,酸组分至少占该溶剂的约75wt%,更优选至少占该溶剂的约80wt%,最优选占该溶剂的85-98wt%,余量主要地为水。引入鼓泡塔反应器20中的溶剂可以包括少量杂质,例如对-甲苯甲醛(para-toIualdehyde)、对苯二甲醒、4_羧基苯甲醒(4-CBA)、苯甲酸、对-甲苯甲酸、对-甲苯甲醒(para-toluic aldehyde)、α -溴-对-甲苯甲酸、间苯二甲酸、邻苯二甲酸、偏苯三酸、多芳烃和/或悬浮颗粒。优选地,引入鼓泡塔反应器20中的溶剂中的杂质总量小于约3wt % ο液相进料物流中存在的催化剂系统优选为均质的、液相催化剂系统,其能够促进可氧化的化合物的氧化(包括部分氧化)。更优选地,该催化剂系统包括至少一种多价过渡金属。仍更优选地,该多价过渡金属包括钴。甚至更优选地,该催化剂系统包括钴和溴。最优选地,该催化剂系统包括钴、溴和锰。
当催化剂系统中存在钴时,优选液相进料物流中存在的钴的量使得反应介质36的液相中钴的浓度保持在约300-约6000份/百万(重量)(ppmw),更优选为约700-约4200ppmw,最优选为1200-3000ppmw。当催化剂系统中存在溴时,优选液相进料物流中存在的溴的量使得反应介质36的液相中溴的浓度保持在约300-约5000ppmw,更优选为约600-约4000ppmw,最选选为900-3000ppmw。当催化剂系统中存在锰时,优选液相进料物流中存在的锰的量使得反应介质36的液相中锰的浓度保持在约20-约lOOOppmw,更优选为约O-约 500ppmw,最优选为 50_200ppmw。上面提供的、反应介质36的液相中钴、溴和/或锰的浓度是基于时间平均和体积平均表示的。本文中所使用的术语“时间平均”应表示在至少100秒的连续时间内同等进行的至少10次测量的平均。本文中所使用的术语“体积平均”应表示在整个一定体积内在均匀的三维间距处进行的至少10次测量的平均。引入反应区28中的催化剂系统中钴与溴的重量比(Co Br)优选为约O. 25 I-约4 1,更优选为约O. 5 I-约3 1,最优选为O. 75 1-2 I。引入反应·区28中的催化剂系统中钴与锰的重量比(Co Mn)优选为约O. 3 I-约40 1,更优选为约5 I-约30 1,最优选为10 1-25 I。引入鼓泡塔反应器20中的液相进料物流可以包括少量杂质,例如甲苯、乙苯、对-甲苯甲醛、对苯二甲醛、4-羧基苯甲醛(4-CBA)、苯甲酸、对-甲苯甲酸、对-甲苯甲醛、α-溴-对-甲苯甲酸、间苯二甲酸、邻苯二甲酸、偏苯三酸、多芳烃和/或悬浮颗粒。当鼓泡塔反应器20用于生产对苯二甲酸时,间-二甲苯和邻-二甲苯也被认为是杂质。优选地,引入鼓泡塔反应器20中的液相进料物流中的杂质总量小于约3wt%。虽然图I描述了这样的实施方案其中可氧化的化合物、溶剂和催化剂系统混合在一起并作为单一的进料物流引入鼓泡塔反应器20中,但是在本发明的备选实施方案中,可氧化的化合物、溶剂和催化剂可以分别被引入鼓泡塔反应器20中。例如,可以通过与溶剂和催化剂入口分开的入口将纯的对-二甲苯物流进料到鼓泡塔反应器20中。通过氧化剂喷雾器34引入鼓泡塔反应器20的、主要为气相的氧化剂物流包含分子氧(O2)。优选地,该氧化剂物流包含约5-约40mol%的分子氧、更优选约15-约30mol%的分子氧、最优选18-24m0l%的分子氧。优选该氧化剂物流的余量主要地由对氧化呈惰性的一种或多种气体(如氮气)组成。更优选地,该氧化剂物流基本上由分子氧和氮气组成。最优选地,该氧化剂物流为干燥空气,其包含约21mol %的分子氧和约78-约81mol %的氮气。在本发明的备选实施方案中,该氧化剂物流可以包含基本上纯净的氧。再次参照图I,鼓泡塔反应器20优选地装配有位于反应介质36的上表面44之上的回流分布器42。回流分布器42可以经操作以通过本领域公知的任意微滴形成方式将主要为液相的回流物流微滴引入脱离区30。更优选地,回流分布器42形成朝下指向反应介质36的上表面44的微滴喷雾。优选地,这种微滴的向下喷雾作用(affect)(即接合(engage)和影响(influence))脱离区30的最大水平横截面积的至少约50%。更优选地,该微滴喷雾作用脱离区30的最大水平横截面积的至少约75%。最优选地,该微滴喷雾作用脱离区30的最大水平横截面积的至少约90%。这种向下的液体回流喷雾可以有助于防止在反应介质36的上表面44处或之上起泡,并且也可以有助于在流向气体出口 40的向上运动的气体中夹带的任意液体或浆料微滴的脱离。另外,该液体回流可以用于降低存在于通过气体出口 40从脱离区30中取出的气态流出物中的颗粒和可能沉淀的化合物(例如溶解的苯甲酸、对-甲苯甲酸、4-CBA、对苯二甲酸和催化剂金属盐)的量。另外,回流微滴引入脱离区30可以通过蒸馏作用用于调节通过气体出口 40取出的气态流出物的组成。通过回流分布器42引入鼓泡塔反应器20的液体回流物流优选地大约具有与通过进料入口 32a、b、c、d引入鼓泡塔反应器20的液相进料物流的溶剂组分相同的组成。由此,优选地,液体回流物流包含酸组分和水。回流物流的酸组分优选为具有1-6个碳原子、更优选2个碳原子的低分子量有机单羧酸。最优选地,该回流物流的酸组分为乙酸。优选地,该酸组分占该回流物流的至少约75wt %,更优选占该回流物流的至少约80wt %,最优选占该回流物流的85-98wt%,余量为水。由于该回流物流通常具有与液相进料物流中的溶剂基本相同的组成,所以当本说明书提到引入反应器的“全部溶剂”时,该“全部溶剂”应包括该回流物流和该进料物流的溶剂部分二者。在鼓泡塔反应器20中的液相氧化期间,优选将进料、氧化剂和回流物流基本上连续地引入反应区28,同时将气体和浆料流出物流基本上连续地从反应区28中取出。本文 中所使用的术语“基本上连续地”应表示为被小于10分钟间隔的至少10小时的周期。氧化期间,优选地,以至少约8000kg/小时、更优选约15,000-约200,OOOkg/小时、仍更优选约22,000-约150,OOOkg/小时、最优选30,000-100, OOOkg/小时的速率将可氧化的化合物(例如对-二甲苯)基本上连续地引入反应区28。虽然,通常优选地,进入的进料、氧化剂和回流物流的流速基本上是稳定的,但是现在要注意的是,本发明的一种实施方案考虑了脉冲调制所述进入的进料、氧化剂和/或回流物流,由此改进混合和传质。当以脉冲输送方式引入进入的进料、氧化剂和/或回流物流时,优选地它们的流速在本文中所述的稳态流速的约O-约500%之内、更优选在本文中所述的稳态流速的约30-约200%之内、最优选在本文中所述的稳态流速的80-120%之内变化。鼓泡塔氧化反应器20中的平均空时速率(STR)定义为每单位时间每反应介质36单位体积进料的可氧化的化合物的质量(例如每立方米每小时进料的对-二甲苯的千克数)。在常规用法中,通常在计算STR之前,从进料物流中可氧化的化合物的量中减去未转化为产物的可氧化的化合物的量。但是,对于本文中很多优选的可氧化的化合物(例如对-二甲苯)来说,转化率和产率通常较高,而适当地如上所述定义本文中的术语。特别地,出于投资成本和运行库存的考虑,通常优选以高STR进行反应。但是,在逐渐增高的STR下进行反应可能影响部分氧化的质量或产率。当可氧化的化合物(例如对-二甲苯)的STR为约25kg/立方米/小时-约400kg/立方米/小时、更优选约30kg/立方米/小时-约250kg/立方米/小时、仍更优选约35kg/立方米/小时-约150kg/立方米/小时、最优选40kg/立方米/小时-IOOkg/立方米/小时时,鼓泡塔反应器20是特别有用的。鼓泡塔氧化反应器20中的氧-STR定义为每单位时间每反应介质36单位体积消耗的分子氧的重量(例如每立方米每小时消耗的分子氧的千克数)。特别地,出于投资成本和溶剂的氧化消耗的考虑,通常优选以高氧-STR进行反应。但是,在逐渐增高的氧-STR下进行反应最终降低部分氧化的质量或产率。不受理论限制,似乎这点可能与分子氧从气相到在界面区域的液体和由此进入到主体液体的传递速率相关。过高的氧-STR可能导致反应介质的主体液相中溶解的氧含量过低。全程的平均氧-STR在本文中定义为每单位时间在反应介质36的全部体积中消耗的所有氧的重量(例如每立方米每小时消耗的分子氧的千克数)。当全程的平均氧-STR为约25kg/立方米/小时-约400kg/立方米/小时、更优选约30kg/立方米/小时-约250kg/立方米/小时、仍更优选约35kg/立方米/小时-约150kg/立方米/小时、最优选40kg/立方米/小时-IOOkg/立方米/小时时,鼓泡塔反应器20是特别有用的。在鼓泡塔反应器20中的氧化期间,优选地将全部溶剂(来自进料和回流物流二者)的质量流速与进入反应区28的可氧化的化合物的质量流速的比值保持在约2 I-约50 I,更优选约5 I-约40 I,最优选7. 5 1-25 I。优选地,作为进料物流一部分引入的溶剂的质量流速与作为回流物流一部分引入的溶剂的质量流速的比值保持在约O. 5 I-无论什么时候都无回流物流流动,更优选约O. 5 I-约4 1,仍更优选约I I-约 2 1,最优选 I. 25 1-1.5 I。在鼓泡塔反应器20中的液相氧化期间,优选地引入鼓泡塔反应器20的氧化剂物流的用量提供稍微超过所需化学计量氧的分子氧。对于特定可氧化的化合物的最佳结果 来说所需的过量分子氧的量影响了该液相氧化的整体经济性。在鼓泡塔反应器20中的液相氧化期间,优选氧化剂物流的质量流速与进入反应器20的可氧化的有机化合物(例如对-二甲苯)的质量流速的比值保持在约O. 5 I-约20 1,更优选约I : I-约10 1,最优选2 1-6 I。再次参照图1,引入鼓泡塔反应器20的进料、氧化剂和回流物流一起形成至少一部分多相反应介质36。反应介质36优选为包含固相、液相和气相的三相介质。如上所述,可氧化的化合物(例如对-二甲苯)的氧化主要在反应介质36的液相中进行。由此,反应介质36的液相包含溶解的氧和可氧化的化合物。鼓泡塔反应器20中发生的氧化反应的放热特性导致一部分通过进料入口 32a、b、c、d引入的溶剂(例如乙酸和水)沸腾/气化。由此,反应器20中反应介质36的气相主要地由气化的溶剂和未溶解的、未反应部分的氧化剂物流形成。一些现有技术的氧化反应器采用了换热管/散热片来加热或冷却反应介质。但是,这种热交换结构在本发明反应器和本文中所述的方法中可能是不期望的。由此,优选地,鼓泡塔反应器20基本上不包括接触反应介质36的且显示时间平均热通量大于30000瓦/平方米的表面。另外,优选地,小于约50%的反应介质36的时均反应热通过热交换表面取出,更优选地小于约30%的反应热通过热交换表面取出,和最优选地小于10%的反应热通过热交换表面取出。反应介质36的液相中溶解的氧的浓度为从气相传质的速率与液相内反应消耗速率之间的动态平衡(即,其并非仅由供给的气相中分子氧的分压来设定,但是这是溶解的氧的供给速率中的一种因素并且其的确影响了溶解氧的浓度上限)。溶解氧的量局部变化,靠近气泡界面处较高。通常,溶解氧的量取决于反应介质36的不同区域中供给与需求因素的平衡。瞬时地,溶解氧的量取决于相对于化学品消耗速率的气体和液体混合的均匀性。在设计以适当地在反应介质36的液相中使溶解氧的供给与需求匹配时,优选使反应介质36的液相中时间平均和体积平均的氧浓度保持高于约Ippm摩尔,更选选约4-约IOOOppm摩尔,仍更优选约8-约500ppm摩尔,最优选12-120ppm摩尔。鼓泡塔反应器20中进行的液相氧化反应优选地为形成固体的沉淀反应。更优选地,鼓泡塔反应器20中进行的液相氧化导致至少约10wt%的引入反应区28的可氧化的化合物(例如对-二甲苯)在反应介质36中形成固体化合物(例如粗制对苯二甲酸颗粒)。仍更优选地,该液相氧化导致至少约5(^丨%的可氧化的化合物在反应介质36中形成固体化合物。最优选地,该液相氧化导致至少90wt%的可氧化的化合物在反应介质36中形成固体化合物。优选地,反应介质36中固体的总量大于约3wt%,基于时间平均和体积平均。更优选地,保持反应介质36中固体的总量为约5-约40wt%,仍更优选约10-约35wt%,最优选为15-30wt%。优选地鼓泡塔反应器20中生成的氧化产物(例如对苯二甲酸)的绝大部分(substantial portion)以固体形式存在于反应介质36中,相对地剩余部分溶解于反应介质36的液相中。存在于反应介质36中的固相氧化产物的量优选地为反应介质36中全部氧化产物(固相和液相)的至少约25wt%,更优选为反应介质36中全部氧化产物的至少约75wt%,最优选为反应介质36中全部氧化产物的至少95wt%。上述对于反应介质36中固体量所提供的数值范围应用于在基本上连续的时间段内鼓泡塔20的基本上稳态的操作,并不应用于鼓泡塔反应器20的启动、停车或次最佳的操作。反应介质36中的固体量通过重量分析法来测量。在该重量分析法中,从反应介质中取出代表性部分的浆料并称重。在有效地保持存在于反应介质中的全部固-液分配的条件下,通过沉降或过滤将自由液体 从固体部分中有效地除去,不损失沉淀的固体且使小于约10%的初始液体物质与固体部分一起剩余。将固体上剩余的液体有效地蒸发至干,不使固体升华。将剩余部分的固体称重。固体部分的重量与浆料的原始部分的重量之比为固体的分数,通常以百分比表示。鼓泡塔反应器20中进行的沉淀反应可能导致一些接触反应介质36的刚性结构表面上的结垢(即固体聚集)。由此,在本发明的一种实施方案中,优选地,鼓泡塔反应器20基本上在反应区28内不包含内部热交换、搅拌或流(baffling)结构,因为这些结构将容易结垢。如果反应区28中存在内部结构时,期望避免具有包括大量向上朝向的平面表面区域的外表面的内部结构,因为这些向上朝向的平面表面特别容易结垢。由此,如果反应区28内存在任何内部结构时,优选地小于约20 %的该内部结构全部向上朝向的暴露的外表面区域由基本上平面的表面形成,该表面倾斜于水平面小于约15度。具有这种构造的内部结构在本文中称为具有“非结垢”构造。再次参照图1,鼓泡塔反应器20的物理结构有助于提供可氧化的化合物(例如对-二甲苯)的优化氧化,生成最少的杂质。优选地,容器壳体22的细长的反应段24包括基本上圆柱形主体46和底盖48。反应区28的上端由跨越圆柱形主体46的顶部延伸的水平面50限定。反应区28的下端52由底盖48的最低内表面限定。通常,反应区28的下端52位于靠近用于浆料出口 38的开口。由此,鼓泡塔反应器20内所限定的伸长的反应区28具有沿着圆柱形主体46伸长的轴向、从反应区28的顶端50到下端52测量的最大长度“L”。反应区28的长度“L”优选为约10-约100m,更优选约20-约75m,最优选25_50m。反应区28具有通常等于圆柱形主体46的最大内径的最大直径(宽度)“D”。反应区28的最大直径“D”优选为约I-约12m,更优选约2-约IOm,仍更优选约3. I-约9m,最优选4_8m。在本发明的优选实施方案中,反应区28的长径比“L D”比值为约6 I-约30 I。仍更优选地,反应区28的L D比值为约8 I-约20 I。最优选地,反应区28的L : D比值为 9 1-15 I。如上所讨论的那样,鼓泡塔反应器20的反应区28接收多相反应介质36。反应介质36具有与反应区28的下端52重合的底端和位于上表面44处的顶端。沿着水平面限定反应介质36的上表面44,该水平面在其中反应区28的内含物从气相连续状态转变为液相连续态的垂直位置横截反应区28。上表面44优选地位于其中反应区28的内含物的薄水平片段的局部时间平均气体滞留量为O. 9的垂直位置。反应介质36具有在其上端与下端之间测量的最大高度“H”。反应介质36的最大宽度“W”通常等于圆柱形主体46的最大直径“D”。在鼓泡塔反应器20中的液相氧化期间,优选地使H保持在L的约60-约120 %,更优选L的约80-约110 %,最优选L的85-100 %。在本发明的优选实施方案中,反应介质36的高宽比“H W”比值大于约3 I。更优选地,反应介质36的H W比值为约7 I-约25 I。仍更优选地,反应介质36的H W比值为约8 I-约20 I。最优选地,反应介质36的H W比值为9 1-15 I。在本发明的一种实施方案中,L = H和D = W,使得本文中对于L和D提供的各种尺寸或比值也适用于H和W,反之亦然。根据本发明实施方案提供的相对高的L : D和H : W比值可以有助于本发明系统 的几种重要优点。如下进一步详细讨论的那样,已发现,较高的L : D和H : W比值,以及一些下面所讨论的其它特征,可以促进反应介质36中分子氧和/或可氧化的化合物(例如对-二甲苯)的有益的垂直浓度梯度。与优选到处浓度相对均一的良好混合的反应介质的传统知识相反,已发现,氧和/或可氧化的化合物浓度的垂直分段促进了更有效的和更经济的氧化反应。使靠近反应介质36顶部的氧和可氧化的化合物浓度最小化,可以有助于避免通过上部气体出口 40的未反应氧和未反应可氧化的化合物的损失。但是,如果整个反应介质36内可氧化的化合物和未反应氧的浓度较低时,那么氧化的速率和/或选择性就被降低。由此,优选地,靠近反应介质36底部的分子氧和/或可氧化的化合物的浓度大大高于靠近反应介质36顶部的浓度。另外,高L D和H W比值导致反应介质36底部的压力大大高于反应介质36顶部的压力。这种垂直压力梯度源于反应介质36的高度和密度。这种垂直压力梯度的一种优点在于,相对于在其他情况下在浅薄反应器中在相当的温度和塔顶压力下可以实现的氧溶解度和传质,容器底部升高的压力推动了更大的氧溶解度和传质。由此,可以在低于更浅薄容器中所需的温度下进行该氧化反应。当鼓泡塔反应器20用于对-二甲苯部分氧化为粗制对苯二甲酸(CTA)时,在具有相同或更好的氧传质速率下在较低反应温度下操作的能力具有许多优点。例如,对-二甲苯低温氧化降低了反应期间燃烧的溶剂的量。如下进一步详细讨论的那样,低温氧化也有利于形成小的、高表面积的、松散结合的、容易溶解的CTA颗粒,相对于通过传统高温氧化方法制得的大的、低表面积的、致密CTA颗粒来说,可以对其进行更经济的纯化技术。在反应器20中的氧化期间,优选地,保持反应介质36的时间平均和体积平均温度范围为约125-约200°C,更优选约140-约180°C,最优选150_170°C。反应介质36之上的塔顶压力优选保持为约I-约20bar表压(barg),更优选约2_约12barg,最优选4_8barg。优选地,反应介质36顶部和反应介质36底部之间的压差为约O. 4-约5bar,更优选压差为约0.7-约3bar,最优选压差为l_2bar。虽然通常优选将反应介质36之上的塔顶压力保持在相对恒定的数值,但是本发明的一种实施方案包括脉冲调节塔顶压力,由此促进反应介质36中改进的混合和/或传质。当脉冲调节塔顶压力时,优选地脉冲压力为本文中所述的稳态塔顶压力的约60-约140%,更优选为本文中所述的稳态塔顶压力的约85-约115%,最优选为本文中所述的稳态塔顶压力的95-105%。反应区28的高L : D比值的另一优点在于,其可以有助于反应介质36的平均表观速度的增加。本文中对于反应介质36所使用的术语“表观速度”和“表观气体速度”表示反应器中某一高处的反应介质36的气相的体积流速除以该高度处的反应器的水平横截面积。由高L D比值的反应区28提供的升高的表观速度可以促进局部混合和增加反应介质36的气体滞留量。在反应介质36的四分之一高度、半高度和/或四分之三高度处,反应介质36的时间平均表观速度优选地大于约O. 3米/秒,更优选地为约O. 8-约5米/秒,仍更优选地为约O. 9-约4米/秒,最优选地为1-3米/秒。再次参照图1,鼓泡塔反应器20的脱离段26仅仅为直接位于反应段24之上的容器壳体22的加宽部分。当气相上升到反应介质36的上表面44之上且到达气体出口 40时,脱离段26降低了鼓泡塔20中向上流动的气相的速度。气相向上速度的这种降低有助于促进在向上流动的气相中夹带的液体和/或固体的除去,并且由此降低了反应介质36的液相中存在的一些组分的不期望的损失。 脱离段26优选地包括常规截头圆锥体型过渡壁54、常规圆柱形宽侧壁56和顶盖58。过渡壁54的窄下端连接于反应段24的圆柱形主体46的顶部。过渡壁54的宽上端连接于宽侧壁56的底部。优选地,过渡壁54以相对于垂直方向约10-约70度的角度、更优选相对于垂直方向约15-约50度的角度、最优选相对于垂直方向15-45度的角度从其窄下端向上和向外延伸。宽侧壁56具有最大直径“X”,其通常大于反应段24的最大直径“D”,尽管当反应段24的上部直径小于反应段24的总最大直径时,那么X可以实际上小于D。在本发明的优选实施方案中,宽侧壁56的直径与反应段24的最大直径的比值“X D”为约0.8 I-约4 I,最优选为1.1 : 1-2 : I。顶盖58连接于宽侧壁56的顶部。顶盖58优选地为常规椭圆形头部元件,其限定容许气体通过气体出口 40溢出脱离区30的中心开口。或者,顶盖58可以是各种形状,包括圆锥形。脱离区30具有从反应区28顶部50到脱离区30最上部测量的最大高度“Y”。反应区28的长度与脱离区30的高度的比值“L Y”优选的为约2 I-约24 I,更优选约3 I-约20 I,最优选4 1-16 I。现在参照图1-5,现在将更详细地讨论氧化剂喷雾器34的位置和结构。图2和3显示,氧化剂喷雾器34可以包括环形元件60和一对氧化剂进入导管64a、b。便利地,这些氧化剂进入导管64a、b可以在环形元件60之上的高度处进入容器并且随后转为向下,如图2中所示。或者,氧化剂进入导管可以在环形元件60之下或者在与环形元件60近似相同的水平面上进入容器。每个氧化剂进入导管64a、b包括连接于在容器壳体22中形成的各自氧化剂入口 66a、b的第一端和流体连接于环形元件60的第二端。环形元件60优选地由导管、更优选多个直的导管段、最优选多个直的管道段形成,其刚性地彼此相连,由此形成管状多边形环。优选地,环形元件60由至少3个直的管道段、更优选6-10个管道段、最优选8个管道段形成。由此,当环形元件60由8个管道段形成时,其通常具有八边形结构。优选地,组成氧化剂进入导管64a、b和环形元件60的管道段具有大于约O. lm、更优选约O. 2-约2m、最优选约O. 25-lm的标称直径。可能最好如图3中所描述的那样,优选地,基本上在喷雾器环60的上部部分中没有形成开口。可能最好如图4和5中所示的那样,氧化剂喷雾器环60的底部呈现多个氧化剂开口 68。优选地构造氧化剂开口 68,使得至少约1%由氧化剂开口 68限定的总开口面积位于环形元件60的中线64(图5)之下,其中中线64位于环形元件60体积质心高度处。更优选地,至少约5%由全部氧化剂开口 68限定的总开口面积位于中线64之下,其中至少约2 %的总开口面积由以通常向下的方向在与垂直成约30度之内排出氧化剂物流的开口 68限定。仍更优选地,至少约20%由全部氧化剂开口 68限定的总开口面积位于中线64之下,其中至少约IO %的总开口面积由以通常向下的方向在与垂直成约30度之内排出氧化剂物流的开口 68限定。最优选地,至少约75%由全部氧化剂开口 68限定的总开口面积位于中线64之下,其中至少约40 %的总开口面积由以通常向下的方向在与垂直成约30度之内排出氧化剂物流的开口 68限定。由位于中线64之上的全部氧化剂开口 68限定的总开口面积的分数优选地小于约75%,更优选地小于约50%,仍更优选地小于约25%,最选选地小于5%。如图4和5中所示,氧化剂开口 68包括向下的开口 68a和斜的开口 68b。构造向下的开口 68a,由此以与垂直成约30度之内、更优选地以与垂直成约15度之内、最优选地以与垂直成5度之内的角度通常向下地排出氧化剂物流。现在参考图5,构造斜的开口 68b,由此以与垂直成约15-约75度的角度“A”、更优选地以与垂直成约30-约60度的角度A、最优选地以与垂直成40-50度的角度A通常向外且向下地排出氧化剂物流。 优选地,基本上全部氧化剂开口 68具有近似相同的直径。氧化剂开口 68的直径优选地为约2-约300mm,更优选为约4-约120mm,最优选为8_60mm。选择环形兀件60中氧化剂开口 68的总数以符合下面详述的低压降准则。优选地,环形元件60中形成的氧化剂开口 68的总数至少为约10,更优选地氧化剂开口 68的总数为约20-约200,最优选地氧化剂开口 68的总数为40-100。虽然图1-5描述了非常具体的氧化剂喷雾器34的结构,现在要注意的是,可以采用多种氧化剂喷雾器结构来实现本文中所述的优点。例如,氧化剂喷雾器不必需要具有图
1-5中所示的八边形环形元件结构。而是,氧化剂喷雾器可以由采用多个用于排放氧化剂物流的一定距离间隔的开口的任意流动导管结构来形成。流动导管中氧化剂开口的尺寸、数目和排放方向优选地在上述范围之内。另外,优选地构造氧化剂喷雾器,以提供上述分子氧的方位和径向分布。无论氧化剂喷雾器34的具体结构如何,优选地,氧化剂喷雾器以这样的方式来物理构造和操作使得与从流动导管(一个或多个)中排出氧化剂物流,通过氧化剂开口并排放到反应区中相关联的压降最小化。该压降如下来计算,氧化剂喷雾器的氧化剂入口 66a、b处流动导管内部氧化剂物流的时间平均静压减去反应区中在其中一半氧化剂物流在高于该垂直位置引入且一半氧化剂物流在低于该垂直位置引入的高度处的时间平均静压。在本发明的优选实施方案中,与从氧化剂喷雾器中排出氧化剂物流相关联的时间平均压降小于约O. 3兆帕(MPa),更优选地小于约O. 2MPa,仍更优选地小于约O. IMPa,最优选地小于O. 05MPa。任选地,可以用液体(例如乙酸、水和/或对-二甲苯)向氧化剂喷雾器34提供连续的或间歇的冲洗,由此防止氧化剂喷雾器被固体结垢。当采用这种液体冲洗时,优选地,使有效量的液体(即并不仅仅是可能自然存在于氧化剂物流中的液滴的最小量)每天至少一个一分钟以上的周期通过氧化剂喷雾器并且从氧化剂开口中流出。当从氧化剂喷雾器34中连续地或定期地排出液体时,优选地,通过氧化剂喷雾器的液体的质量流速与通过氧化剂喷雾器的分子氧的质量流速的时间平均比值为约O. 05 I-约30 1,或者为约O. I I-约 2 1,或者甚至为 0.2 1-1 I。在许多含有多相反应介质的传统鼓泡塔反应器中,基本上所有位于氧化剂喷雾器(或者用于将氧化剂物流引入反应区的其它机构)下面的反应介质具有非常低的气体滞留量值。如本领域中公知的那样,“气体滞留量”只是气态下多相介质的体积分数。介质中低气体滞留量的区域也可以称为“未充气的”区域。在多种常规浆料鼓泡塔反应器中,反应介质全部体积的绝大部分位于氧化剂喷雾器(或者用于将氧化剂物流引入反应区的其它机构)之下。由此,存在于传统鼓泡塔反应器底部的绝大部分的反应介质是未充气的。已发现,使在鼓泡塔反应器中进行氧化的反应介质中未充气区的数量最小化可以使某类不期望的杂质生成最小化。反应介质的未充气区含有相对较少的氧化剂气泡。这种低体积的氧化剂气泡降低了溶解到反应介质的液相中可获得的分子氧的量。由此,反应介质的未充气区中液相具有较低浓度的分子氧。这些反应介质的缺氧的、未充气区倾向于促进不期望的副反应,而不是期望的氧化反应。例如,当对-二甲苯部分氧化以形成对苯二甲酸时,反应介质液相中不足的氧的可得性可能导致形成不期望的高数量的苯甲酸和偶合(coupled)芳环,特别地包括非常不期望的称为芴酮和蒽醌的显色分子。根据本发明的一种实施方案,在以使得具有低气体滞留量的反应介质的体积分数最小化的方式构造和操作的鼓泡塔反应器中进行液相氧化。这种未充气区的最小化可以通过理论上将反应介质的全部体积分为2000个均匀体积的离散水平片段来量化。除了最高和最低的水平片段之外,每个水平片段为在其侧面由反应器侧壁限制的且在其顶部和底部由虚构的水平面限制的离散体积。最高水平片段在其底部由虚构的水平面限制且在其顶部由反应介质的上表面限制。最低水平片段在其顶部由虚构的水平面限制且在其底部由容器的下端限制。一旦反应介质已理论上被分为相等体积的2000个离散水平片段,可以测量每个水平片段的时间平均和体积平均气体滞留量。当采用这种量化未充气区数量的方法时,优选地,时间平均和体积平均气体滞留量小于O. I的水平片段的数目小于30,更优选小于15,仍更优选小于6,甚至更优选小于4,最优选小于2。优选地,气体滞留量小于O. 2的水平片段的数目小于80,更优选小于40,仍更优选小于20,甚至更优选小于12,最优选小于5。优选地,气体滞留量小于O. 3的水平片段的数目小于120,更优选小于80,仍更优选小于40,甚至更优选小于20,最优选小于15。再次参照图I和2,已发现,在反应区28中将氧化剂喷雾器34安置较低提供了几种优点,包括降低了反应介质36中未充气区的数量。假设反应介质36的高度“H”、反应区28的长度“L”和反应区28的最大直径“D”,优选地,将大部分(即> 50wt% )的氧化剂物流在反应区28下端52的约O. 025H、0. 022L和/或O. 25D之内引入反应区28。更优选地,将大部分氧化剂物流在反应区28下端52的约O. 02H、0. 018L和/或O. 2D之内引入反应区28。最优选地,将大部分氧化剂物流在反应区28下端52的O. 015H、0. 013L和/或O. 15D之内引入反应区28。在图2中所示的实施方案中,反应区28下端52与氧化剂喷雾器34的上部氧化剂开口 68的出口之间的垂直距离“Y/’小于约O. 25H、0. 022L和/或O. 25D,使得基本上全部氧化剂物流在反应区28下端52的约O. 25H、0. 022L和/或O. 2 之内进入反应区28。更优选地,Y1小于约O. 02H、0. 018L和/或O. 2D。最优选地,Y1小于O. 015H、0. 013L和/或O. 15D,但是大于O. 005H、0. 004L和/或O. 06D。图2描述了位于其中容器壳体22的圆柱形主体46的底边与容器壳体22的椭圆形底盖48的顶边结合的位置的切线72。或者,底盖48可以是任意形状,包括圆锥形,且切线仍然定义为圆柱形主体46的底边。切线72与氧化剂喷雾器34的顶部之间的垂直距离“Y2”优选地至少为约O. 0012H、0. OOlL和/或O. OlD ;更优选至少为约O. 005H、0. 004L和/或O. 05D ;最优选为至少O. 01H、0. 008L和/或O. ID0反应区28下端52与氧化剂喷雾器34的下部氧化剂开口 70的出口之间的垂直距离“Y/优选地小于约O. 015H、0. 013L和/或O. 15D ;更优选小于约O. 012H、0. OIL和/或O. ID ;最优选小于 O. 01H、0. 008L、和 / 或 O. 075D,但是大于 O. 003H、0. 002L、和 / 或 O. 025D。除了通过使反应介质36中未充气区(即具有低气体滞留量的区域)最小化提供的优点之外,已发现,可以通过使整个反应介质36的气体滞留量最大化来强化氧化。反应介质36优选的时间平均和体积平均气体滞留量为至少约O. 4,更优选为约O. 6-约O. 9,最优选为O. 65-0. 85。几种鼓泡塔反应器20的物理和操作特征有助于上面所讨论的高气体滞留量。例如,对于给定的反应器尺寸和氧化剂物流流动来说,反应区28的高L D比值 产生较低的直径,其增加了反应介质36中的表观速度,其反过来增加了气体滞留量。另外,即使对于给定的恒定表观速度来说,鼓泡塔的实际直径和L D比值公知会影响平均气体滞留量。另外,最小化特别是反应区28底部中的未充气区,有助于增加气体滞留量值。另夕卜,鼓泡塔反应器的塔顶压力和机械结构可以影响在高表观速度下的操作稳定性和本文中所公开的气体滞留量值。再次参照图1,已发现,可氧化的化合物(例如对-二甲苯)在反应介质36中的改进分布可以通过在多个垂直间隔的位置将液相进料物流引入反应区28来提供。优选地,通过至少3个进料口、更优选至少4个进料口将液相进料物流引入反应区28。本文中所使用的术语“进料口”表示其中将液相进料物流排放到反应区28中以与反应介质36混合的开口。优选地,至少2个进料口彼此垂直间隔至少约O. 5D,更优选地至少约I. 5D,最优选地至少3D。但是,优选地,最高的进料口与最低的氧化剂开口之间垂直间距不大于约O. 75Η、O. 65L和/或8D ;更优选不大于约O. 5H、0. 4L和/或5D ;最优选地不大于O. 4H、0. 35L和/或4D。虽然期望在多个垂直位置引入液相进料物流。但是也已经发现,如果大部分液相进料物流引入反应介质36和/或反应区28的下半部,则提供了可氧化的化合物在反应介质36中的改进分布。优选地,至少约75 1:%的液相进料物流引入反应介质36和/或反应区28的下半部。最优选地,至少约9(^1:%的液相进料物流引入反应介质36和/或反应区28的下半部。另外,优选地,将至少约30wt%的液相进料物流在其中将氧化剂物流引入反应区28的最低垂直位置的约I. 之内引入反应区28。将氧化剂物流引入反应区28的该最低垂直位置通常在氧化剂喷雾器底部;但是,本发明的优选实施方案考虑了多种用于将氧化剂物流引入反应区28的备选结构。优选地,将至少约50wt%的液相进料在其中将氧化剂物流引入反应区28的最低垂直位置的约2. 之内引入。优选地,将至少约75wt%的液相进料物流在其中将氧化剂物流引入反应区28的最低垂直位置的约之内引入。每个进料口限定通过其排出进料的开口面积。优选地,至少约30%的全部进料入口的累积开口面积位于其中将氧化剂物流引入反应区28的最低垂直位置的约I. 之内。优选地,至少约50 %的全部进料入口的累积开口面积位于其中将氧化剂物流引入反应区28的最低垂直位置的约2. 之内。优选地,至少约75%的全部进料入口的累积开口面积位于其中将氧化剂物流引入反应区28的最低垂直位置的约之内。再次参照图1,在本发明的一种实施方案中,进料入口 32a、b、C、d仅为沿容器壳体22 —侧的一连串垂直对准的开口。这些进料口优选地具有基本上相似的小于约7cm的直径,更优选为约O. 25-约5cm,最优选为O. 4_2cm。鼓泡塔反应器20优选地装配有用于控制液相进料物流从每个进料口中流出的流速的系统。这种流动控制系统优选地包括用于每个各自进料入口 32a、b、C、d的各流动控制阀74a、b、C、d。另外,优选地,鼓泡塔反应器20装配有能使至少一部分液相进料物流以至少 约2m/s、更优选至少约5m/s、仍更优选至少约6m/s、最优选8-20m/s的提高的入口表观速度引入反应区28的流动控制系统。本文中所使用的术语“入口表观速度”表示进料口流出的进料物流的时间平均体积流速除以进料口的面积。优选地,将至少约50wt%的进料物流以提高的入口表观速度引入反应区28。最优选地,将基本上全部进料物流以提高的入口表观速度引入反应区28。现在参照图6和7,描述用于将液相进料物流引入反应区28的备选系统。在该实施方案中,在四个不同的高度将进料物流引入反应区28。每个高度装配有各自的进料分布系统76a、b、c、d。每个进料分布系统76包括主进料导管78和歧管80。每个歧管80装配有至少两个连接于各自嵌入导管86、88的出口 82、84,所述嵌入导管86、88延伸到容器壳体22的反应区28中。每个嵌入导管86、88呈现用于将进料物流排放到反应区28中的各自进料口 87、89。进料口 87、89优选地具有基本上相似的小于约7cm的直径,更优选为约O. 25-约5cm,最优选为O. 4_2cm。优选地,每个进料分布系统76a、b、C、d的进料口 87、89在直径方向上相对设置,使得在相反方向上将进料物流引入反应区28。另外,优选地,相邻进料分布系统76的在直径方向上相对设置的进料口 86、88彼此相对地旋转90度定位。操作时,液相进料物流被装入主进料导管78中并且随后进入歧管80。对于通过进料口 87、89在反应器20的相反侧上的同时引入来说,歧管80使进料物流均匀地分布。图8描述了备选结构,其中每个进料分布系统76装配有卡口管(bayonettube)90、92,而非嵌入导管86、88 (如图7中所示)。卡口管90、92突出到反应区28中并且包括多个用于将液相进料排放到反应区28中的小进料口 94、96。优选地,卡口管90、92的小进料口94、96具有基本上相同的小于约50mm的直径,更优选为约2-约25mm,最优选为4_15mm。图9-11描述了备选的进料分布系统100。进料分布系统100在多个垂直间隔的和侧向间隔的位置引入液相进料物流,不需要多处穿透鼓泡塔反应器20侧壁。进料引入系统100通常包括单入口导管102、集管(header) 104、多个直立式分布管106、横向支撑机构108和垂直支撑机构110。入口导管102穿透容器壳体22主体46的侧壁。入口导管102流体地连接于集管104。集管104将从入口导管102中接收的进料物流在直立式分布管106之中分布均匀。每个分布管106具有多个用于将进料物流排放到反应区28的垂直间隔的进料口 112a、b、c、d。横向支撑机构108连接于每个分布管106,且抑制分布管106的相对横向运动。垂直支撑机构110优选地连接于横向支撑机构108和氧化剂喷雾器34的顶部。垂直支撑机构110基本上抑制反应区28中分布管106的垂直运动。优选地,进料口 112具有基本上相同的小于约50mm的直径,更优选为约2-约25mm,最优选为4_15mm。图9-11中所示进料分布系统100的进料口 112的垂直间距可以基本上等同于上述关于图I进料分布系统所述的。任选地,进料开口可以是延长的喷嘴而不是简单的孔。任选地,一个或多个折流装置可以布置在流动导管外和在从其中离开进入反应介质的流体路径中。任选地,接近流动导管的底部的开口可以被确定大小以便连续地或者间歇地从液相进料分配系统的内部排出固体。任选地,可以使用机械工具如舌门组件、止回阀、过多的流动阀门、动力操纵阀等,以便防止在操作翻转期间固体的进入或者从液相进料分配系统内部排出积累的固体。已发现,许多鼓泡塔反应器中反应介质的流型可以容许反应介质中可氧化的化合物的不均勻的方位(azimuthal)分布,尤其是当可氧化的化合物主要沿着反应介质的一侧引入时。本文中所使用的术语“方位”表示围绕反应区细长的直立轴的角度或间距。本文中所使用的术语“直立”应表不在垂直的45°之内。在本发明的一种实施方案中,含有可氧化的化合物(例如对-二甲苯)的进料物流通过多个方位间隔的进料口引入反应区。这些方位间隔的进料口可以有助于预防反应介质中极高和极低可氧化的化合物浓度的区域。图6-11中所示的各种进料引入系统为提供了进料口的适当方位间距的系统的实例。再次参照图7,为了量化液相进料物流以方位间距形式引入反应介质,理论上可以 将反应介质分为四个近似相等体积的直立方位象限“Qp Q2、Q3> Q/’。这些方位象限“Qp Q2>Q3、Q4”由一对虚构的相交的正交垂直面“ΡρΡ2”限定,该相交的正交垂直面在反应介质的最大垂直尺度和最大径向尺度以外延伸。当反应介质含在圆柱形容器中时,虚构的相交的垂直面Pp P2的相交线将近似地与圆柱体的垂直中线相一致,并且每个方位象限Qp Q2> Q3、Q4将为高度等于反应介质高度的通常楔形的垂直体积。优选地,将绝大部分可氧化的化合物通过位于至少两个不同方位象限中的进料口排放到反应介质中。在本发明的优选实施方案中,将不超过约SOwt %的可氧化的化合物通过可以位于单一方位象限中的进料口排放到反应介质中。更优选地,不超过约6(^〖%的可氧化的化合物通过可以位于单一方位象限中的进料口排放到反应介质中。最优选地,将不超过40wt%的可氧化的化合物通过可以位于单一方位象限中的进料口排放到反应介质中。当方位象限成方位角定位使得最大可能量的可氧化的化合物被排放到方位象限之一中时,测量可氧化的化合物的这些方位分布参数。例如,如果通过两个彼此在方位上间距89度的进料口将全部进料物流排放到反应介质中,为了确定四个方位象限中的方位分布,将IOOwt %的进料物流在单一方位象限中排放到反应介质中,因为方位象限可以以使得两个进料口位于单一方位象限中的方式在方位上定位。除了与进料口的适当方位间距相关的优点之外,也已经发现,鼓泡塔反应器中进料口的适当径向间距也可能是重要的。优选地,将绝大部分引入反应介质的可氧化的化合物通过与容器侧壁向内地径向间隔的进料口排放。这样,在本发明的一种实施方案中,绝大部分的可氧化的化合物通过位于“优选的径向进料区”的进料口进入反应区,所述优选的径向进料区从限定反应区的直立侧壁向内地间隔。再次参照图7,优选的径向进料区“FZ”可以呈现理论直立的圆柱体形状,居于反应区28中心且具有O. 9D的外径“D。”,其中“D”为反应区28的直径。由此,在优选的径向进料区FZ与限定反应区28的侧壁内侧之间限定了厚度为O. 05D的外圆环“0A”。优选地,很少的或者无可氧化的化合物通过位于该外圆环OA的进料口而引入反应区28。在另一种实施方案中,优选地,很少的或者无可氧化的化合物引入到反应区28中心。由此,如图8中所示。优选的径向进料区FZ可以呈现居于反应区28中心的理论直立的圆环形状,具有O. 9D的外径D。,和具有O. 2D的内径Dp由此,在该实施方案中,从优选的径向进料区FZ的中心“切除”直径O. 2D的内圆柱1C。优选地,很少的或者无可氧化的化合物通过位于该内圆柱IC的进料口而引入反应区28。在本发明的优选实施方案中,绝大部分可氧化的化合物通过位于优选的径向进料区的进料口而引入反应介质36中,无论该优选的径向进料区是否具有上述圆柱形或圆环形。更优选地,将至少约25wt%的可氧化的化合物通过位于优选的径向进料区的进料口排放到反应介质36中。仍更优选地,将至少约50wt%的可氧化的化合物通过位于优选的径向进料区的进料口排放到反应介质36中。最优选地,将至少75wt%的可氧化的化合物通过位于优选的径向进料区的进料口排放到反应介质36中。虽然参照液相进料物流的分布描述了图7和8中所示的理论方位象限和理论优选的径向进料区,但是已发现,气相氧化剂物流的适当方位和径向分布也可以提供一些优点。由此,在本发明的一种实施方案中,上面提供的液相进料物流的方位和径向分布的描述也 适用于其中将气相氧化剂物流引入反应介质36的方式。现在参考图12和13,举例说明了另一鼓泡塔反应器200,其具有反应器套反应器构造。鼓泡塔反应器200包括外部反应器202和内部反应器204,其中内部反应器204至少部分设置在外部反应器202内。在优选实施方案中,外部和内部反应器202和204是鼓泡塔反应器。优选地,外部反应器202包括外部反应容器206和外部氧化剂喷雾器208,而内部反应器204包括内部反应容器210和内部氧化剂喷雾器212。虽然图12和13举例说明内部反应容器210,如完全置于外部反应容器206中,对于内部反应容器210来说,有可能仅仅部分置于外部反应容器206中。然而,优选地,至少约50、90、95或100%高度的内部反应容器210位于外部反应容器206。此外,优选地,每个反应容器的一部分被提高高于其它反应容器的一部分达外部反应容器的最大直径的至少约 0·01、0·2、1 或 2 倍。在本发明的优选实施方案中,夕卜部和内部反应容器206和210各自包括具有一般圆柱形构造的直立侧壁。优选地,外部和内部反应容器206和210的直立侧壁基本上是同心的并且限定了其间的环。内部反应容器210纵向从外部反应容器206受到支撑,优选地主要在各自容器的下部之间通过直立载体进行支撑。另外,内部反应容器210可以经由多个在外部和内部反应容器206和210的直立侧壁之间延伸的横向载体元件214由外部反应容器206来支撑。优选地,这种横向载体元件214具有非结垢构造,该非结垢构造具有最小的向上朝向的平面的表面,如前所限定的。虽然优选地,内部反应容器210的直立侧壁基本上是圆柱形的,对于内部反应容器210的直立侧壁的某些部分来说,可以相对于第二反应区218的相邻部分是凹的。优选地,相对于第二反应区218的相邻部分是凹的内部反应容器210的直立侧壁的任何部分占内部反应容器210的直立侧壁的总表面面积为小于约25、10、5或O. I %。优选地,内部反应容器210的直立侧壁的最大高度/外部反应容器206的直立侧壁的最大高度之比为约O. I I-约O. 9 1,更选选地约O. 2 I-约O. 8 1,和最优选地O. 3 1-0.7 I。外部反应容器206其中限定了第一反应区216,而内部反应容器210其中限定了第二反应区218。优选地,外部和内部反应容器206和210纵向排列,使得第二反应区218的体积重心相对于第一反应区216的体积重心水平位移小于第一反应区216最大水平直径的约O. 4,0. 2,0. I或O. 01倍。优选地,第一反应区216与第二反应区218的最大水平截面面积之比是约O. Ol I-约O. 75 1,更优选地约O. 03 I-约O. 5 1,和最优选地O. 05 1-0.3 I。优选地,第二反应区218的水平截面面积与外部和内部反应容器206和210之间限定的环的水平截面面积之比为至少约O. 02 1,更优选地约O. 05 I-约2 1,和最优选地约O. I I-约I : 1,其中截面面积测量于第二反应区218的1/4-高度,1/2-高度,和/或3/4-高度。优选地,至少约50,70,90或100%的第二反应区218的体积位于外部反应容器206中。优选地,第一反应区216的体积与第二反应区218的体积之比是约I : I-约100 I,更优选地约4 I-约50 I,和最优选地8 1-30 : I。优选地,第一反应区216的最大垂直高度与最大水平直径之比为约3 I-约30 1,更优选地约6 I-约20 1,和最优选地9 1-15 I。优选地,第二反应区218的最大垂直高度与最大水平直径之比为约O. 3 I-约100 1,更优选地约I : I-约50 1,和最优选地3 1-30 I。优选地,第二反应区218的最大水平直径是约O. I-约5米,更优选地约O. 3-约4米,和最优选地1-3米。优选地,第二反应区218的最大垂直高度是约I-约100米,更优选地约3-约50米,和最优选地10-30米。优选地,第二反应区218的最大水平直径与第一反应区216的最大水平直径之比是约O. 05 I-约0.8 1,更优选地约O. I I-约0.6 1,和最优选地0.2 1-0.5 I。优选地,第二反应区218的最大垂直高度与第一反 应区216的最大垂直高度之比是约O. 03 : I-约I : I,更优选地约O. I I-约O. 9 1,和最优选地O. 3 1-0.8 I。本文中为外部反应容器206和附件所规定的任何参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由外部反应容器206所限定的第一反应区216,反之亦然。进一步,本文中为内部反应容器210和附件所规定的任何参数还被认为适用于由内部反应容器210所限定的第二反应区218,反之亦然。在鼓泡塔反应器200的操作期间,多相反应介质220首先在第一反应区216中进行氧化,然后在第二反应区218中进行氧化。由此,在正常操作期间,第一部分的反应介质220a位于第一反应区216中,而第二部分的反应介质220b位于第二反应区218中。在第二反应区218中加工处理后,反应介质220b的浆料相(即,液固相)从第二反应区218取出并且经由浆料出口 222从鼓泡塔反应器200排出,以备随后的下游处理。内部反应器204优选包括至少一个内部气体开口,其允许另外的分子氧被排出到第二反应区218中。优选地,多个内部气体开口由内部氧化剂喷雾器212限定。图1-5的氧化剂喷雾器34的公开内容也适用于内部氧化剂喷雾器212的管道尺寸和构造、开口尺寸和构造、操作压降和液体冲洗。在值得注意的区别方面,优选地将氧化剂喷雾器212设置得相对较高,以便使用较低部分的内部反应容器210作为脱气区。例如,本文中对于对二甲苯氧化而形成TPA所公开的实施方案在接近第二反应区218的底部处提供了大大减低的时空反应速率,这减轻了脱气对杂质形成的作用。内部反应容器210具有最大高度“Hi”。对于全部内部气体开口所限定的总开口面积的至少约50、75、95或100%来说,优选地,距内部反应容器210的顶部间隔至少O. 05Hi、0. IHi或O. 25Hi。对于全部内部气体开口所限定的总开口面积的至少约50、75、95或100 %来说,还优选地,高于内部反应容器210的底部间隔小于约O. 5Hi、0. 25Η 或O. IHi0优选地,由全部内部气体开口所限定的总开口面积的至少约50、75、95或100%距内部反应容器210的顶部间隔至少约1、5或10米并且距内部反应容器210的底部间隔至少约O. 5、1或2米。对于全部内部气体开口所限定的总开口面积的至少约50、75、95或100%来说,优选地,直接与第二反应区218相通,并且不直接与第一反应区216相通。如本文中使用的,术语“开口面积”表示将使开口封闭的最小表面面积(平面的或非平面的)。通常,进料、氧化剂和回流物流被引入外部反应器202的方式和外部反应器202操作的方式基本上与前述内液相同,参照图1-11的鼓泡塔反应器20。然而,外部反应器202 (图12和13)和鼓泡塔反应器20 (图1_11)之间的一个区别在于外部反应器202不包括允许反应介质220a的浆料相直接从外部反应容器206排出以备下游处理的出口。相反地,鼓泡塔反应器200需要反应介质220a的浆料相一次通过内部反应器204,然后从鼓泡塔反应器200排出。如上所述,在内部反应器204的第二反应区218中,反应介质220b进行进一步的氧化,以便提纯反应介质220b的液相和/或固相。在其中将对二甲苯进料到反应区216的方法中,离开第一反应区216并且进入第二反应区218的反应介质220a的液相一般地包含至少一些对甲苯甲酸。对于进入第二反应区218的绝大部分的对甲苯甲酸来说,优选地,在第二反应区218中进行氧化。由此,对于离开第二反应区218的反应介质220b的液相中的对甲苯甲酸的时均浓度来说,优选地,小于进入第二反应区218的反应介质220a/b的液相中的对甲苯甲酸的时均浓度。优选地,离开第二反应区218的反应介质220b的液相中的对甲苯甲酸的时均浓度小于进入第二反应区218的反应介质220a/b的液相中的对甲苯甲酸的时均浓度的约50、IO或5 %。优选地,进入第二反应区218的反应介质220a/b的液相中的对甲苯甲酸的时均浓度为至少约250ppmw,更优选地约500-约6,OOOppmw,和最优选地1,000-4,OOOppmw。优选地,离开第二反应区218的反应介质220b的液相中的对甲苯甲酸的时均浓度小于约1,000,250,*50ppmw。内部反应容器210装备有至少一个直接开口(direct opening),其允许反应介质220a/b在反应区216和第二反应区218之间直接通过。对于基本上全部的内部反应容器210中的直接开口来说,优选地位于接近于内部反应容器210的顶部。优选地,至少约50、75、90或100%的全部直接开口所限定的总开口面积距内部反应容器210的顶部间隔小于约O. 5Hi、0. 25Hi或O. IHi。优选地,小于约50、25、10或1%的内部反应容器210中的直接开口所限定的总开口面积距内部反应容器210的顶部间隔大于约O. 5Hi、0. 25Hi或O. IHi0最优选地,内部反应容器210所限定的直接开口是位于内部反应容器210的最上端处的单一上部开口 224。上部开口 224的开口面积与第二反应区218的最大水平截面面积之比优选为至少约O. I 1,0. 2 I或O. 5 I。在鼓泡塔反应器200的正常操作期间,反应介质220从第一反应区216通过内部反应容器210中的(一个或多个)直接开口(例如上部开口 224)并且进入第二反应区218。在第二反应区218中,反应介质220b的浆料相在一般向下的方向运动通过第二反应区218,而反应介质220b的气相在一般地向上的方向运动。优选地,内部反应容器210限定了至少一个排出开口,其允许浆料相离开第二反应区218。离开内部反应容器210的排出开口的浆料相然后经由浆料出口 222离开鼓泡塔反应器200。优选地,排出开口位于或接近于内部反应容器210的底部。优选地,至少约50、75、90或100%的内部反应容器210中的全部排出开口所限定的总开口面积在内部反应容器210的底部的约O. 5Hi、0. 25Hi或O. IHi之内。当反应介质220b在内部反应器204的第二反应区218中加工处理时,优选地,当反应介质220b的浆料相向下流过第二反应区218,反应介质220b的气体滞留量降低。优选地,进入第二反应区218的反应介质220a/b与离开第二反应区218的反应介质220b的时均气体滞留量之比为至少约2 UlO I或25 I。优选地,进入第二反应区218的反应介质220a/b的时均气体滞留量为约O. 4-约O. 9,更优选地约O. 5-约O. 8,和最优选地O. 55-0. 7。优选地,离开第二反应区218的反应介质220b的时均气体滞留量小于约O. 1,O. 05,或O. 02。优选地,第一反应区216中的反应介质220a与第二反应区218中的反应介质220b的时均气体滞留量之比大于约I : 1,更优选地为约I. 25 I-约5 1,和最优选地为1.5 : 1-4 : 1,其中气体滞留量值测量于第一和第二反应区216和218的任何高度,第一和第二反应区216和218的任何相应高度,第一和/或第二反应区216和218的1/4-高度,第一和/或第二 反应区216和218的1/2-高度,第一和/或第二反应区216和218的3/4-高度,和/或是第一和/或第二反应区216和218的总高度上的均值。优选地,第一反应区216中的一部分的反应介质220a的时均气体滞留量为约O. 4-约O. 9,更优选地约O. 5-约O. 8,和最优选地O. 55-0. 70,其中气体滞留量测量于第一反应区216的任何高度,第一反应区216的1/4-高度,第一反应区216的1/2-高度,第一反应区216的3/4-高度,和/或第一反应区216的总高度的均值。优选地,第二反应区218中的一部分的反应介质220b的时均气体滞留量是约O. 01-约O. 6,更优选地约O. 03-约O. 3,和最优选地O. 08-0. 2,其中气体滞留量测量于第二反应区218的任何高度,第二反应区218的1/4-高度,第二反应区218的1/2-高度,第二反应区218的3/4-高度,和/或是第二反应区218的总高度的均值。反应介质220的温度优选地与第一和第二反应区216和218中的温度大致相同。优选地,所述温度为约125-约200°C,更优选地约140-约180°C,和最优选地150_170°C。然而,优选地在第一反应区216内形成温度差,其与参考图28在本文中公开的相同。优选地,相同量度的温度差还存在于第二反应区218内以及第一反应区216和第二反应区218之间。这种另外的温度梯度涉及了第二反应区218中发生的化学反应,将另外的氧化剂引入第二反应区218,以及在第二反应区218中存在的静压,相比于第一反应区216中的那些而言。如上文所公开的,在第一反应区216中的气泡滞留量优选地大于在第二反应区218中的气泡滞留量。由此,在低于上部开口 224的高度处,反应区216中的静压大于第二反应区218中的。这种压差的量度取决于液体或浆料密度的量度和在两反应区之间的气泡滞留量之差。这种压差的量度在远低于上部开口 224高度处增加。在本发明的一个实施方案中,被进料到鼓泡塔反应器200的一部分的可氧化的化合物(例如对二甲苯)被直接引入内部反应器204的第二反应区218。然而,优选地,被进料到鼓泡塔反应器200的至少约90,95,99或IOOmol %的全部可氧化的化合物被引入第一反应区216 (而不是第二反应区218)。优选地,被引入第一反应区216的可氧化的化合物的量与被引入第二反应区218的可氧化的化合物的量的摩尔比是至少约2 : 1,4 : I或8 I。虽然图12和13描述了这样的构造,其中被进料到鼓泡塔反应器200的全部分子氧的一部分经由内部氧化剂喷雾器212被引入内部反应器204的第二反应区218,但优选地,被进料到鼓泡塔反应器200的全部分子氧的大部分被引入第一反应区216,剩余部分被引入第二反应区218。优选地,被进料到鼓泡塔反应器200的全部分子氧的至少约70,90,95或98m0l%被引入第一反应区216。优选地,被引入第一反应区216的分子氧的量与被引入第二反应区218的分子氧的量的摩尔比为至少约2 1,更优选地约4 I-约200 1,最优选地10 1-100 I。虽然有可能一些溶剂和/或可氧化的化合物(例如,对二甲苯)被直接进料到第二反应区218,优选地,被进料到鼓泡塔反应器200的溶剂和/或可氧化的化合物的总量的小于约10,5或lwt%被直接进料到第二反应区218。外部反应容器206的第一反应区216中的介质220a的体积、停留时间和时空速率优选地基本上大于内部反应容器210的第二反应区218中的反应介质220b的体积、停留时间和时空速率。因此,被进料到鼓泡塔反应器200的可氧化的化合物(例如,对二甲苯)的大部分优选地在第一反应区216中进行氧化。优选地,在鼓泡塔反应器200中被氧化的全部可氧化的化合物的至少约80、90或95wt%在第一反应区216中进行氧化。优选地,第一反应区216中的反应介质220a的时均表观气速为至少约O. 2,0. 4,0. 8或I米/秒,其中表观气速测量于第一反应区216的任何高度,第一反应区216的1/4-高度,第一反应区216的1/2-高度,第一反应区216的3/4-高度,和/或是第一反应区216的总高度上的均值。虽然第二反应区218中的反应介质220b可以具有与第一反应区216中的反应介质220a相同的表观气速,但是优选地,第二反应区218中的反应介质220b的时均表观气速 小于第二反应区218中的反应介质220b的时均和体均表观气速。在第二反应区218中的这种降低的表观气速可以通过例如如下方式来变得可能,相比于第一反应区216,降低第二反应区218中的分子氧的需要。优选地,第一反应区216中的反应介质220a与第二反应区218中的反应介质220b的时均表观气速之比为至少约1.25 1,2 I或5 I,其中表观气速测量于第一和第二反应区216和218的任何高度,第一和第二反应区216和218的任何相应高度,第一和/或第二反应区216和218的1/4-高度,第一和/或第二反应区216和218的1/2-高度,第一和/或第二反应区216和218的3/4-高度,和/或是第一和/或第二反应区216和218总高度上的均值。优选地,第二反应区218中的反应介质220b的时均和体均表观气速小于约O. 2,O. I或O. 06米/秒,其中表观气速测量于第二反应区218的任何高度,第二反应区218的1/4-高度,第二反应区218的1/2-高度,第二反应区218的3/4-高度,和/或是第二反应区218上的总高度的均值。借助这些较低的表观气速,可以实现第二反应区218中的反应介质220b的浆料相的向下流动,从而朝向活塞式流动的方向移动。例如,在对二甲苯氧化而形成TPA的期间,相比于在第一反应区216中,在第二反应区218中对甲苯甲酸的液相浓度的相对垂直梯度可以高很多。尽管如此,第二反应区218是具有液体和浆料组合物的轴向混合的鼓泡塔。第二反应区218中的反应介质220b的浆料相(固态+液体)和液相的时均表观速度优选小于约O. 2,O. I或O. 06米/秒,其中表观速度测量于第二反应区218的任何高度,第二反应区218的1/4-高度,第二反应区218的1/2-高度,第二反应区218的3/4-高度,和/或是第二反应区218上的总高度的均值。在本发明的一个实施方案中,鼓泡塔反应器200的操作方式是这样的,其允许固体沉淀在内部反应器204中。如果固体沉淀是期望的,优选地,第二反应区218中的反应介质220b的时均和体均表观气速小于约O. 05,O. 03或O. 01米/秒。进一步,如果固体沉淀是期望的,优选地,第二反应区218中的反应介质220b的浆料相和液相的时均和体均表观流速小于约O. 01,O. 005或O. 001米/秒。虽然一些离开内部反应器204的浆料相有可能直接再循环回到第一反应区216而没有进一步的下游加工处理,但是优选地将从第二反应区218的较低高度到第一反应区216的反应介质220b的直接再循环最小化。优选地,离开较低的25%体积的第二反应区218并且直接再循环回到第一反应区216而没有进一步的下游加工处理的反应介质220b的质量(固相、液相和气相)小于离开第二反应区218的反应介质220b并且随后进行下游加工处理的质量(固相、液相和气相)达10倍、I倍或O. I倍。优选地,离开较低的50%体积的第二反应区218并且直接再循环回到第一反应区216而没有进一步的下游加工处理的反应介质220b的质量小于离开第二反应区218的反应介质220b并且随后进行下游加工处理的质量达20倍、2倍或O. 2倍。优选地,小于约50、75或90 丨%的经由在较低的90、60、50或5%的体积的第二反应区218中的开口离开第二反应区218的反应介质220b的液相在离开第二反应区218后,在60、20、5或I分钟内被引入第一反应区216。优选地,位于第二反应区218中的反应介质220b的液相在第二反应区218中的重均停留时间为至少约I分钟,更选选地约2-约60分钟,和最优选地5-30分钟。优选地,小于约50、75或90wt%的被引入第二反应区218的反应介质220a/b的液相在较低的90、60或30%的体积的第二反应区218中进入第二反应区218。优选地,以液相进料物流的形式引入的反应介质220a/b的小于约50、75或90wt%的全部液相在经由浆料出口 222从第二反应区218取出后,在60、20、5或I分钟内进入第一反应区216。优选地,从第二反应区218取出的反应介质220b的至少约75、90、95或99wt%的液相,经由较低的90、60、30或5%的体积的第二反应区218中 的开口离开第二反应区218。反应器套反应器鼓泡塔反应器200的设计可以在多方面变化而不背离本发明的范围。例如,如果内部反应容器210延伸低于外部反应容器206的下端,内部反应容器210的高度可以高于外部反应容器206的高度。外部和内部反应容器206和210可以是圆柱形的,如举例说明的,或者可以具有另一形状。外部和内部反应容器206和210不必是轴对称的、轴向垂直的或者同心的。离开内部反应器204的气相可以途径鼓泡塔反应器200的外部,而未与第一反应区216中的反应介质220a混合。然而,由于可燃性安全的因素,令人期望的是将所捕集的气囊的体积限制为小于约10、2或I立方米。另外,离开内部反应器204的浆料相不必经由内部反应容器210的底部中的单一浆料开口而离开。浆料相可以通过(though)外部反应器202的含压侧壁中的侧面出口离开鼓泡塔反应器200。现在参考图14,举例说明了具有反应器套反应器和分级直径构造的鼓泡塔反应器300。鼓泡塔反应器300包括外部反应器302和内部反应器304。外部反应器302包括外部反应容器306,其具有宽的下面部分306a和窄的上部部分306b。优选地,窄的上部部分306b的直径小于宽的下面部分306a的直径。除外部反应容器的分级-直径构造之外,图14的鼓泡塔反应器300优选地基本上以与上述图12和13的鼓泡塔反应器200相同的方式来配置和操作。现在参考图15,举例说明了一种反应器系统400,其包括初级氧化反应器402和次级氧化反应器404。初级氧化反应器402优选地基本上以与图12和13的外部反应器202相同的方式来配置和操作。次级氧化反应器404优选地基本上以与图12和13的内部反应器204相同的方式来配置和操作。然而,图15的反应器系统400和图12和13的鼓泡塔反应器200之间的主要区别在于反应器系统400的次级氧化反应器404位于初级氧化反应器402的外部。在图15的反应体系400中,使用入口管道405来将一部分的反应介质420从初级氧化反应器402输送到次级氧化反应器404。进一步,使用出口管道407来将塔顶气体从次级氧化反应器404的顶部输送到初级氧化反应器402。
在反应体系400的正常操作期间,反应介质420首先在初级氧化反应器402的初级反应区416中经历氧化。反应介质420a然后从初级反应区416中被取出并且经由管道405被输送到次级反应区418。在次级反应区418中,反应介质420b的液相和/或固相受到进一步的氧化。优选地,从初级反应区416取出的至少约50、75、95或99被%的液相和/或固相在次级反应区416中进行加工处理。塔顶气体离开次级氧化反应器404的上部气体出口并且经由管道407被输送回到初级氧化反应器402 。反应介质420b的浆料相离开次级氧化反应器404的下部浆料出口 422并且其后受到进一步的下游加工处理。入口管道405可在任何高度附着于初级氧化反应器402。虽然未在图15中示出,反应介质420可以被机械泵送到次级反应区418,如果期望的话。然而,更优选地,使用高程水头(elevation head)(重力)来输送反应介质420,从初级反应区416通过入口管道405并进入次级反应区418。因此,优选地,入口管道405在一端连接到上部的50、30、20或10%的总高度和/或体积的初级反应区416。优选地,入口管道405的另一端连接到上部的30、20、10或5%的总高度和/或体积的次级反应区418。优选地,入口管道405是水平的和/或从初级氧化反应器402朝向次级氧化反应器404倾斜向下的。出口管道407可附着于次级氧化反应器404中的任何高度,但优选地,出口管道407在高于入口管道405的附着高度处连接到次级氧化反应器404。更优选地,出口管道407附着于次级氧化反应器404的顶部。出口管道407优选地高于入口管道405的附着高度处附着于初级氧化反应器402。更优选地,出口管道407附着于上部的30、20、10或5%的总高度和/或体积的初级反应区416。优选地,出口管道407是水平的和/或从反应次级氧化反应器404朝向初级氧化反应器402倾斜向上的。虽然未示于图15中,出口管道407还可直接附着到气体出口管道,所述气体出口管道从初级氧化反应器402的顶部取出气态流出物。次级反应区416的上部范围可以高于或低于初级反应区418的上部范围。更优选地,初级反应区416的上部范围的范围是高于次级反应区418的上部范围10米至低于次级反应区418的上部范围50米,低于次级反应区418的上部范围2米至低于次级反应区418的上部范围40米,或低于次级反应区418的上部范围5米至低于次级反应区418的上部范围30米。下部的浆料出口 422可以从次级氧化反应器404的任何高度离开,但是优选地,下部的浆料出口 422在低于入口管道405的附着高度处连接到次级氧化反应器404。下部的浆料出口 422的附着点更优选地广地高度与入口管道405的附着点分开,其中两个附着(点)分开达至少约次级反应区418的高度的50、70、90或95%。最优选地,下部的浆料出口 422附着于次级氧化反应器404的底部,如图15所示。次级反应区418的下部范围可以被提高至高于或低于初级反应区416的下部范围。更优选地,在约40、20、5或2米之内,初级反应区416的下部范围被提高至高于或低于次级反应区418的下部范围。本文中为初级氧化反应器402和附件所规定的参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由初级氧化反应器402所限定的初级反应区416,反之亦然。本文中为次级氧化反应器404和附件所规定的任何参数还被认为适用于由次级氧化反应器404所限定的次级反应区418,反之亦然。如上所述,优选地,次级氧化反应器404位于初级氧化反应器402的外部。优选地,次级氧化反应器404与初级氧化反应器402并排(alongside)(即,至少一部分的初级和次级氧化反应器402和404分享某一共同高度)。初级氧化反应器402的初级反应区416具有最大直径“Dp”。次级反应区418的体积重心优选地水平间隔于初级反应区416的体积重心达至少约O. 5Dp、0. 75Dp或I. ODp并且达小于约30Dp、10Dp或3Dp。现在参考图16,举例说明了一种反应器系统500,其包括初级氧化反应器502和次级氧化反应器504。初级氧化反应器其中限定了初级氧化区516,而次级氧化反应器504其中限定了次级氧化区518。各自反应区516和518接收一部分的反应介质520。反应器系统500 (图16)的构造与操作优选地基本上与反应器系统400 (图15)的构造和(操作)相同。然而,在反应器系统500中,初级氧化反应器502的直立侧壁限定至少一个扩大的开口 505,其允许将反应介质520从初级反应区516输送到次级反应区518,而同时允许将脱离的气相从次级反应区518输送到初级反应区516。优选地,扩大的开口 505的开口面积除以次级反应区218的直立部分的最大水平截面面积为约O. 01-2,0. 02-0. 5或O. 04-0. 2。初级氧化反应器502的初级反应区516具有最大高度“Hp”。优选地,扩大的开口 505的面积中心(arealcenter)距初级反应区516的顶部和/或底部纵向间隔至少约O. IHp,O. 2Hp 或 O. 3Hp。 现在参考图17-25,举例说明许多装备有具有各种构造的内部结构的鼓泡塔反应器。已经发现使用一种或多种由反应介质包围的内部结构令人惊讶地改变了反应介质的端部-端部的混合。内部结构限定了具有湍流降低的静止区,相比于围绕静止区的反应介质的瑞流来说。如图17-25中所举例说明的,内部结构可以采取各种形式。特别地,图17举例说明了鼓泡塔反应器600,其使用通常圆柱形内部结构602来限定静止区。内部结构602基本上位于鼓泡塔反应器600的主反应区的中心并且与主反应区的顶端和底端纵向间隔。图18举例说明鼓泡塔反应器610,其使用了类似于图17的内部结构602的通常圆柱形的内部结构612。然而,图18的内部结构612不位于鼓泡塔反应器610的主反应区的中心。相反地,由内部结构612所限定的静止区的体积重心水平偏离于主反应区的体积重心。进一步,内部结构612的底部位于接近于鼓泡塔反应器610的下部的切线。图19举例说明了鼓泡塔反应器620,其使用了通常圆柱形的内部结构622,它高于图17和18的内部结构602和612。进一步,由内部结构622所限定的静止区的体积重心偏离于鼓泡塔反应器620的主反应区的体积重心。图20举例说明了鼓泡塔反应器630,其使用了包括通常圆柱形的上部部分632和通常圆柱形的下部部分634的内部结构。相比于上部部分632,内部结构的下部部分634具有较细的直径。图21举例说明了鼓泡塔反应器640,其使用包括通常圆柱形的下部部分642和通常圆柱形的上部部分644的内部结构。相比于下部部分642,内部结构的上部部分644具有较细的直径。图22举例说明了鼓泡塔反应器650,其使用了第一、第二和第三分开的内部结构652、654和656。内部结构652、654和656互相纵向间隔。由第一和第三内部结构652和656所限定的静止区的体积重心与鼓泡塔反应器650的主反应区的体积重心水平对齐。然而,由第二内部结构654所限定的静止区的体积重心水平偏离于鼓泡塔反应器650的主反应区的体积重心。图23举例说明鼓泡塔反应器660,其使用了一对并列型的第一和第二内部结构662和664。由第一和第二内部结构662和664所限定的静止区的体积重心彼此水平间隔并且水平间隔于鼓泡塔反应器660的主反应区的体积重心。进一步,第一和第二内部结构662和664具有并列型构造,使得至少一部分的第一和第二内部结构662和664分享某一共同高度。图24举例说明了使用通常棱柱形的内部结构672的鼓泡塔反应器760。特别地,内部结构672具有通常三角形的水平截面。图25举例说明了鼓泡塔反应器680,其使用了类似于图17的内部结构602的通常圆柱形的内部结构682。然而,鼓泡塔反应器680的外部反应容器具有由窄的下面部分682和宽的上部部分684产生的分段直径。如图17-25中所举例说明的,根据本发明的一种实施方案使用的内部结构可以具有各种形状并且可以被置于鼓泡塔反应器的主反应区之中的各个位置。进一步,内部结构和其中限定的静止区可以由各种不同的材料形成。在本发明的一个实施方案中,内部结构是完全封闭的,使得没有周围的反应介质进入内部结构。这种封闭的内部结构可以是空心的或实心的。在本发明的另一实施方案中,内部结构包括一个或多个开口,其容许反应介质进入由内部结构所限定的静止区。然而,因为静止区的一个目的在于产生湍流降低的区域(相对于围绕其的反应介质的湍流而言),因此优选地,内部结构不容许大量的反应介质快速地流过内部结构。装备有一种或多种内部结构的鼓泡塔反应器的特定的构造和操作参数现将更详 细地进行描述。优选地,内部结构全部置于鼓泡塔反应器的外部反应容器的内部;然而有可能至少一部分的内部结构伸出到鼓泡塔反应器的外部反应容器的外部。如上所述,在鼓泡塔反应器的操作期间,内部结构限定了鼓泡塔反应器之内的至少一个静止区。鼓泡塔反应器的主反应区和静止区是不同的体积(即,彼此没有重叠)。鼓泡塔反应器的主反应区限定在鼓泡塔反应器的外部反应容器之内,但在内部结构之外。如上所述,由内部结构所限定的静止区是湍流降低的体积,相对于主反应区中的相邻反应介质的湍流而言。优选地,至少约90、95、98或99. 9%的体积的静止区填装了反应介质以外的材料和/或填装了一部分的湍流显著降低的反应介质,相比于相邻于内部结构的反应介质而言。如果静止区包括任何部分的反应介质,优选地,静止区中所含的所述部分的反应介质在静止区中的重均停留时间为至少约2、8、30或120分钟。如果静止区包括任何部分的反应介质,优选地,静止区中的反应介质的时均气体滞留量小于约O. 2,0. 1,0. 5或O. 01,其中气体滞留量测量于静止区的任何高度,静止区的1/4-高度,静止区的1/2-高度,静止区的3/4-高度,和/或是静止区上的总高度的均值。优选地,反应区中的反应介质的时均气体滞留量为约O. 2-约O. 9,更优选地,约O. 5-约O. 8,和最优选地,O. 55-0. 7,其中气体滞留量测量于反应区的任何高度,反应区的1/4-高度,反应区的1/2-高度,反应区的3/4-高度,和/或是反应区上的总高度的均值。如果静止区包括任何部分的反应介质,优选地,静止区中的反应介质的时均表观气速小于约O. 4,0. 2,0. I或O. 05米/秒,其中表观气速测量于静止区的任何高度,静止区的1/4-高度,静止区的1/2-高度,静止区的3/4-高度,和/或是静止区上的总高度的均值。优选地,反应区中的反应介质的时均表观气速为至少约O. 2,0. 4,0. 8或I米/秒,其中表观气速测量于反应区的任何高度,反应区的1/4-高度,反应区的1/2-高度,反应区的3/4-高度,和/或是反应区上的总高度的均值。如果静止区包括任何部分的反应介质,优选地,静止区中的反应介质的液相的时均表观速度小于约O. 04,0. 01或O. 004米/秒,其中液相的表观流速测量于静止区的任何高度,静止区的1/4-高度,静止区的1/2-高度,静止区的3/4-高度,和/或是静止区上的总高度的均值。优选地,反应区中的反应介质的液相的时均表观速度小于约O. 1,0. 04或O. 01米/秒,其中液相的表观流速测量于反应区的任何高度,反应区的1/4-高度,反应区的1/2-高度,反应区的3/4-高度,和/或是反应区上的总高度的均值。本文中为内部结构所规定的任何参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由内部结构所限定的静止区,反之亦然。优选地,由内部结构所限定的静止区的尺寸是这样的,使得静止区包括其中至少一个位置,所述位置距反应区间隔达反应区的最大水平直径的至少约O. 05倍或者约O. 2米,择其大者。优选地,静止区包括其中至少一个位置,所述场所距反应区间隔达至少约O. 4,0. 7或I. O米。优选地,静止区包括其中至少一个位置,其距反应区间隔达反应区最大水平直径的至少约O. 1、0.2或0.3倍。静止区优选地包括其中至少两个位置,其彼此间隔达反应区的最大水平直径的至少约O. 5、1、2或4倍的垂直距离。优选地,静止区中的这两个纵向间隔的位置还各自与反应区分开达反应区最大水平直径的至少约O. 05,0. 1,0. 2或O. 3倍。优选地,静止区中的这两个纵向间隔的位置彼此纵向间隔达至少约1、3、10或20米并且还各自与反应区分开达至少约O. 1,0. 4,0. 7或I米。优选地,静止区的体积是主反应区体积的约I-约50%,更优选地为主反应区体积的约2-约25%,和最优选地为主反应区
体积的4-15%。鼓泡塔反应器的外部反应容器优选包括通常圆柱形直立外部侧壁。优选地,内部结构包括通常圆柱形直立内部侧壁,其在内部与外部侧壁间隔。优选地,内部结构不是热交换器的一部分。由此,优选地,通过内部结构的直立内部侧壁的时均热通量小于约100、15、3或0.3千瓦/平方米。填充反应介质的环优选地被限定在内部和外部侧壁之间。内部结构纵向从外部容器受到支撑,优选地通过较低部分的内部结构和较低部分的外部反应容器之间的直立载体进行支撑。另外,内部结构优选地经由多个非结垢的横向载体元件(其在内部从外部侧壁延伸到内部侧壁)通过外部反应容器进行支撑。优选地,在静止区的1/4-高度、1/2-高度和/或3/4-高度处的静止区的水平截面面积是在各自高度处所述环的水平截面面积的至少约2%、5-75%或10-30%。优选地,内部直立侧壁的最大高度是约10-约90%的外部直立侧壁的最大高度,更优选地约20-约80%的外部直立侧壁的最大高度,和最优选地30-70%的外部直立侧壁的最大高度。虽然优选地,内部侧壁具有通常圆柱形的构造,有可能的是,一部分的内部侧壁可以是凹的,相对于静止区的相邻部分来说。当内部侧壁包括凹的部分时,优选地,这种凹的部分形成小于约25、10、5或O. 1%的总向外朝向的由内部侧壁所代表的表面面积。优选地,与反应介质直接接触的内部结构的总表面面积与反应区的总体积之比小于约1、0. 5,0. 3或O. 15平方米/立方米。优选地,静止区的体积重心相对于主反应区的体积重心水平位移为小于主反应区最大水平直径的约O. 4,0. 2,0. I或O. 01 倍。当鼓泡塔反应器包括多于一个限定多于一个静止区的内部结构时,优选地,静止区纵向排列,使得在一起所考虑的全部静止区的体积重心相对于反应区的体积重心水平位移为小于主反应区最大水平直径的约O. 4、0. 2、0. I或O. 01倍。进一步,当多个静止区形成在主反应区之中时,优选地,体积大于主反应区体积的O. 2%的单独的静止区的数目小于约100、10、5 或 2。鼓泡塔反应器的外部反应容器优选地具有如下的最大垂直高度与最大水平直径之比约3 I-约30 1,更优选地约6 I-约20 1,和最优选地9 1-15 I。内部结构优选地具有如下的最大垂直高度与最大水平直径之比约O. 3 I-约100 1,更优选地约I : I-约50 1,和最优选地3 1-30 I。优选地,内部结构的最大水平直径为约O. I-约5米,更优选地约O. 3-约4米,和最优选地1-3米。优选地,内部结构的最大垂直高度为约I-约100米,更优选地约3-约50米,和最优选地10-50米。优选地,内部结构的最大水平直径为外部反应容器的最大水平直径的约5% -约80%,更优选地约10% -约60%,和最优选地20% -50%。优选地,内部结构602的最大垂直高度为约3-约100%的外部反应容器的最大垂直高度,更优选地约10-约90 %的外部反应容器的最大垂直高度,和最优选地30-80%的外部反应容器的最大垂直高度。本文中为外部反应容器和附件所规定的任何参数(例如高度,宽度,面积,体积,相对水平位置和相对垂直位置)还被认为适用于由外部反应容器所限定的反应区,反之亦然。在本发明的一个实施方案中,内部结构相对于反应区完全隔离了静止区。在另一实施方案中,内部结构限定了一个或多个直接开口,其允许在静止区和反应区之间的直接流体相通。当内部结构限定了这种直接开口时,优选地,直接开口中的最小者的最大直径小于主反应区的最大水平直径的约O. 3,0. 2、0. I或O. 05倍。当内部结构限定了这种直接开口时,优选地,直接开口中的最大者的最大直径小于主反应区的最大水平直径的约O. 4,0.3,O. 2或O. I倍。当内部结构限定了这种直接开口时,优选地,全部直接开口所限定的累积的 开口面积小于主反应区的最大水平截面面积的约O. 4,0. 3或O. 2倍。内部结构具有最大高度(Hi)。当内部结构限定了一个或多个直接开口时,优选地,小于约50、25或10%的全部直接开口所限定的累积的开口面积距内部结构的顶部间隔大于约O. 5Hi、0. 25Η 或O. IHi0当鼓泡塔反应器使用多个内部结构形成多个不同的静止区时,对于静止区中的两个或更多个来说,有可能包括互连的开口和/或管道,其允许在静止区之间的流体相通。优选地,每个这些互连开口和/或管道中的最小者的最大直径小于主反应区最大水平直径的约O. 3、O. 2,0. I 或 O. 05 倍。如上所述,以上关于图1-25所述的鼓泡塔反应器的一些物理和操作特征提供了反应介质的压力、温度和反应物(即氧和可氧化的化合物)浓度的垂直梯度。如上所述,这些垂直梯度可能提供了相对于传统氧化方法更有效的和更经济的氧化方法,传统氧化方法偏好各处相对均匀的压力、温度和反应物浓度的良好混合型反应介质。现在将更详细地讨论通过使用根据本发明实施方案的氧化系统而可能实现的氧、可氧化的化合物(例如对-二甲苯)和温度的垂直梯度。现在参照图26,为了量化鼓泡塔反应器中氧化期间反应介质中存在的反应物浓度梯度,可以将反应介质的全部体积理论上分为等体积的30个离散水平片段。图26描述了将反应介质分为等体积的30个离散水平片段的概念。除了最高和最低的水平片段之外,每个水平片段为在其顶部和底部由虚构的水平面限制的且在其侧部由反应器壁限制的离散体积。最高水平片段在其底部由虚构的水平面限制且在其顶部由反应介质的上表面限制。最低水平片段在其顶部由虚构的水平面限制且在其底部由容器壳体的底部限制。一旦反应介质已理论上被分为相等体积的30个离散水平片段,随后可以测量每个水平片段的时间平均和体积平均浓度。具有全部30个水平片段的最大浓度的个体水平片段可被称为“C-max水平片段”。位于C-max水平片段之上的且具有位于C-max水平片段之上的全部水平片段的最小浓度的个体水平片段可被称为“C-min水平片段”。随后,垂直浓度梯度可以计算为C-max水平片段中的浓度与C-min水平片段中的浓度的比值。
关于量化氧浓度梯度,当将反应介质在理论上分为等体积的30个离散水平片段时,O2-Hiax水平片段被称为具有全部30个水平片段的最大氧浓度,O2-Hiin水平片段被称为具有位于O2-Hiax水平片段之上的水平片段的最小氧浓度。水平片段的氧浓度在反应介质的气相中测量,基于时间平均和体积平均摩尔湿基。优选地,O2-Hiax水平片段的氧浓度与O2-Hiin水平片段的氧浓度之比为约2 I-约25 1,更优选为约3 I-约15 1,最优选为 4 1-10 I。通常,O2-Hiax水平片段将位于反应介质底部附近,而02_min水平片段将位于反应介质顶部附近。优选地,O2-Hiin水平片段为30个离散水平片段中的5个最上部水平片段之一。最优选地,O2-Hiin水平片段为30个离散水平片段中的最上部片段,如图26中所示。优选地,O2-Hiax水平片段为30个离散水平片段中的10个最下部水平片段之一。最优选地,O2-Hiax水平片段为30个离散水平片段中的5个最下部水平片段之一。例如,图26描述了
O2-Hiax水平片段为从反应器底部的第三个水平片段。优选地,O2-Hiin和O2-Hiax水平片段之间的垂直间距为至少约2W,更优选地至少约4W,最优选地至少6W。优选地,02-min和O2-max水平片段之间的垂直间距为至少约O. 2H,更优选地至少约O. 4H,最优选地至少O. 6H。基于湿基,O2-Hiin水平片段的时间平均和体积平均氧浓度优选为约O. I-约3mol %,更优选为约O. 3-约2mol %,最优选为O. 5-1. 5mol %。O2-max水平片段的时间平均和体积平均氧浓度优选为约4-约20mol %,更优选为约5-约15mol %,最优选为6-12mol%。基于干基,通过气体出口从反应器中排出的气态流出物中氧的时间平均浓度优选为约O. 5-约9mol %,更优选为约I-约7mol %,最优选为I. 5_5mol %。由于氧浓度向着反应介质顶部衰减显著,因此期望的是,降低反应介质顶部中对氧的需求。这种降低反应介质顶部附近对氧的需求可以通过在可氧化的化合物(例如对-二甲苯)的浓度中形成垂直梯度来实现,其中可氧化的化合物的最小浓度位于反应介质顶部附近。关于量化可氧化的化合物(例如对-二甲苯)浓度梯度,当将反应介质在理论上分为等体积的30个离散水平片段时,OC-max水平片段被称为具有全部30个水平片段的最大可氧化的化合物浓度,且OC-min水平片段被称为具有位于OC-max水平片段之上的水平片段的最小可氧化的化合物浓度。水平片段的可氧化的化合物浓度在液相中测量,基于时间平均和体积平均质量分数。优选地,OC-max水平片段的可氧化的化合物浓度与OC-min水平片段的可氧化的化合物浓度的比值大于约5 1,更优选大于约10 1,仍更优选大于约20 I,最优选为 40 1-1000 I。通常,OC-max水平片段将位于反应介质底部附近,而OC-min水平片段将位于反应 介质顶部附近。优选地,OC-min水平片段为30个离散水平片段中的5个最上部水平片段之一。最优选地,OC-min水平片段为30个离散水平片段中的最上部水平片段,如图26中所示。优选地,OC-max水平片段为30个离散水平片段中的10个最下部水平片段之一。最优选地,OC-max水平片段为30个离散水平片段中的5个最下部水平片段之一。例如,图26描述了 OC-max水平片段为从反应器底部的第五个水平片段。优选地,OC-min和OC-max水平片段之间的垂直间距为至少约2W,其中“W”为反应介质的最大宽度。更优选地,OC-min和OC-max水平片段之间的垂直间距为至少约4W,最优选地至少6W。假设反应介质的高度“H”,优选地,OC-min和OC-max水平片段之间的垂直间距为至少约0. 2H,更优选至少约0. 4H,最优选至少O. 6H。OC-min水平片段的液相中时间平均和体积平均的可氧化的化合物(例如对-二甲苯)的浓度优选地小于约5,OOOppmw,更优选地小于约2,OOOppmw,仍更优选地小于约400ppmw,最选选地为Ippmw-lOOppmw。OC-max水平片段的液相中时间平均和体积平均的可氧化的化合物的浓度优选地为约IOOppmw-约10,OOOppmw,更优选地为约200ppmw_约5, OOOppmw,最优选地为 500ppmw-3, OOOppmw。虽然优选地鼓泡塔反应器提供了可氧化的化合物浓度中的垂直梯度,但是也优选地,使液相中可氧化的化合物浓度高于IOOOppmw的反应介质的体积百分比最小化。优选地,液相中可氧化的化合物浓度高于lOOOppmw的反应介质的时间平均体积百分比小于约9%,更优选地小于约6%,最优选地小于3%。优选地,液相中可氧化的化合物浓度高于2500ppmw的反应介质的时间平均体积百分比小于约I. 5%,更优选地小于约1%,最优选地小于O. 5%。优选地,液相中可氧化的化合物浓度高于lOOOOppmw的反应介质的时间平均体积百分比小于约0. 3 %,更优选地小于约0. I %,最优选地小于0. 03%。优选地,液相中可 氧化的化合物浓度高于25,OOOppmw的反应介质的时间平均体积百分比小于约0. 03%,更优选地小于约0. 015%,最优选地小于0. 007%。本发明者注意到,具有高浓度可氧化的化合物的反应介质的体积不必存在于单一相连的体积内。经常,鼓泡塔反应容器中无序流型同时产生了两个或多个具有高浓度可氧化的化合物的反应介质的连续但被隔离的部分。在每次用于时间平均时,将所有这些连续的但被隔离的体积(大于0. 0001体积%的总反应介质)加到一起,由此确定液相中具有高水平的可氧化的化合物浓度的总体积。如上所讨论的那样,除了氧和可氧化的化合物的浓度梯度,优选地,反应介质中存在温度梯度。再次参照图26,可以以类似于浓度梯度的方式,通过理论上将反应介质分为等体积的30个离散水平片段并且测量每个片段的时间平均和体积平均温度,由此量化该温度梯度。那么,在15个最低水平片段中具有最低温度的水平片段可以被称为T-min水平片段,并且位于T-min水平片段之上的且具有T-min水平片段之上全部片段的最大温度的水平片段则可以被称为“T-max水平片段”。优选地,T-max水平片段的温度比T-min水平片段的温度高至少约1°C。更优选地,T-max水平片段的温度比T-min水平片段的温度高约I. 250C -约12°C。最优选地,T-max水平片段的温度比T_min水平片段的温度高2_8°C。T-max水平片段的温度优选地为约125-约200°C,更优选地为约140-约180°C,最优选地为150-170°C。通常,T-max水平片段将位于反应介质中心附近,而T-min水平片段将位于反应介质底部附近。优选地,T-min水平片段为15个最低水平片段中的10个最下部水平片段之一。最优选地,T-min水平片段为15个最低水平片段中的5个最下部水平片段之一。例如,图26描述了 T-min水平片段为从反应器底部的第二个水平片段。优选地,T-max水平片段为30个离散水平片段中的20个中间水平片段之一。最优选地,T-min水平片段为30个离散水平片段中的14个中间水平片段之一。例如,图26描述了 T-max水平片段为从反应器底部的第二十个水平片段(即中间10个水平片段之一)。优选地,T-min和T-max水平片段之间的垂直间距为至少约2W,更优选地至少约4W,最优选地至少6W。优选地,T-min和T-max水平片段之间的垂直间距为至少约0. 2H,更优选地至少约0. 4H,最优选地至少0. 6H。如上所讨论的那样,当反应介质中存在垂直温度梯度时,可以有益地在反应介质的温度最高的高位位置取出反应介质,尤其是当取出的产物在较高的温度下进行进一步的下游处理时。由此,如图15和16中所示,当通过一个或多个高位出口从反应区中取出反应介质36时,优选地,高位出口( 一个或多个)位于T-max水平片段附近。优选地,高位出口位于T-max水平片段的10个水平片段之内,更优选地在T-max水平片段的5个水平片段之内,最优选地在T-max水平片段的2个水平片段之内。现在要注意的是,本文中所述的许多本发明特征可以应用于多个氧化反应器系统-不仅仅只是采用了单一氧化反应器的系统。另外,本文中所述的一些本发明特征可以应用于机械搅拌型和/或流动搅拌型氧化反应器-不仅仅只是气泡搅拌型反应器(即鼓泡塔反应器)。例如,本发明者已发现了与使得整个反应介质中氧浓度和/或耗氧速率分级/改变相关联的一些优点。通过使反应介质中氧浓度/消耗分级所实现的优点可以被实现,无论反应介质的总体积是含在单个容器中或者多个容器中。另外,通过使反应介质中氧浓度/消耗分级所实现的优点可以被实现,无论反应容器(一个或多个)为机械搅拌型、流动搅拌型和/或气泡搅拌型。量化反应介质中氧浓度/消耗速率分级程度的一种方法是,比较两个或多个独立的(distinct) 20%连续体积的反应介质。这些20%连续体积不必由任意特定形状来限定,但是,每个20%连续体积必须由相连体积的反应介质(即每个体积是“连续的”)形成,且20%连续体积不准彼此重叠(即该体积是“独立的”)。这些独立的20%连续体积可以位于同一反应器(图29)中或多个反应器中。现在参照图27,反应器被描述为含有反应介质。反应介质包括第一独立的20%连续体积37和第二独立的20%连续体积39。反应介质中氧可得性的分级可以通过参照气相中具有最丰富摩尔分数氧的20%连续体积的反应介质并且通过参照气相中具有最稀少摩尔分数氧的20%连续体积的反应介质来量化。在气相中含有最高浓度氧的独立的20%连续体积的反应介质的气相中,基于湿基,时间平均和体积平均氧浓度优选地为约3-约ISmol %,更优选地为约3. 5-约14mol%,最优选地为4-10mol%。在气相中含有最低浓度氧的独立的20%连续体积的反应介质的气相中,基于湿基,时间平均和体积平均氧浓度优选地为约O. 3-约5m0l%,更优选地为约O. 6-约411101%,最优选地为O. 9-3111015^另外,基于湿基,最丰富20%连续体积的反应介质与最稀少20%连续体积的反应介质的时间平均和体积平均氧浓度的比值优选地为约I. 5 I-约20 1,更优选地为约2 I-约12 1,最优选地为3 1-9 I。反应介质中耗氧速率的分级可以按照氧-STR来量化,如最初描述的那样。在上文中在总的意义上(即出于整个反应介质的平均氧-STR的观点)描述了氧-STR ;但是,也可以在局部意义上(即一部分反应介质)考虑氧-STR,由此量化整个反应介质中耗氧速率的分级。本发明者已发现,非常有用的是,使氧-STR在整个反应介质中与本文中所公开的、与反应介质中压力和反应介质气相中分子氧的摩尔分数相关的期望梯度综合协调来变化。由此,优选地,反应介质的第一独立的20%连续体积的氧-STR与反应介质的第二独立的20%连续体积的氧-STR的比值为约I. 5 I-约20 1,更优选地为约2 I-约12 1,最优选地为3 : 1-9 : I。在一种实施方案中,“第一独立的20%连续体积”相对于“第二独立的20%连续体积”位于更靠近于最初将分子氧引入反应介质的位置。氧-STR中的这些大梯度是期望的,无论部分氧化反应介质是包含在鼓泡塔氧化反应器中还是包含在其中在压力和/或反应介质气相中分子氧的摩尔分数中形成梯度的任意其它类型反应容器中(例如,在机械搅拌型容器中,其具有多个、垂直放置的搅拌区,通过使用多个具有强径向流动的叶轮来实现,可以通过通常水平的折流板(baffle)组件来加强,具有通常从靠近反应容器下部的进料向上上升的氧化剂流动,尽管在每个垂直放置的搅拌区中可能发生大量氧化剂流动的反混和在相邻垂直放置的搅拌区之间可能发生一些氧化剂流动的反混)。也就是说,当在压力和/或反应介质气相中分子氧的摩尔分数中存在梯度时,本发明者已发现,通过本文中所公开的方法在对于溶解的氧的化学需要中形成类似的梯度是理想的。使局部氧-STR改变的优选方法是通过控制进料可氧化的化合物的位置和通过控制反应介质的液相混合,由此根据本发明的其它公开内容来控制可氧化的化合物的浓度梯度。使局部氧-STR改变的其它有用的方法包括,通过导致局部温度变化和通过改变催化剂和溶剂组分的局部混合物来导致反应活性的变化(例如,通过引入另一气体而在特定部分的反应介质中引起蒸发冷却和通过加入含有更大量水的溶剂物流以在特定部分的反应介质中降低活性)。当氧化反应器具有反应器套反应器构造时,如上所述参考图12-14,优选地,参考 图26和27,本文中所述的浓度梯度、温度梯度和氧气-STR梯度适用于一部分的位于外部反应器内部并且在内部反应器外部的反应介质(例如图12中的反应介质220a)。再次参照图1-27,在显著不同于(根据本文中所公开的优选实施方案)传统氧化反应器的条件下,氧化优选地在鼓泡塔反应器中进行。当根据本文中所公开的优选实施方案鼓泡塔反应器用于进行将对-二甲苯液相部分氧化为粗制对苯二甲酸(CTA)时,局部反应强度、局部蒸发强度和局部温度的空间特性(profile),结合反应介质内液体流型和优选的、相对低的氧化温度有助于形成具有独特和有益性能的CTA颗粒。图28A和28B描述了根据本发明一种实施方案制备的基本CTA颗粒。图28A显示了 500倍放大倍数下的基本CTA颗粒,而图28B在一个基本CTA颗粒上放大并且显示了 2000倍放大倍数下的颗粒。或许最好如图28B中所示的那样,每个基本CTA颗粒通常由大量小的、聚积的CTA亚颗粒形成,由此赋予基本CTA颗粒相对大的表面积、高孔隙率、低密度和良好溶解性。除非另外指出,本发明的CTA的各种性质,如下文所述,是使用CTA的典型样品测量的,其中所述典型样品重至少Ig和/或由至少10,000个单独的CTA颗粒形成。基本CTA颗粒通常平均颗粒尺寸范围为约20-约150微米,更优选地为约30-约120微米,最优选地为40-90微米。CTA亚颗粒通常平均颗粒尺寸范围为约O. 5-约30微米,更优选地为约I-约15微米,最优选地为2-5微米。图28A和28B中所示的基本CTA颗粒的相对高表面积可以使用Braunauer-Emmett-Teller(BET)表面积测量方法来量化。优选地,基本CTA颗粒的平均BET表面积为至少约O. 6平方米/克(m2/g)。更优选地,基本CTA颗粒的平均BET表面积为约0.8-约4m2/g。最优选地,基本CTA颗粒的平均BET表面积为O. 9-2m2/g。通过本发明优选实施方案的优化氧化方法形成的基础CTA颗粒的物理性能(例如颗粒尺寸、BET表面积、孔隙率和溶解性)容许通过更有效的和/或更经济的方法来纯化CTA颗粒,如下面关于图31进一步详细描述的那样。上面提供的平均颗粒尺寸值采用偏振光显微法和图像分析来确定。颗粒尺寸分析中采用的设备包括NikonE800光学显微镜,其具有4XPlanFlourN. A. O. 13物镜、SpotRT 数字相机、和个人电脑运行的ImageProPLus V4. 5. O. 19图像分析软件。颗粒尺寸分析方法包括下列主要步骤(1)将CTA粉末分散在矿物油中;(2)制备该分散体的显微镜载玻片和/或盖片;(3)使用偏振光显微镜检测该载玻片(交叉偏振条件-颗粒作为亮目标显示在黑色背景上);(4)对于每个试样制剂俘获不同相片(场尺寸=3X2. 25mm;像素尺寸=1.84微米/像素);(5)采用ImageProPLus 软件进行图像分析;(6)将颗粒测量值输到电子数据表;和(7)在电子数据表中进行统计表征。“采用ImageProPLus 软件进行图像分析”的步骤(5)包括子步骤(a)设定图像阈值以检测暗背景上的白色颗粒;(b)形成二元图像;(c)运行单通开放滤波器以滤掉像素噪声;(d)测量图像中的所有颗粒;和(e)给出对于每个颗粒测量的平均直径。ImageProPLus 软件定义单个颗粒的平均 直径为在2度间隔和通过颗粒质心测量的颗粒直径的数均长度。“在电子数据表中进行统计表征”的步骤7包括如下来计算体积加权平均颗粒尺寸。如果为球形时采用pi/6*di~3计算试样中η个颗粒的每一个的体积;使每个颗粒的体积乘以其直径以得到pi/6*di~4 ;对于试样中全部颗粒的pi/6*di~4值求和;将试样中全部颗粒的体积求和;和将体积加权的颗粒直径计算为试样中η个颗粒全部(pi/6*di~4)之和除以试样中η个颗粒全部(pi/6*di~3)之和。本文中所使用“平均颗粒尺寸”表示根据上述测试方法测量的体积加权的平均颗粒尺寸,并且也表示为D (4,3)。■手
Vid另外,步骤7包括找出全部试样体积的各种分数比其小的颗粒尺寸。例如,D (v,O. I)为全部试样体积的10%比其小且90%比其大的颗粒尺寸;D(v,0. 5)为一半试样体积比其大且一半比其小的颗粒尺寸;D(v,0.9)为全部试样体积的90%比其小的颗粒尺寸;等等。另外,步骤7包括计算D (V,O. 9)减去D (V,O. I)的数值,其在本文中定义为“颗粒尺寸分布(spread)”;并且步骤7包括计算颗粒尺寸分布除以D(4,3)的数值,其在本文中定义为“颗粒尺寸相对分布”。另外,优选地,上面测量的CTA颗粒的D(v,0. I)范围为约5_约65微米,更优选地为约15-约55微米,最优选地为25-45微米。优选地,上面测量的CTA颗粒的D (v, O. 5)范围为约10-约90微米,更优选地为约20-约80微米,最优选地为30-70微米。优选地,上面测量的CTA颗粒的D (V,O. 9)范围为约30-约150微米,更优选地为约O-约130微米,最优选地为50-110微米。优选地,颗粒尺寸相对分布范围为约O. 5-约2. O,更优选地为约O. 6-约I. 5,最优选地为O. 7-1. 3。在Micromeritics ASAP 2000 (可从 Norcross, GA 的 MicromeriticsInstrumentCorporation获得)上测量上面提供的BET表面积值。在该测量方法的第一步中,称量2-4g颗粒试样并且将其在真空下在50°C干燥。随后将试样放置在分析气体歧管(manifold)上并且冷却到77° K。通过使试样暴露于已知体积的氮气并且测量压力下降,在最少5个平衡压力下测量氮吸附等温线。平衡压力近似地范围为P/匕=O. 01-0. 20,其中P为平衡压力且Ptl为77° K下液氮的蒸气压。随后根据下列BET等式绘制获得的等温线·
rmQRl P — I ,C-Ifillνφ-Ρ) r-cUJ 其中,Va为试样在P值下,试样吸附的气体体积,Vffl为用单层气体覆盖试样全部表面所需的气体体积,且C为常数。从该图中,测定1和(。随后通过下列等式使用77° K下氮气的横截面积将V111转换为表面积
权利要求
1.一种鼓泡塔反应器,其包括 外部反应容器;和 至少部分地设置在所述外部反应容器中的内部反应容器, 其中第一反应区限定在所述外部反应容器的内部并且在所述内部反应容器的外部, 其中第二反应区限定在所述内部反应容器的内部, 其中所述内部反应容器限定一个或多个直接开口,其提供了所述第一和第二反应区之间的直接流体连通, 其中所述内部反应容器具有最大高度Hi,其中小于50%的由所述直接开口所限定的总开口面积距所述内部反应容器的顶部间隔大于O. 5Hi。
2.权利要求I的鼓泡塔反应器,其中至少75%的由全部所述直接开口所限定的总开口面积距所述内部反应容器的顶部间隔小于O. 25Hi。
3.权利要求I的鼓泡塔反应器,其中所述内部反应容器限定一个或多个排出开口,其允许流体流出所述第二反应区但没有提供所述第一和第二反应区之间的直接的流体连通。
4.权利要求3的鼓泡塔反应器,其中至少50%的由全部所述排出开口所限定的总开口面积位于所述内部反应容器的底部的O. 5Hi之内。
5.权利要求I的鼓泡塔反应器,其中所述直接开口包括顶部开口,其位于所述内部反应容器的顶部,其中所述顶部开口是向上开口的。
6.权利要求5的鼓泡塔反应器,其中所述顶部开口的开口面积与所述第二反应区的最大水平横截面积之比至少O. 1:1。
7.权利要求I的鼓泡塔反应器,其中所述第一反应区的最大水平横截面积与所述第二反应区的最大水平横截面积之比为O. 01:1-0. 75: I。
8.权利要求I的鼓泡塔反应器,其中所述内部反应容器是鼓泡塔反应器。
9.权利要求8的鼓泡塔反应器,其中所述外部反应容器是鼓泡塔反应器。
10.权利要求I的鼓泡塔反应器,其中所述外部反应容器包括通常圆柱形的外部侧壁,其中所述内部反应容器包括与所述外部侧壁在内部间隔的内部侧壁。
11.权利要求10的鼓泡塔反应器,其中所述内部侧壁具有通常圆柱形的构造,其中在所述内部和外部侧壁之间限定了环。
12.权利要求11的鼓泡塔反应器,其中所述第二反应区的水平横截面积与在所述第二反应区的1/4-高度、1/2-高度和/或3/4-高度处的所述环的水平横截面积之比为至少O.02:1。
13.权利要求10的鼓泡塔反应器,其中所述内部侧壁的最大高度与所述外部侧壁的最大高度之比是O. 1:1-0. 9:1。
14.权利要求I的鼓泡塔反应器,其中所述内部反应容器全部位于所述外部反应容器的内部。
15.权利要求I的鼓泡塔反应器,其中所述第一反应区的体积与所述第二反应区的体积之比为4:1-50:1。
16.权利要求I的鼓泡塔反应器,其中所述外部反应容器的最大垂直高度与最大水平直径之比为3:1-30:1,其中所述内部反应容器的最大垂直高度与最大水平直径之比为O.3:1-100:1。
17.权利要求I的鼓泡塔反应器,其中所述内部反应容器的最大水平直径与所述外部反应容器的最大水平直径之比为O. 05:1-0. 8:1,其中所述内部反应容器的最大垂直高度与所述外部反应容器的最大垂直高度之比为O. 03:1-1:1。
18.权利要求I的鼓泡塔反应器,其中所述内部反应容器限定了至少一个内部气体开口,其直接与所述第二反应区相通,其中所述内部气体开口距所述内部反应容器的顶部间隔至少O. 05Hio
19.权利要求18的鼓泡塔反应器,其中所述内部气体开口未直接与所述第一反应区相通。
20.权利要求I的鼓泡塔反应器,其进一步包括多个用于在所述外部反应容器内支撑所述内部反应容器的横向载体元件。
21.权利要求I的方法,其中内部和外部反应容器纵向排列使得所述第二反应区的体积重心距所述第二反应区的体积重心水平位移达小于O. 4倍的所述外部反应容器的最大水平直径。
全文摘要
本发明公开了用于更有效和更经济地进行可氧化的化合物的液相氧化的优化方法和装置。该液相氧化在鼓泡塔反应器中进行,该反应器在相对低的温度下提供了高效的反应。当氧化的化合物为对二甲苯且氧化反应的产物为粗制对苯二甲酸(CTA)时,该CTA产物可以通过相对于如果采用常规高温氧化方法来形成CTA时可以采用的技术更经济的技术来纯化和分离。
文档编号B01J19/26GK102941041SQ20121045737
公开日2013年2月27日 申请日期2006年12月20日 优先权日2006年1月4日
发明者A.G.万德斯, T.E.伍德拉夫, R.B.谢泼德, W.S.斯特拉塞尔 申请人:奇派特石化有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1