微流体通道过滤器的制作方法

文档序号:15065979发布日期:2018-07-31 22:41阅读:882来源:国知局

芯片实验室(loc)器件使得能够将实验室功能缩小到最小化的环境。loc器件可以在单个芯片上集成若干实验室功能,所述单个芯片处理非常小体积的流体。因此,loc器件的实现牵涉将各种组件集成到非常小的形状因子(formfactor)中。

附图说明

现在将参考附图来描述示例,其中:

图1示出示例衬底的侧视图,所述示例衬底具有沉积在形成于衬底中的示例微流体通道中的示例可压印材料;

图2示出在可压印材料的固化期间,具有示例微流体通道和压印戳的示例衬底的侧视图;

图3示出在可压印材料的固化之后,具有微流体通道的示例衬底的侧视图;

图4示出在形成示例微流体通道过滤器并且在微流体通道和过滤器之上放置芯片顶部之后,微流体芯片的示例的侧视图;

图5示出具有形成在其中的示例微流体通道的示例衬底的顶视图;

图6示出并行化图1-4中图示的压印过程的示例方法的流程图;

图7示出可替换的示例方法的流程图,该方法图示了图1-4中图示的压印过程的附加细节;

图8示出并行化图1-4中图示的压印过程的可替换示例方法的流程图。

贯穿各图,相同的参考标号指代类似但未必相同的元件。

具体实施方式

芯片实验室(loc)器件使用在不同的生命科学工业中,以用于诸如生物医学诊断、药物开发、dna复制等之类的各种目的。在loc器件上执行的实验室功能通常依赖于不同的上游流体样本制备。制备样本可以牵涉流体的混合、流体的过滤、流体的加热、其组合等。微流体牵涉通过向非常小的形状因子中集成和实现各种组件而在最小化的loc环境内操纵和控制这样的流体。

许多微流体应用牵涉流体的下游分析之前的流体样本的上游滤波。一些物质检测机制的精度例如可以取决于不想要的颗粒从流体样本的移除。朝向将微过滤器集成到loc的微流体通道和其它微流体器件中的努力正在进行中。将过滤器集成到微流体器件中的一种现有方法例如牵涉将非常小的纳米/微米颗粒打包到微流体通道中。可以选择纳米/微米颗粒的大小以俘获诸如已知大小的细胞和分子之类的某些靶向物种。其它类型的微流体过滤器包括例如隔膜过滤器、动电学过滤器和纤维过滤器。过滤器特性(诸如颗粒过滤大小)可能难以利用这样的过滤器来控制。此外,这样的过滤器通常被首先构建,并且然后被集成到微流体器件中。该合并步骤增加组装过程的复杂度。

相应地,本文描述了微流体通道过滤器和制造微流体通道过滤器的方法的示例。在各种示例中,将微米/纳米多孔过滤器构建到微流体通道中以使得能够实现简化的样本制备以用于下游处理。纳米压印制造方法允许将过滤器直接集成到微通道中而没有复杂的处理。可以使用纳米压印光刻制造方法来直接地图案化和可靠地复制过滤器参数,诸如孔大小和密度。压印光刻的使用使得能够实现具有一致参数的众多过滤器的可靠制造,这确保跨过滤器的可重复过滤器性能。

可以通过包括若干简单操作的纳米压印方法在微流体芯片上制造微流体通道过滤器或一系列这样的过滤器。在示例实现方式中,这样的方法的一个操作包括在微流体器件上的一个或多个微通道的一个或多个区中沉积可压印材料,诸如紫外(uv)或可热学固化的聚合物。在另一操作中,将具有期望的过滤器特征拓扑的压印戳对准到器件,并且将这两个片段按压在一起。在另一操作中,固化所沉积的材料并且移除戳,这留下期望的过滤器孔结构。

在另一示例实现方式中,微流体通道过滤器包括衬底,以及形成在衬底中的微流体通道。过滤器还包括沉积在微流体通道中并且被压印有过滤器图案的可压印聚合物材料。

在另一示例实现方式中,制造微流体通道过滤器的示例方法包括向微流体通道的局部化区域中喷射可光学固化的液体抗蚀剂。然后将压印戳按压到液体抗蚀剂中,并且向液体抗蚀剂施加紫外光,直到液体抗蚀剂被固化。该方法包括从经固化的液体抗蚀剂移除压印戳,从而在经固化的液体抗蚀剂中留下来自压印戳的过滤器图案。

图1-4图示了用于使用纳米压印光刻来向微流体芯片(诸如芯片实验室(loc)或过滤器块芯片)的微流体通道中制造微流体通道过滤器的示例过程。图6是并行化图1-4中图示的过程的示例方法600的流程图。图7是图示了图1-4中图示的过程的附加细节的可替换示例方法700的流程图。图8是并行化图1-4中图示的过程的可替换示例方法800的流程图。

图1示出具有形成在其中的微流体通道102的衬底100的侧视图。衬底100可以包括芯片的衬底,诸如例如芯片实验室(loc)或过滤器块芯片的衬底。过滤器块芯片是提供流过微流体通道102的流体的过滤的芯片。可以将过滤器块芯片插入到流至例如芯片实验室中的流体流中,以提供用于在loc上执行的实验室功能的上游流体样本制备。图1中还示出压印戳104,所述压印戳104包括形成过滤器图案106的形状的三维拓扑或轮廓。衬底100和压印戳104可以由各种材料形成,所述材料包括例如硅和熔融硅石(石英)。衬底100和压印戳104中的一个和/或另一个可以由熔融硅石形成,以便保持透明,以使得能够实现沉积在微流体通道102中的可压印聚合物材料108的紫外(uv)固化。衬底100和压印戳104二者包括对准标记110以促进与彼此的对准。通过指状突起112从压印戳104延伸并且与其集成来形成压印戳104的过滤器图案106。

现在主要参考图1和图6-8的流程图,用于将微流体通道过滤器制造到微流体通道102中的纳米压印过程/方法可以以将可压印材料108沉积到通道中(图6,块602;图7,块702)为开始。可压印材料108可以包括可光学固化或可热学固化的聚合物抗蚀剂,并且在一些示例中包括可喷射液体聚合物抗蚀剂。因此,可压印材料108的沉积可以包括将可压印材料108从流体喷射喷嘴喷射到微流体通道中(图7,块704;图8,块802)。合适的流体喷射喷嘴的示例可以包括喷墨打印喷嘴。

在一些示例中,可压印材料108的沉积可以包括在微流体通道的完整长度内沉积可压印材料(图7,块706)。在这样的示例中,除了形成过滤器图案106之外,压印戳104可以形成与微流体通道102的形状成镜像的图案。在其它示例中,可压印材料108的沉积可以包括在微流体通道内的特定位置处选择性地沉积可压印材料,以及控制微流体通道内的可压印材料的通道长度尺寸114(图5)(图7,块708)。

图5示出具有形成在其中的微流体通道102的衬底100的顶视图。图5还包括微流体通道102的部分的放大视图116。在图5中,通道长度尺寸114包括可以向其中沉积和/或约束可压印材料108的通道102内的长度。也就是说,所沉积的可压印材料108将不延伸超过通道长度尺寸114。通道长度尺寸114内的可压印材料的位置可以例如通过以下来实现:向尺寸114中精确喷射材料(图7,块710),或者光学固化已经被沉积在通道长度尺寸内的可压印材料,并且然后(例如利用化学浴)洗掉已经被不精确地沉积在通道长度尺寸外部的未经固化的可压印材料(图7,块712)。

在将可压印材料108沉积在微流体通道102中之后,用于将微流体通道过滤器制造到微流体通道102中的纳米压印过程/方法可以继之以将具有拓扑过滤器图案106的压印戳104按压到可压印材料108中(图6,块604;图7,块714;图8,块804)。这在图1中通过方向箭头118来指示。在将压印戳104按压到可压印材料108中之前,压印戳104和衬底100上的对准标记110可以用于对准戳104和衬底100(图7,块716),使得每一次在精确相同的位置处将过滤器图案106按压到可压印材料108中。

现在还参考图2,在将压印戳104按压到可压印材料108中的同时,固化可压印材料(图6,块606;图7,块718;图8,块806)。固化可以是热学固化或uv固化(图7,块718)。因此,可以向可压印材料108施加热量或uv光120,直到其被固化。如以上参考图1所指出的,衬底100和压印戳104中的一个或另一个可以由诸如熔融硅石(石英)之类的透明材料形成,以便使得能够实现沉积在微流体通道102中的可压印聚合物材料108的紫外(uv)固化。因此,uv光120可以穿过衬底100或压印戳104,以固化可压印的聚合物材料108。在一些示例中,在可压印聚合物材料108是可热学固化而不是可uv固化的情况下,uv光源120可以包括热源。

现在还参考图3,在固化完成之后,从可压印材料108移除压印戳104,如通过方向箭头121所指示的。压印戳的移除留下形成到可压印材料108中的压印戳104的拓扑过滤器图案106,作为微流体通道过滤器(图6,块608;图7,块720;图8,块808)。参考图4,在微流体通道102之上、在衬底100上放置芯片顶部122。

在此公开的示例微流体通道过滤器易于制造和合并在微通道中,从而简化与芯片实验室的集成。如本文所讨论的纳米压印光刻的使用使得能够实现具有给定孔设计和分辨率的微流体通道过滤器的可重复复制。使用该方法的潜在分辨率在10nm(纳米)以下。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1