从气态流中分离CO<sub>2</sub>的方法

文档序号:4895882阅读:242来源:国知局
专利名称:从气态流中分离CO<sub>2</sub>的方法
从气态流中分离CO2的方法本发明涉及一种从气态流(例如天然气)中分离或脱除CO2 ( 二氧化碳)的方法。二氧化碳(CO2)为存在于天然气和其它气源中的非期望的稀释剂。CO2的分离或脱除是天然气加工中的常见分离过程,且通常需要该过程以改善天然气的燃料质量。一般使用和工业使用的从惰性组分中提取二氧化碳的方法基于化学或物理吸收,有时基于两者的组合。此外,还使用吸附或膜。该过程通常称为“气体脱硫(gas-sweetening) ”,这是因为CO2 (次于其它一些)通常被描述为“酸气”。脱除是重要的,这是因为CO2降低售气的热值并当暴露不受控时还将负面影响环境。对于化学吸收,一般使用水性胺溶液(例如单或二乙醇胺(MEA、DEA)、N-甲基-二乙醇胺(MDEA)或热钾碱(Benfield 或 Catacarb))。物理吸收通常提供较高的吸收能力,因此需要较低的泵速率,但共吸收烃(特别是较高级的一些)。使用的典型物质是甲醇、烷基-吡咯烷(pyrrolidin)或醚化聚乙二醇的衍生物。混合过程利用物理(例如环丁砜)和化学(例如MDEA或二异丙醇胺(DIPA))吸收剂的混合物用于较高分压。使用膜是相当年轻的技术并可进一步用于不同烃的分离,但对于酸气分离它们并非100%选择性,因此导致售气规格的不一致。“污染”(膜的污染)是另一缺点。已知离子液体(IL)吸收C02。当工业界认识到绿色化学具有前景且京都议定书开始时,吸收性IL公开于许多出版物中的若干期刊中。真正的研究潮流完成于[BF4]' [ 二(三氟甲基磺酰基)酰亚胺]_(通常缩写为[NTf2D和[PF6]-阴离子,主要与咪唑鎗基阳离子组合。虽然合成相当容易,但是巨大的缺点为高粘度、对水解的不稳定性和导致的氟化分解产物。总的来说,可以说剩余的IL的大部分将不会进入工业应用的焦点,这是因为它们仅在实验室规模可合成。Shifflet等人首先使用咪唑鎗基羧酸盐用于二氧化碳吸收。仅可猜测为什么没有其他研究组加强其对这组化合物的关注是因为根据亨利系数它们显示高的势(potential)。根据普遍接受的文献(例如Wasserscheid, Peter; ffelton, Tom (Eds.);"1nic Liquids in Synthesis (合成中的离子液体)",Wiley-VCH 2008; ISBN978-3-527-31239-9),离子液体是熔点等于或低于100°C的低熔点盐的熔体。这些离子液体展现一些非常令人感兴趣的特征,例如具有极低的(实际上不可测)蒸气压、大的液相线范围、良好的电导率和令人感兴趣的溶剂化特征。这些特征可注定离子液体用于若干应用,例如作为溶剂(例如,在有机或无机合成、过渡金属催化、生物催化、多相反应、光化学、聚合物合成和纳米技术中)、萃取剂(例如液-液或液气萃取、在原油加工期间脱硫、在水处理期间重金属的去除和液膜萃取)、电解质(例如,在电池、燃料电池、电容器、太阳能电池、传感器、电镀、电化学金属加工、电化学合成和纳米技术中)、润滑剂、热流体、凝胶、用于有机合成的试剂、在所谓“绿色化学”中(例如作为挥发性有机化合物的替换)、抗静电添加剂、化学分析(例如气相色谱、质谱、毛细管区电泳)中的具体应用、液晶等。然而,熔融温度彡100°C是由定义任意选择的,因此依据本申请,也包括熔融温度> 100°c但< 250°C的盐。术语“离子液体”可具体地包括所有液体有机盐和由有机阳离子、有机阴离子或无机阴离子组成的盐的混合物。此外,额外的带有无机阳离子和有机或无机阴离子的盐可溶于离子液体中,所述的盐含有但明确不限于如基本的离子液体中所见的相同的阴离子或相同的多种阴离子。此外,小量添加剂可溶于离子液体。此外,离子液体可具有的熔点低于250°C并特别地,低于100°C并优选低于室温。为允许IL的工业应用,高质量和高纯度液体是必需的。通过易位合成的IL具有高的残余氯离子(CD量。本发明的发明人发现当这些IL用于CO2捕获时,无固体沉淀发生。然而,当使用具有无残余氯离子的IL以保持低的钢腐蚀时,固体沉淀发生,固体沉淀对于CO2脱除是一个相当大的缺点。在工业的动态应用中,其中液体应被泵送,洗涤介质的不受控固化是不期望的。因此本发明的问题是开发一种方法或程序,当与CO2强烈接触时,其结合高质量生产和防止结晶过程两者。本发明的目的在以下方法中满足:通过化学吸附至1-乙基-3-甲基咪唑鎗(emim)或1-丙基-3-甲基咪唑鐵(pmim)从含有CO2的气态流中分离CO2的方法,其特征在于emim或pmim以羧酸盐存在且化学吸附在胍鎗乙酸盐或1_ 丁基_3_甲基咪唑鎗(bmim)乙酸盐存在下进行。在发明性方法的一个优选实施方案中,羧酸盐为乙酸盐。本发明方法的一个进一步优选的实施方案的特征在于化学吸附在bmim乙酸盐和水存在下进行。本发明性方法可用于从含有CO2的不同气体(例如天然气、由碳源用水重整产生的气体、合成气、照明气、城镇气、城市气、燃料气、燃烧气、源自固体腐败燃料气化的气体、来自水煤气变换反应的气体、水煤气和生物气)中分离co2。该方法还可用来从惰性气流(例如N2)中分离CO2。以下,更详细地描述本发明的优选实施方案。实验描述:
若未作不同声明,所有使用和描述的离子液体(IL)根据W02005/021484合成。在大气条件(960-980 mbar(a)之间的压力,20_23°C之间的温度)下,把IL的已知量(5-10 g)称取入带有磁性搅拌棒的20 ml气密烧瓶中。通过在烧瓶上的隔膜,可用注射器刺穿它以允许气态二氧化碳(质量4.5,Air Liquide)经过IL鼓泡。实验在图中显示的设备内进行。用于IL/C02结晶研究的配置:
在恒定搅拌C500 rpm)下,在约1-1.5 bar (a)和50 ml/min流率下,气态二氧化碳经过IL鼓泡。CO2吸收在IL上,允许残余的CO2通过第二注射器离开。1小时后以下IL变成固
权利要求
1.通过化学吸附至1-乙基-3-甲基咪唑鎗(emim)或1-丙基-3-甲基咪唑鎗(pmim)从含有CO2的气态流中分离CO2的方法,其特征在于emim或pmim以羧酸盐存在且化学吸附在胍鎗乙酸盐或1-丁基-3-甲基咪唑鎗(bmim)乙酸盐存在下进行。
2.权利要求1的方法,其中所述羧酸盐为乙酸盐。
3.权利要求1或2的方法,其中化学吸附在bmim乙酸盐和水存在下进行。
全文摘要
通过化学吸附至1-乙基-3-甲基咪唑鎓(emim)或1-丙基-3-甲基咪唑鎓(pmim)从气态流中分离CO2的方法,其特征在于emim或pmim以羧酸盐存在且化学吸附在胍鎓乙酸盐或1-丁基-3-甲基咪唑鎓(bmim)乙酸盐存在下进行。
文档编号B01D53/14GK103079677SQ201280002608
公开日2013年5月1日 申请日期2012年6月5日 优先权日2011年6月14日
发明者P.雅尼切克, R.卡尔布 申请人:Vtu 控股有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1