具有泡沫几何形状结构和活性材料的自支承性结构的制作方法

文档序号:18359442发布日期:2019-08-06 23:37阅读:168来源:国知局
具有泡沫几何形状结构和活性材料的自支承性结构的制作方法

本申请要求2016年12月21日提交的,标题为“self-supportingstructureshavingactivematerials”的美国专利申请no.62/437319的优先权权益,其整体通过引用并入本文。

本申请与以下申请有关:2016年12月21日提交的,标题为“self-supportingstructureshavingactivematerials”的美国临时专利申请号62/437327和2017年11月14日提交的,标题为“self-supportingstructureshavingactivematerials”的美国专利申请no.62/585574,二者具有共同的技术人和受让人,其公开内容通过引用整体并入本文。

领域

本技术涉及制作包括活性材料的自支承性结构,其是泡沫几何形状结构。具体地,该自支承性结构可以用于分离和/或催化方法,例如变吸附方法和其他方法来增强烃的回收。

背景

加工技术可用于许多工业,并且通常可以通过使流体混合物在活性材料(例如催化剂或者吸附剂材料)上流动,来提供优选的产物流来完成。对于吸附方法,该吸附剂材料优先吸附一种或多种气体组分,而不吸附一种或多种其他气体组分。该非吸附的组分作为单独的产物来回收。对于催化方法,将催化剂配置来与流中的组分相互作用来增加化学反应速率。

作为实例,一种具体类型的气体分离技术是变吸附,例如变温吸附(tsa),变压吸附(psa),部分变压吹扫吸附(ppsa),快速循环变压吸附(rcpsa),快速循环部分变压吸附(rcppsa),并且不限于还可以是前述方法的组合,例如变压和变温吸附。作为实例,psa方法依靠这样的现象,即,当气体处于压力下时,该气体更容易吸附在活性材料(例如吸附剂材料)的孔结构或者自由体积内。即,气体压力越高,所吸附的容易吸附的气体的量越大。当降压时,所吸附的组分从吸附剂材料释放或者解吸。

变吸附方法(例如psa和tsa)可以用于分离气体混合物的气体,这归因于不同的气体倾向于以不同的程度填充吸附剂材料的微孔。例如,如果气体混合物(例如天然气)在压力下送过含有吸附剂材料(其对于二氧化碳的选择性大于其对甲烷的选择性)的容器,则至少一部分的二氧化碳被该吸附剂材料选择性吸附,并且离开该容器的气体富含甲烷。当该吸附剂材料达到它吸附二氧化碳的能力的终点时,它在psa方法中例如通过减压,由此释放吸附的二氧化碳而再生。该吸附剂材料然后通常进行吹扫和重新加压。然后,该吸附剂材料准备用于另一吸附循环。

通常,催化方法和吸附方法中所用的结构具有有限阵列的物理结构类型。活性材料经常使用粘合剂和加工技术(如挤出或者喷雾干燥)来结构化成珠料,丸粒,球或者粒料。所述珠料,丸粒,球或者粒料然后一起填充到单元内,作为用于催化或者吸附方法的填充床。结果,常规制作催化剂或者吸附剂包括挤出打算用于填充床的小球状活性材料(例如球,粒料,瓣状物等)。然而,该填充床提供了穿过该填充床的曲折路径,其导致大的压降。

在其他构造中,所述结构可以是工程化结构,例如整料。在工程化结构中,该活性材料涂覆于基材例如金属或者陶瓷整料上。该工程化结构提供了基本上均匀的流路,其与填充床相比减少了压降。然而,使用这些结构,大部分的重量是非活性材料,其用于形成下面的支承体结构。

结果,通常的结构制作方案包括挤出打算用于填充床的小球状活性材料(例如球,粒料,瓣状物等),或者将活性材料的薄涂层施用到整料基材(例如陶瓷或者金属整料)上。该填充床的压降大于工程化结构。此外,该工程化结构包括来自于结构支承体(其是非活性材料)的另外的重量,其增加了所述结构的尺寸和重量。

其他相关的材料包括rezaei,f.等人,2009,optimumstructuredadsorbentsforgasseparationprocesses,chemicalengineeringscience64,第5182-5191页;patcas,f.c.等人,2007,cooxidationoverstructuredcarriers:acomparisonofceramicfoams,honeycombsandbeads,chemicalengineeringscience62,第3984-3990页;美国专利申请公开no.20030145726;和richardson,j.t.等人,2000,propertiesofceramicfoamcatalystsupports:pressuredrop,appliedcatalysisa:general204,第19-32页;和stemmet,c.p.等人,2006,solidfoampackingsformultiphasereactors:modellingofliquidholdupandmasstransfer,chemicalengineeringresearchanddesign84(a12),第1134-1141页。

因此,工业上仍然需要这样的设备、方法和系统,其在具有自支承性结构的方法中提供了增强,其包括活性材料和可以包括形成具有复杂几何形状的泡沫几何形状结构。此外,本技术通过将自支承性泡沫几何形状结构与吸附或者催化方法(例如变吸附方法)整合来从供料流中分离污染物而提供了改进。因此,本技术克服了分离和/或催化方法中的常规结构的缺点。

发明概述

在一种实施方案中,描述了加工单元。该加工单元包括形成内部区域的外壳;位于该内部区域中的自支承性结构,其中该自支承性结构在该自支承性结构中具有大于50重量%的活性材料,其中该自支承性结构是泡沫几何形状结构,其配置来提供一个或多个曲折通道,用于穿过该自支承性结构的流体流路;和固定到所述外壳的多个阀,其中该多个阀的每个配置来控制流体沿着在该自支承性结构和外壳外的位置之间延伸的流路的流动。

在一种或多种实施方案中,该加工单元可以包括各种增强。例如,该加工单元可以包括两个或者更多个的多个阀,其经由共用的致动机构来运行;该加工单元可以是循环变吸附剂床单元,其配置来从穿过该自支承性结构的气态供料流中除去污染物;该自支承性结构在该自支承性结构中可以具有大于60重量%的活性材料或者该自支承性结构在该自支承性结构中可以具有大于70重量%的活性材料;可以包括位于该吸附剂床和多个阀之间的流量分配器;该外壳可以配置来保持5磅/平方英寸绝对压力(psia)-1400psia的压力;其中该自支承性结构具有10个孔/英寸-100个孔/英寸的孔,15个孔/英寸-60个孔/英寸的孔;或者20个孔/英寸-40个孔/英寸的孔;其中该自支承性结构包含多个具有第一组成和第一孔密度的第一片和多个具有第二组成和第二孔密度的第二片,其中该第一孔密度是1个孔/线性英寸(ppi)-20ppi和该第二孔密度是20ppi-100ppi和/或该自支承性结构具有低的热质量。

在再一实施方案中,描述了从供料流中除去污染物的方法。该方法包括:a)在吸附剂床单元中进行一个或多个吸附步骤,其中该一个或多个吸附步骤的每个包括:将气态供料流送过位于该吸附剂床单元外壳的内部区域中的自支承性结构,来从该气态供料流中除去一种或多种污染物,其中该自支承性结构在该自支承性结构中具有大于50重量%的活性材料,其中该自支承性结构是泡沫几何形状结构,其配置来提供一个或多个曲折通道,用于穿过该自支承性结构的流体流路;b)进行一个或多个再生步骤,其中该一个或多个再生步骤的每个包括在污染物输出流中导离至少一部分的一种或多种污染物;和c)重复步骤a)至b)来进行至少一个另外的循环。

此外,在一种或多种实施方案中,该从供料流中除去污染物的方法可以包括各种增强。例如,该方法可以是变吸附方法和该循环持续时间可以是大于1秒到小于600秒的时间或者大于1秒到小于300秒的时间;其中进行一个或多个再生步骤包括进行一个或多个吹扫步骤,其中该一个或多个吹扫步骤每个包括将吹扫流送过该自支承性结构,来在污染物输出流中导离至少一部分的一种或多种污染物;其中该气态供料流可以是含烃流,其具有大于1体积百分比的烃,基于该气态供料流的总体积;其中该气态供料流的供料压力可以是400磅/平方英寸绝对压力(psia)-1400psia;其中进行该一个或多个吸附步骤可以配置来将二氧化碳(co2)含量降低到小于50份/百万份体积;其中进行一个或多个吸附步骤可以配置来将水(h2o)含量降低到小于105份/百万份体积;和/或该自支承性结构具有低的热质量。

在再一实施方案中,描述了制造加工单元的方法。该方法可以包括:将活性材料与粘合剂材料混合,其中该混合物具有大于50重量%的活性材料和其余的混合物包含粘合剂材料;由该混合物形成自支承性结构,其中该自支承性结构是泡沫几何形状结构,其配置来提供一个或多个曲折通道,用于穿过该自支承性结构的流体流路;干燥该自支承性结构和将该自支承性结构置于具有内部区域的加工单元的外壳内。

此外,在一种或多种实施方案中,该制造加工单元的方法可以包括不同的增强。例如,该方法可以包括将该粘合剂材料和活性材料烧结成粘着的固体结构,其是所述自支承性结构;其中该烧结进一步包括将该自支承性结构暴露于400℃-800℃的温度和/或可以包括在该外壳中产生多个阀端口;和在该多个阀端口的每个处将阀固定到所述外壳来形成多个阀,其中该多个阀的每个配置来控制流体在该自支承性结构和外壳外的位置之间的流动。

附图简要描述

本技术的前述和其他优点可以通过回顾下面的详细描述和实施方案的非限制性实例的图而变得显然可见。

图1是根据本技术一种实施方案的制作和使用自支承性结构的方法的流程图。

图2是根据本技术一种实施方案的制作自支承性结构的方法的流程图。

图3a,3b和3c是与根据本技术一种实施方案的自支承性结构相关的图。

图4是3a的作为温度的函数的重量损失的图,其归因于所吸附的水的损失。

图5a至5d是不同的曲线的图。

图6是根据本技术一种实施方案的变吸附系统的三维图,其具有6个吸附剂床单元和互连管线。

发明详述

除非另有解释,否则本文所用的全部科技术语具有与本公开内容所属领域技术人员通常的理解相同的含义。单数术语“一个”、“一种”和“该”包括复数指代物,除非上下文另有明确指示。类似地,措词“或者”意在包括“和”,除非上下文另有明确指示。术语“包括”表示“包含”。本文所提及的全部专利和公开通过引用整体并入本文,除非另有指示。在关于所述术语或措词的含义相矛盾的情况下,以本说明书为准,包括术语的解释。方向术语例如“上”、“下”、“顶部”、“底部”、“前”、“后”、“垂直”和“水平”在本文中用于表示和明确不同元件间的关系。应当理解这样的术语不表示绝对定向(例如“垂直”部件可以通过旋转所述装置而变成水平的)。本文所记载的材料、方法和实例仅仅是示例性的,并不意在是限制性的。

如本文所用的,“大部分组分”表示大于50重量%。

如本文所用的,“泡沫几何形状”指的是与挤出的实心形状(例如球或者粒料)相比具有开放通道网络的结构。该泡沫几何形状结构包括整料或者其他工程化结构,其在各自结构中提供了穿过曲折通道或者通路的流路。该泡沫几何形状结构包括被支柱网包围的互连的空隙的网络。

如本文所用的,“流”指的是导过不同设备的流体(例如固体、液体和/或气体)。该设备可以包括管道,容器,集管,单元或者其他合适的装置。

如本文所用的,体积百分比是基于标准条件。用于方法的标准条件可以标准化到0℃(摄氏度)(例如32°f(华氏度))的温度和100千帕(kpa)(1bar)的绝对压力。

本技术涉及由活性材料制作自支承性结构,其可以是具有曲折流路的泡沫几何形状结构。具体地,本技术涉及该自支承性结构中的增强,其包含大部分活性材料(例如大于50重量%或者大于或等于60重量%)来提供增强的结构。该增强的结构可以提供穿过构造的灵活性,其可以通过曲折流路增强流与活性材料的相互作用和在所述构造中提供更高的体积效率,其重量轻于常规结构。该自支承性结构可以配置来具有不同的曲折通道来提供穿过该自支承性结构的流体流路。

该自支承性结构可以用于不同的化学和工程化应用。作为实例,某些方法可以用该活性材料来增强,例如吸附和催化方法。具体地,自支承性结构可以用于代替填充的吸附剂床,其具有更高的压降和更慢的质量传递速率。在该填充床构造中,压降和质量传递限制不允许在快速循环运行该吸附或者催化方法或者在其中是低效的。此外,大体积气体分离方法,其依赖于变压吸附和快速循环,包括具有低的压降和高的体积效率的自支承性结构。本技术可以为相关结构提供增强来增强各自的方法和相关的经济性。

该自支承性结构可以由不同的技术(例如发泡技术)来制作。作为实例,该制作方法可以包括聚合物海绵方法和直接发泡方法。聚合物海绵方法通过用浆体浸渍聚合物海绵,然后将其烧掉来留下多孔结构而产生了开放泡孔结构。直接发泡方法使用含有所需的组分和有机材料的混合物,其通过加工,产生发泡和形成气体。然后将所形成的多孔材料干燥和煅烧。

作为另一实例,本技术可以包括提供混合物的自支承的泡沫结构,其具有泡沫状几何形状,其中该自支承的结构包括互连的空隙和支柱的网络,其中该混合物在该自支承性结构中具有大于50重量%的活性材料,并且其余的混合物包含粘合剂材料。该自支承性结构可以是泡沫几何形状结构,其形成穿过各自结构的不同的曲折路径。一旦形成,该自支承性结构就可以进行干燥,然后进行煅烧方法。该煅烧方法可以包括400℃-800℃的温度来形成机械稳定的活性结构。该自支承性结构的泡沫网络与层流挤出的整料相比可以提供更高的外表面积和用于气体流动的曲折路径。此外,该自支承的结构的孔密度可以是10个孔/线性英寸(ppi)-100ppi,15ppi-60ppi或者20ppi-40ppi。

在其他构造中,该自支承性结构可以包括彼此相邻布置的不同的材料层或者片。该第一片可以具有第一组成和第一孔密度和该第二片可以具有第二组成和第二孔密度。该第一孔密度是1个孔/线性英寸(ppi)-20ppi,3ppi-17ppi或者5ppi-15ppi。该第二孔密度是20ppi-100ppi,30ppi-70ppi或者30ppi-60ppi。此外,该第一组成和第二组成可以是不同的,并且该第一组成可以为自支承性结构提供另外的刚度。该第一片可以配置来将流体流从各自的第一片分配到第二片之一中。此外,该自支承性结构可以包括另外的层或者条,其配置来将分配流体流,例如使流体流动转向到一个或多个的第一片中。

该制作方法可以使用活性材料例如活性无机材料,其对于高温煅烧(例如等于或者大于500℃)是稳定的,和有机和无机粘合剂的组合。

本技术还可以包括生产大体积(bulk)泡沫结构的发泡方法,其具有活性材料作为主要组分。相对而言,常规技术包括将活性材料薄涂层施涂到非活性基材(例如惰性陶瓷或者金属基材)上。该非活性基材,其通常为活性材料薄涂层提供了机械支撑,大于自支承性结构总重量的90%。因此,常规自支承性结构中的活性材料薄涂层等于或者小于自支承结构总重量的10%。

在某些构造中,该自支承性结构可以包括活性材料和粘合剂材料的不同组合。例如,该自支承性结构可以由微孔沸石制作,其可以是该活性材料。在某些构造中,该活性材料可以大于或者等于该自支承性结构的25重量%;大于或者等于该自支承性结构的40重量%;大于或者等于该自支承性结构的50重量%;大于或者等于该自支承性结构的60重量%;或者大于或者等于该自支承性结构的70重量%;而其余部分可以包括粘合剂材料。在其他构造中,该粘合剂材料可以小于该自支承性结构的75重量%;小于该自支承性结构的60重量%;小于该自支承性结构的50重量%;小于该自支承性结构的40重量%;或者小于该自支承性结构的30重量%;而其余部分可以包括活性材料。

该自支承性结构可以包括更高质量的活性材料/单位体积,其大于常规涂覆技术。例如,该活性材料的层或者厚度大于10微米,大于100微米或者大于200微米。

该活性材料可以包括一种或多种吸附剂材料来从流中吸附污染物。作为实例,该活性材料可以包括沸石,铝磷酸盐分子筛(例如alpo和sapo),zif(沸石咪唑酯(imidazolate)骨架(例如zif-7,zif-9,zif-8,zif-11等)和碳,以及中孔材料,例如胺官能化的mcm材料(例如mobilcompositionofmatter或者mobilcrystillainematerial,例如mcm-22,mcm-41或者mcm-48),sba材料,kit材料和/或其他合适的材料。活性材料的其他实例可以包括阳离子沸石,胺官能化中孔材料,锡硅酸盐和/或碳。在其他构造中,该吸附剂材料可以包括沸石类型a(例如linde类型a(lta)结构),例如3a,4a,5a和/或13x(其是高度多孔吸附剂,其具有高亲和性和高容量来吸附水,以及其他分子,其尺寸足够小来适合这些结构的均匀孔),8元环沸石材料(例如zsm58和/或ddr)。

在其他构造中,该活性材料可以包括一种或多种催化材料,其配置来与所述流中的组分反应。

该粘合剂材料可以包括有机和无机粘合剂。该粘合剂可以包括1%的聚环氧乙烷或者甲基纤维素衍生物的水溶液。例如,该粘合剂材料可以包括聚环氧乙烷,和/或二氧化硅(sio2)。二氧化硅粒径可以是25纳米到1000纳米和二氧化硅颗粒处于串珠构造中。

如上所述,泡沫几何形状结构不具有平行通道,例如在自支承的整料结构中的平行通道。该泡沫几何形状结构具有互连的空隙和支柱的网络,其产生了曲折路径流动,而非整料中的平行通道结构所产生的层流。使用该自支承性结构,外表面积/单位体积是与质量传递速率直接相关的。该泡沫几何形状结构的外表面积高于具有限定通道和流路的整料结构。如果它们具有高的泡孔密度例如诸如大于2000个泡孔/平方英寸的泡孔密度,则具有限定通道和流路的整料仅仅可以接近于泡沫几何形状结构的外表面积。然而,高泡孔密度降低了整料基材中的空隙率,其导致增加的压降和增加的用活性材料涂覆整料基材的难度。

在泡沫几何形状结构中,开放泡孔陶瓷泡沫结构包括被陶瓷支柱网包围的互连的空隙的网络,其显示在下面的图3a和3b中。陶瓷泡沫的孔尺寸定义为孔/线性英寸(ppi)。相对而言,具有通道的陶瓷蜂窝,测量单位是泡孔/平方英寸(cpsi)。对于陶瓷泡沫,所述孔尺寸可以是10ppi-100ppi,10ppi-80ppi,15ppi-60ppi或者20ppi-40ppi。对于用于整料的陶瓷蜂窝,泡孔密度通常是10cpsi-900cpsi。在整个陶瓷泡沫结构中的压降处于整料和填充床之间。

该泡沫几何形状结构可以通过聚合物海绵方法和/或直接发泡方法来产生。聚合物海绵方法通过用活性材料浆体浸渍聚合物海绵,然后将其烧掉来留下多孔材料而产生泡沫几何形状结构。直接发泡方法使用含有所需的组分和有机材料的混合物,其通过加工,产生发泡和形成气体。然后将所形成的多孔材料干燥和煅烧来形成该自支承性结构。

该泡沫几何形状结构可以提供相对于整料构造的不同的改进,因为该泡沫片在不同方向上是开放泡孔结构,并且体积小以及在该片中不存在金属。对于psa构造,气体流可以在一个方向上流动,并且可以捕集通过吸附热所产生的热,和用于补充外部热源。此外,加热的吹扫流可以用于tsa方法,并且吹扫流在垂直于psa流动的方向上流动。

作为实例,加工单元可以包括形成内部区域的外壳;位于该内部区域中的自支承性结构,其中该自支承性结构在该自支承性结构中具有大于50重量%的活性材料,其中该自支承性结构是泡沫几何形状结构,其配置来提供一个或多个曲折通道,用于穿过该自支承性结构的流体流路;和固定到该外壳上的多个阀,其中该多个阀的每个配置来控制流体沿着在该自支承性结构和外壳外的位置之间延伸的流的流动。在不同的构造中,该加工单元可以包括两个或者更多个的所述多个阀,其经由共用的致动机构来运行;该加工单元可以是循环变吸附剂床单元,其配置来从穿过该自支承性结构的气态供料流中除去污染物;该自支承性结构在该自支承性结构中可以具有大于60重量%的活性材料或者该自支承性结构在该自支承性结构中可以具有大于70重量%的活性材料;可以包括位于该吸附剂床和多个阀之间的流量分配器;该外壳可以配置来保持5磅/平方英寸绝对压力(psia)-1400psia的压力;其中该自支承性结构具有10个孔/英寸-100个孔/英寸的孔,15个孔/英寸-60个孔/英寸的孔;或者20个孔/英寸-40个孔/英寸的孔和/或该自支承性结构具有低的热质量。

作为再一实例,从供料流中除去污染物的方法可以包括:a)在吸附剂床单元中进行一个或多个吸附步骤,其中该一个或多个吸附步骤的每个包括:将气态供料流送过位于该吸附剂床单元外壳的内部区域中的自支承性结构,来从该气态供料流中除去一种或多种污染物,其中该自支承性结构在该自支承性结构中具有大于50重量%的活性材料,其中该自支承性结构是泡沫几何形状结构,其配置来提供一个或多个曲折通道,用于穿过该自支承性结构的流体流路;b)进行一个或多个再生步骤,其中该一个或多个再生步骤的每个包括在污染物输出流中导离至少一部分的一种或多种污染物;和c)重复步骤a)至b)持续至少一个另外的循环。在某些构造中,该方法可以是变吸附方法和该循环持续时间可以是大于1秒且小于600秒的时间或者大于1秒且小于300秒的时间;其中进行一个或多个再生步骤包括进行一个或多个吹扫步骤,其中该一个或多个吹扫步骤的每个包括将吹扫流送过该自支承性结构来在污染物输出流中导离至少一部分的一种或多种污染物;其中该气态供料流可以是含烃流,其具有大于1体积百分比的烃,基于该气态供料流的总体积;其中该气态供料流的供料压力可以是400磅/平方英寸绝对压力(psia)-1400psia;其中进行一个或多个吸附步骤可以配置来将二氧化碳(co2)含量降低到小于50份/百万份体积;其中进行一个或多个吸附步骤可以配置来将水(h2o)含量降低到小于105份/百万份体积;其中该自支承性结构具有10个孔/英寸-100个孔/英寸的孔;15个孔/英寸-60个孔/英寸或者20个孔/英寸-40个孔/英寸的孔和/或该自支承性结构具有低的热质量。

作为再一实例,制造加工单元的方法可以包括:将活性材料与粘合剂材料混合,其中该混合物具有大于50重量%的该活性材料和其余混合物包含粘合剂材料;由该混合物形成自支承性结构,其中该自支承性结构是泡沫几何形状结构,其配置来提供一个或多个曲折通道,用于穿过该自支承性结构的流体流路;干燥该自支承性结构和/或将该自支承性结构置于具有内部区域的加工单元的外壳中。此外,该制造加工单元的方法可以包括不同的增强。例如,该方法可以包括烧结所述粘合剂材料和活性材料成为粘着的固体结构,其是所述自支承性结构;其中该烧结进一步包括将该自支承性结构暴露于400℃-800℃的温度和/或可以包括在该外壳中产生多个阀端口;和在该多个阀端口的每个处将阀固定到所述外壳来形成多个阀,其中该多个阀的每个配置来控制流体在该自支承性结构和外壳外的位置之间的流动。

有益地,本技术提供了自支承性结构,其可以用于提供相对于常规方案的不同的增强。例如,本技术可以提供这样的结构,其提供曲折通道或者通路来促进该活性材料和送过该自支承性结构的流之间的相互作用。此外,通过使用该活性材料来形成自支承性结构,可以增加工作能力和可以提高体积效率,其可以进一步减小所述结构的尺寸和结构的相关重量。尺寸和重量的减小还可以减小与包含该自支承性结构的外壳一起使用的设备的相关尺寸。本技术可以参考下面的图1-6来进一步理解。

图1是根据本技术一种实施方案的制作和使用自支承性结构的方法的流程图100。在该图100中,该方法包括制作包括活性材料的自支承性结构以及使用该自支承性结构。具体地,该方法可以包括确定该自支承性结构的构造,如块102所示,产生用于该自支承性结构的混合物,如块104所示,产生该自支承性结构,如块106和108所示,和用该自支承性结构形成加工单元和使用该自支承性结构来加工供料,如块110和112所示。

该方法始于块102。在块102,确定了自支承性结构的构造。该确定可以包括模拟和识别该自支承性结构的不同方面来增强加工工程化选择,例如确定该自支承性结构的机械特征,确定该自支承性结构内的泡孔尺寸,确定流过该自支承性结构的压降,确定该自支承性结构可以在加工作业过程中经受的加工条件(例如压力,温度和流组成)和/或确定待通过该自支承性结构中的活性材料吸附的污染物。

一旦确定了该自支承性结构的构造,则产生用于该自支承性结构的混合物,如块104所示。该混合物可以包括活性材料与有机和/或无机粘合剂来提供特定配料。该混合物,其可以是含水浆体。一旦产生了混合物,则可以产生该自支承性结构,如块106和108所示。在块106,产生了具有泡沫几何形状结构的自支承性结构。该自支承性结构的产生可以包括将所述混合物提供到器具或者容器。该器具或者容器可以用于在所述混合物上进行发泡技术来在该自支承性结构中形成支柱和空隙。然后,可以加工该混合物来将该混合物固化成固体形式。该加工可以包括加热该混合物来干燥和/或固化该混合物。该生产活性泡沫材料的方法包括聚合物海绵方法和直接发泡方法。聚合物海绵方法通过用活性材料浆体浸渍聚合物海绵,然后将其烧掉来留下多孔陶瓷而产生了开放泡孔结构。直接发泡方法使用含有所需的陶瓷组分和有机材料的混合物,其通过加工,产生发泡和形成气体。然后将所形成的多孔陶瓷材料干燥和煅烧。在块108,可以检查所产生的自支承性结构。所产生的自支承性结构的检查可以包括使用传感器来在所产生的自支承性结构上获得测量值,来识别所产生的自支承性结构的空隙、裂缝和/或非均匀区域。该检查可以包括在该自支承性结构上进行高温x射线衍射。例如,高温x射线衍射扫描分析可以用于确定煅烧该自支承性结构的最大温度和时间。

一旦产生了该自支承性结构,则将该自支承性结构形成加工单元,如块110所示。形成该加工单元可以包括将该自支承性结构置于外壳内,将头部结合到该外壳上,将一个或多个阀(例如提升阀)结合到该外壳和将一个或多个管道结合到该外壳和/或一个或多个的阀。该加工单元可以是吸附剂床单元,其包括外壳,其可以包括结合到一个或多个主体部分上的头部,其形成了基本上不透气的分区(partition)。该外壳可以包括位于被该外壳包封的内部区域中的自支承性结构(例如形成为吸附剂床)。不同的阀可以配置来提供穿过在该外壳的内部区域和该外壳外的位置之间的外壳中的开口的流体流道。然后,该自支承性结构可以用于加工流体,如块112所示。例如,该供料加工可以包括进行变吸附方法(例如快速循环方法)来从供料流中除去一种或多种污染物。其他实例可以包括将该自支承性结构用于催化方法。

一种形成该自支承性结构的方法可以包括使用发泡技术。作为实例,该自支承性结构可以通过这样的方法来制备。结果,该自支承性结构可以是泡沫几何形状结构,其配置来提供曲折通道,用于穿过所述结构的流体流路。

图2显示了产生该自支承性结构的实例。图2是根据本技术一种实施方案的制作自支承性结构的方法的流程图200。该方法始于块202。在块202,获得了活性材料和粘合剂材料的混合物。该混合物可以包括活性材料与有机和/或无机粘合剂来提供特定配料。一旦获得了混合物,则形成该自支承性结构,如块204所示。该自支承性结构的形成可以包括将该混合物提供到器具或者容器。该器具或者容器可以用于在所述混合物上进行发泡技术来在该自支承性结构中形成支柱和空隙。然后,可以加工该混合物来将该混合物固化成固体形式。在块206,所产生的自支承性结构可以干燥。然后,该自支承性结构可以进行煅烧方法,如块208所示。该方法可以包括烧结或者煅烧所述粘合剂材料和活性材料成为粘着的固体结构,其是所述自支承性结构。该煅烧或者烧结可以包括将该自支承性结构暴露于400℃-800℃的温度。

有益地,该具有泡沫几何形状结构的自支承性结构提供了不同的增强。例如,该泡沫几何形状结构提供了比其他常规整料更高的几何表面积/单位体积。此外,与整料对比,该泡沫几何形状结构提供了曲折流路和具有更高的质量传递速率。虽然压降可能高于具有基本上平行通道的常规整料,但是该泡沫几何形状结构的压降明显低于填充床构造。另外,该泡沫几何形状结构可以形成长方形片结构来允许进行模块化单元设计。该泡沫结构不同的图显示在图3a,3b和3c中。

图3a,3b和3c是与根据本技术一种实施方案的自支承性结构相关的图300,320和340。图3a和3b是al2o3陶瓷泡沫的实例,如图300和320所示。在图3a中,图300包括不同的支柱302和孔304。在图3b中,图320包括不同的支柱例如支柱322,其形成泡孔例如泡孔324,和孔例如孔326。泡孔324具有宽度330,而所述孔具有宽度332。该泡沫几何形状结构为层流整料结构提供了增强的质量传递性能,可以比挤出结构更容易和更廉价的生产,并且可以提供在该吸附剂床构造中的灵活性。例如,用于长方形模块化设计的泡沫片床,和由70重量%的活性材料制成的泡沫体可以降低床体积。所形成的自支承性结构中所用的混合物可以包括3a/sio2,其具有用于该自支承性结构的活性材料与粘合剂的大约70:30的重量比(w/w)。

为了将该混合物固化成自支承性结构,可以评价活性材料的高温的热稳定性。如上所述,在产生自支承性结构中最终步骤之一可以包括煅烧。在高温(其可以包括等于或者大于400℃或者甚至等于或者大于500℃的温度)下煅烧,将所述沸石和sio2颗粒混合物脱水和将该混合物聚结成更致密的结构,其产生了增强的机械强度。为了评价该活性材料(例如吸附剂或者催化剂材料)用于煅烧目的高温稳定性,可以在该自支承性结构上进行高温x射线衍射。例如,高温x射线衍射扫描可以提供图示来显示5a沸石(例如活性材料)在特定温度在某时间段内(例如在大约860℃在几分钟内)是稳定的,然后失去稳定性,其可以通过下降的峰高度来显示。因此,该类型的分析可以用于确定结构煅烧的最大温度和时间。该自支承性结构的机械强度与大于500℃的煅烧温度有关。

在某些构造中,该自支承性结构可以包括彼此混合和相邻布置的材料的不同的层或者片。该各自的片可以具有不同的组成和孔密度。例如,第一孔密度可以是1个孔/线性英寸(ppi)-20ppi,3ppi-17ppi或者5ppi-15ppi。该第二孔密度可以是20ppi-100ppi,30ppi-70ppi或者30ppi-60ppi。在这样的构造中,所述不同的片之一可以为该自支承性结构提供另外的刚度,并且可以配置来将流体流从各自的片分配到其他片之一中。此外,可以使用另外的层或者条,并且其可以配置来分配流体流,例如使流体流转向到一个或多个所述分配片中。

图3c是自支承性结构的概念性沸石泡沫几何形状模块的一个实例。该模块可以用于加工含有2重量%(wt%)h2o的1百万立方英尺(ft3)的ch4。在图3c中,图340包括不同的片例如片342,其是10ppi的al2o3结构。这些al2o3片每个可以是40英寸宽和40英寸长乘以0.5英寸深度。该al2o3片可以位于3a/sio2泡沫片例如片344之间。这些al2o3未涂覆片可以充当机械支承体和用于将气体扩散到3a/sio2泡沫片中。片344可以是65ppi的3a/sio2活性材料泡沫几何形状片。每个3a/sio2泡沫片可以是20英寸宽和20英寸长乘以1英寸深度。此外,所述条例如条346是不锈钢(ss),其阻挡了进入流动进入该3a/sio2泡沫片中。条346可以是40英寸宽和1英寸长和0.04英寸深度。此外,箭头显示了psa流动的流动方向(例如箭头348)和tsa流动的流动方向(例如箭头350)。

在这种构造中,活性3a/sio2泡沫片可以堆叠在模块中,并且位于al2o3泡沫片342之间。该al2o3泡沫片的孔密度是10ppi,其具有用于低压降的大孔。进入和离开的气流可以平行于3a/sio2泡沫片表面。例如,进入气流可以引导穿过未涂覆的al2o3泡沫片。该al2o3泡沫片为所述结构提供了刚度和帮助进入的气体分布。未涂覆的al2o3泡沫片的厚度仅仅是3a/sio2泡沫片的50%。进入该沸石泡沫片的有效气体流路是所述厚度的一半。如果避免过度的压降,则层合体可以是有效的吸收剂。如果垂直于3a/sio2泡沫片的压降小,则所述泡沫可以有效用作具有大表面积的层状片。

在这种构造中,可以计算不同的性能度量。例如,对于5米/秒(m/s)的气体速度来说,穿过1米的al2o3泡沫片的压降可以计算为小于18托。对于5m/s的气体速度来说,穿过1米的al2o3泡沫片的压降可以计算为大约1.5磅/平方英寸(psi)。此外,对于29个片乘以0.5英寸乘以40英寸的al2o3泡沫片的开放流动面积是580平方英寸(in2)(0.374平方米(m2))。

另外,还可以计算所述结构的沸石材料的量。对于这种计算,对于使用70wt%沸石和30wt%sio2粘合剂泡沫体和75%孔隙率来说,r是1.7克/立方厘米(g/cm3)。一个片的体积是20英寸乘以20英寸乘以1英寸,其是400立方英寸(in3)(6554.5立方厘米(cm3))。一个片的总质量是6554.8cm3乘以1.7g/cm3乘以0.25(实心),其是2786克/片(g/片)。一个片中的3a沸石的总质量是2786g/片乘以0.7,其是1950g/片。

还可以计算所述结构的h2o吸附量。在这种计算中,保守估计10wt%h2o负载量/片是195g/片。对于1百万立方英尺的ch4中2wt%h2o是412782g。所需片数是412782g除以195g/片,其是2117个片。每个模块具有4个片/层乘以28层,其是112个片。结果,所需总模块是2117个片除以112个片/模块,其是18.9个模块。

此外,还可以计算所估计的体积。19个模块所需的3a/sio2泡沫片的数目是19个模块乘以112个片/模块,其是2128个片。具有29个al2o3片和28个3a/sio2泡沫片的模块体积是42.5英寸乘以40英寸乘以40英寸,其是68000立方英寸(in3)(1.114m3)。19个模块乘以1.114m3的总体积是21.166m3。因此,在将这换算成加仑,所述量为21166升是5591.5加仑。因此,所估计的泡沫几何形状结构的19个模块体积(以加仑为单位)是5591加仑。

通过本技术形成的自支承性结构,其可以是泡沫几何形状活性材料整料,是由70重量%的活性材料制成的,其煅烧温度远低于陶瓷(例如煅烧到400℃-800℃)。使用较低的温度来保持沸石的活性。所形成的自支承性结构的强度是通过无机sio2粘合剂来提供的。然而,该自支承性结构虽然是机械稳定的,但是不像陶瓷整料那么强。虽然粘土可以用作沸石的粘合剂,但是它不提供烧结的sio2的强度。

作为该活性材料的选项,沸石类型a(例如lta结构)例如3a,4a和/或5a是高度多孔吸附剂,其具有对于吸附水以及其他分子(其尺寸足够小,来适合这些结构的均匀孔)来说的高亲和性和高能力。因此,方法(其包括干燥和纯化气体和液体)依赖于lta类型沸石的吸附能力和效率,例如变吸附方法。这些3a,4a,5alta-类型沸石具有容易在宽范围条件内吸附水的能力。它们还在加热时释放所吸附的水,而不发生沸石结构降解。因此,它们具有在加热时释放水和冷却时重新吸附水之间循环的能力。

在水解吸附中使用3a表现出与热重分析(tga)有关。tga是通过由无粘合剂添加剂的3a沸石粉末开始来进行的。该tga实验产生样品重量损失相对温度的数据,如图4所示。

图4是3a由于吸附的水损失而引起的重量损失作为温度的函数的图400。在这个图400中,第一响应408和第二响应410是沿着时间轴402(以分钟(min)为单位),重量百分比轴404(以百分比为单位)和温度轴406(以℃为单位)来显示的。将该样品在30℃-600℃的空气中以10℃/分钟的速率加热,如沿着该第二响应410所示。该第一响应408代表了15.3%的总重量损失,其表示3a粉末已经在环境条件下吸附了15.3重量%的水。所吸附的水在280℃(例如25分钟乘以10℃/min加上30℃起始温度)从样品除去。

进一步的改进可以通过3a粉末中的h2o解吸附与500℃煅烧的3a/sio2侵入结构中的h2o吸附的比较来描述,其也预期是性能类似于泡沫几何形状结构。如下所示,表1将煅烧的3a/sio2(例如70:30w/w)结构的水吸附与图4的3a粉末上的响应408中的水解吸附结果进行了比较。

表1

在表1中,3a/sio2结构是70:30w/w的3a:sio2层状片。该结构在500℃煅烧来分解有机粘合剂和将3a和sio225nm颗粒一起烧结。在500℃煅烧方法之后将该3a/sio2层状片结构储存于120℃炉子中。该结构的3a组分预期没有吸附的水。该3a/sio2结构,其是1英寸d乘以2英寸长度,是在120℃从炉子称重的,并且它的重量,如表1所记录是20.560g,其具有20.560g总重量的70%,或者14.392g是3a组分。20.560g总重量的其余30%,或者6.168g是25nm直径的sio2粘合剂颗粒。

在称重了无水(h2o)的3a/sio2结构之后,将该结构在实验台上暴露于环境条件72小时。在暴露于环境条件72小时之后,重新称重该3a/sio2结构,并且它的重量是22.837g。该重量的增加是11.07%,其是从环境空气中吸附了2.217g水的结果。大部分的水仅仅能被3a/sio2结构的3a组分所吸附。当测定该结构的3a组分的水摄取时,它对应于15.4%重量增加。该重量增加类似于3a粉末中的15.3%重量损失,其归因于图4的响应408中的水解吸附。结果,3a/sio2层状片结构中的重量增加表示该结构中的3a组分是水分子可进入的。

例如,3a/sio2结构中的3a组分是多孔的。该3a结构的“窗口”或者孔具有3埃尺寸的开口。水分子直径是大约2.8埃,并且可以适合3a结构或者“吸附”到该3a结构内部。该sio2粘合剂是非多孔的。sio2球不具有孔和因此不将水吸附到它的结构中。水可以润湿sio2球的表面,但是水量可以是3a沸石(70wt%)/sio2(30wt%)结构所能够吸附的总水量的非常小的分数。因此,该3a沸石组分是3a/sio2复合结构中的吸附水的主要材料。tga(热重分析)测量了相对温度的重量损失。图4是仅仅3a沸石的tga分析。它显示了3a粉末失去了15.3%的重量,其归因于它在环境条件下所吸附的水的解吸。

从上面的实例,在3a沸石粉末上的该tga结果大约等于该实例中3a/sio2结构中15.4%重量增加,其归因于在环境条件下水的吸附。3a/sio2结构中几乎相同的tga解吸附(重量损失)结果和吸附(重量增加)结果表明该3a沸石组分是水可进入的。这些结果表明sio2粘合剂没有堵塞到3a晶体的通路。因此,该3a/sio2结构没有阻碍到3a组分的通路。

作为另一增强,还在该自支承性结构上进行了气体吸附穿透测试。使用气体吸附穿透单元(其称作natgas单元)来测量涂覆基材的气体吸附和穿透曲线。将已知重量的样品包裹来防止气体绕过,并且插入到气体吸附穿透单元中的管中。将该样品暴露于总共1000标准立方厘米/分钟(sccm)的气体流速,其包含300sccm的在25℃用h2o饱和的n2,100sccm的he和600sccm的n2。气体穿透是通过质谱来监控的。气体流动测量术语sccm表示在标准温度和压力的立方厘米/分钟(cm3/min)。

作为该测试的一部分,如上面在实例3a/sio2浆体制备中所述,配制了具有35wt%固体的含水浆体,其包含3a/sio2(70:30)和甲基纤维素(临时有机粘合剂)。将该浆体施涂到al2o3陶瓷整料上,其尺寸适于在气体吸附穿透单元中测试。该陶瓷整料上的洗涂层的组成类似于煅烧后的自支承性结构。因此,该3a/sio2洗涂的整料用作该自支承性泡沫结构的合适的替代品,和因此穿透结果应当是和预期是相当的。

在该测试中,900cpsi的al2o3整料的尺寸是0.5英寸直径乘以1英寸长度,30%壁孔隙率和55%开放正面。该整料的起始的未涂覆的重量是4.099g。该浆体的两个涂层是通过常规洗涂技术来施涂的,并且将样品干燥和煅烧到500℃。煅烧后的样品重量是4.893g。所形成的3a/sio2(25nm直径)洗涂的整料包含大约0.556g的3a吸附剂,并且是用于自支承性泡沫几何形状结构的配料的代表性样品。在穿透测试之前,将该3a/sio2涂覆的整料在150℃和100sccm氦气流中干燥12小时。

图5a和5b是穿透曲线的图500和520。该穿透曲线是相当尖锐的。在图5a中,he响应506和h2o响应508是沿着时间轴502(以分钟(min)为单位),相对质谱仪轴504(以计数/秒(c/s)为单位)相对于水来显示的。所估计的供水速率是5.48毫克(mg)/分钟(min)。所估计的穿透之前3a/sio2洗涂层中的0.55g的3a的吸附水的时间是25分钟(例如摄取完30分钟减去在摄取开始时5分钟)。响应506代表了空白轨迹(例如没有样品),其从干燥he吹扫的时间0到50分钟,和响应506是平的和接近于基线,这表示没有h2o的计数。然后,在50分钟后,所述阀切换来供给加湿的he。响应506垂直上升,如质谱仪显示增加的h2o计数/秒,直到在300分钟除去h2o。然后,响应506返回基线,这表示没有h2o的计数。响应508通过涂覆到al2o3陶瓷整料上的3a/sio2样品显示了类似的实验。如这个响应508所示,与空白样品的响应506相比,响应508升高花费了长了大约5分钟的时间,这表示h2o穿透通过h2o在3a组分中的吸附而被减慢,直到该样品达到水饱和和平衡。

在图5b中,he响应526和h2o响应528是沿着时间轴522(以分钟为单位)相对标准化浓度(c/co)中的h2o轴524的标准化分数浓度(fractionalconcentration)来显示的,其表示通过质谱仪作为时间轴522(以分钟(min)为单位)的函数来测量的h2o的标准化分数浓度。在这个图520中,3a吸附水大约25分钟,这表示3a吸附剂颗粒是可进入的,没有大的扩散阻力信号。响应526表示通过空的泡孔5分钟的干燥he吹扫,其是平的和接近于基线。一旦阀切换来供给加湿的he流,则所述质谱仪指示了he在时间0分钟的穿透。与之相比,响应528表示具有3a/sio2洗涂的陶瓷整料的样品泡孔,其响应于加湿的he流。响应528表示标准化的h2o浓度相对时间。因此,它表示花费了几分钟(例如大约25分钟),直到样品中的3a组分被h2o饱和,并且h2o的全浓度(fullconcentration)(100%)是通过质谱仪来指示的。

图5c和5d是转变供料对吹扫温度曲线的图540和560。在这个图540和560中,陶瓷整料热转变优于金属整料。该陶瓷材料应当表现类似于自支承的活性结构,其具有类似于陶瓷的低的热质量结构,并且应当表现出类似的热变优点。此外,本技术的自支承的结构由大部分的活性材料构成,其是变热材料。

在图540和560中,使用循环方法,其包括对于所述循环的每个供料和吹扫步骤,流体流动20秒。气体流速对于供料气体来说是14标准立方英尺/分钟(scfm)和对于吹扫气体来说是22scfm。将氮气用于供料和吹扫流,其是在整料或者吸附剂床的相反端引入的。该供料流处于环境温度,而吹扫流处于180℃。为了监控温度,使用快速响应热电偶来测量和存储所述温度,其具有第一热电偶(其布置来测量结构的供料气体入口侧的温度)和第二热电偶(其布置来测量供料气体的吹扫气体入口侧的温度)。

在图5c中,温度响应546和548是沿着时间轴542(以秒为单位,例如1秒数据记录)相对温度轴544(以℃为单位)来显示的。用作样品床的金属整料是三个0.75英寸直径乘以2英寸长度的样品,由不锈钢制成,并且泡孔密度大于1000个泡孔/平方英寸(cpsi),具有50微米厚的泡孔壁和3/8英寸直径的中心钢轴。该整料泡孔是用吸附剂薄层涂覆的,并且所述整料用纤维绝缘物包裹来防止气体绕过。将所形成的结构装入样品管中。具有用于金属整料的温度响应546和548的图540显示了在响应180℃吹扫气体和环境温度供料气体之间的温度转变时大约70℃的大的温度间隙。这表明所述金属整料将大量热吸收到结构中。

在图5d中,温度响应566和568是沿着时间轴562(以秒为单位)相对温度轴564(以℃为单位)来显示的。用作样品床的陶瓷整料包括0.75英寸直径和2英寸长度的整料,其由氧化铝陶瓷制成,并且泡孔密度是900cpsi,具有100微米厚的泡孔壁,没有中心轴。陶瓷整料是用纤维绝缘物包裹来防止气体绕过。将所形成的结构装入样品管中。具有用于氧化铝陶瓷整料的温度响应566和568的图560显示了在温度循环中的温度转变的温度变化小于金属整料,如图5c所示。用于陶瓷整料的响应566和568中的温度间隙在循环方法中是大约20℃。这表明该陶瓷整料与金属整料(如图5c所示)相比将更少的热吸收到结构中。

测试可以在该自支承性结构上进行。例如,可以进行环境空气暴露测试,其是一种被动测试。不存在将水加入到3a/sio2结构中的驱动力。它从空气中缓慢地吸附水,并且它受到相对湿度和温度(对其进行了测量)条件的影响。该测试输送了具有已知浓度的水的校正的气流(以sccm为单位),并且监控直到3a/sio2结构吸附的水达到它的能力的时间。存在监控从所述结构离开的气流的质谱仪。该质谱仪监控气体中的水相对时间。当检测到水时,其被称作“穿透”,其表示结构的3a组分在这些特定条件下用水饱和,并且不能吸附更多的水。

在某些构造中,本技术可以用于变吸附方法(例如快速循环方法)来除去供料流中的一种或多种污染物。具体地,本技术包括一个或多个吸附剂床单元来进行变吸附方法,或者包括吸附剂床单元组,其配置来进行一系列的变吸附方法。每个吸附剂床单元配置来进行特定的循环,其可以包括吸附步骤和再生步骤。作为实例,所述步骤可以包括一个或多个供料步骤,一个或多个减压步骤,一个或多个吹扫步骤,一个或多个再循环步骤和一个或多个再加压步骤。该吸附步骤可以包括将供料流送过该吸附剂床来从供料流中除去污染物。该再生步骤可以包括一个或多个吹扫步骤,一个或多个排料步骤,一个或多个加热步骤和/或一个或多个再加压步骤。

本技术还可以包括活性材料,其配置来在不同的运行条件下使用。例如,供料压力可以基于优选的吸附供料压力,其可以是400磅/平方英寸绝对压力(psia)-1400psia,或者600psia-1200psia。此外,吹扫压力可以基于销售的管线压力,其可以是400psia-1400psia或者600psia-1200psia。

作为实例,图6是变吸附系统600的三维图,其具有6个吸附剂床单元和互连管线。虽然这种构造是一个特定实例,但是本技术宽泛地涉及吸附剂床单元,其可以以对称取向或者非对称取向和/或多个硬件滑道的组合配置。此外,这种特定构造是用于示例性目的,因为其他构造可以包括不同数目的吸附剂床单元。在这种构造中,该吸附剂床单元可以包括自支承性结构。

在这种系统中,吸附剂床单元例如吸附剂床单元602可以配置用于循环变吸附方法,来从供料流(例如流体,气态或者液体)中除去污染物。例如,该吸附剂床单元602可以包括不同的管道(例如管道604)来管理流体穿过吸附剂床单元602内的吸附剂床,到其中或者从其中离开的流动。来自于该吸附剂床单元602的这些管道可以连接到集管(例如集管606)上来分配流体流到组件中,从其中离开或者在其之间的流动。该吸附剂床单元中的吸附剂床可以从供料流中分离一种或多种污染物来形成产物流。如可以理解的,该吸附剂床单元可以包括其他管道来控制作为所述方法一部分的其他流体流(steam),例如吹扫流,减压流等。此外,该吸附剂床单元还可以包括一个或多个均化容器例如均化容器608,其专门用于该吸附剂床单元和可以专门用于该变吸附方法的一个或多个步骤。

在某些构造中,该自支承性结构可以用于吸附剂床单元,其包括外壳,其可以包括头部和其他主体部分,其形成了基本上气密性的分区。该外壳可以包括位于该外壳内的自支承性结构(例如作为吸附剂床形成)和多个阀(例如提升阀),其提供了在外壳的内部区域和外壳的内部区域之外的位置之间穿过外壳中的开口的流体流路。每个提升阀可以包括圆盘元件(其可以坐落于头部中)或者圆盘元件(其可以坐落于头部中插入的单独的阀座(未示出)中)。该提升阀的构造可以是任何各种的提升阀类型的阀模式或者构造。作为实例,该吸附剂床单元可以包括一个或多个提升阀,每个与同不同流相关的不同管道流动连通。该提升阀可以在吸附剂床和各自的管道、集管或者汇管之一之间提供流体连通。术语“直接流动连通”或者“直接流体连通”表示直接流动连通,没有插入的阀或者其他闭合装置来阻碍流动。如可以理解的,在本技术范围内也可以想到其他变化。

该吸附剂床包含形成该自支承性结构的吸附剂材料,其能够从供料流中吸附一种或多种组分。这样的吸附剂材料被选择为是对于该吸附剂床单元中的物理和化学条件耐久的,并且可以包括金属,陶瓷或者其他材料,这取决于吸附方法。

在某些构造中,该变吸附系统,其包括该活性材料,可以加工这样的供料流,其主要包含烃以及一种或多种污染物。例如,该供料流可以是含烃流,其具有大于1体积百分比的烃,基于该供料流的总体积。此外,该供料流可以包含烃以及h2o,h2s和co2。作为实例,该流可以包含h2o作为所述的一种或多种污染物之一,并且该气态供料流可以包含50份/百万份(ppm)摩尔-1500ppm摩尔;或者500ppm-1500ppm摩尔的h2o。此外,该供料流可以包含烃和h2o,其中该h2o是所述的一种或多种污染物之一,并且该供料流包含2ppm摩尔到供料流中饱和水平的h2o。

另外,本技术可以提供吸附系统,其使用快速循环变吸附方法来从供料流中分离酸性气体污染物,例如从烃流中分离酸性气体。酸性气体除去技术可以用于表现出较高浓度的酸性气体的气体存储(例如酸性气体资源)。烃供料流的酸性气体的量是广泛变化的,例如从几份/百万份酸性气体到90体积%(vol%)酸性气体。来自于示例性气体储备的酸性气体浓度的非限制性实例包括至少下面的浓度:(a)1vol%h2s,5vol%co2,(b)1vol%h2s,15vol%co2,(c)1vol%h2s,60vol%co2,(d)15vol%h2s,15vol%co2,和(e)15vol%h2s,30vol%co2。因此,本技术可以包括将不同的污染物例如h2s和co2除去到所需的水平的设备。具体地,h2s可以降低到小于4ppm的水平,而co2可以降低到小于1.8摩尔百分比(%)的水平,或者优选小于50ppm。作为另一实例,该酸性气体除去系统可以除去co2到lng规格(例如小于或者等于50份/百万份体积(ppmv)co2)。

在某些构造中,该活性材料可以用于快速循环变吸附方法例如快速循环psa方法,来除去供料流中的湿气。特定水平可以与所需的输出产物的露点有关(例如水含量应当低于获得露点低于随后的方法中的流的最低温度所需的水含量,并且与供料压力有关)。作为第一近似值,并且不考虑作为压力的函数的逸度校正,水浓度(以ppm为单位,其产生了某一露点)是与压力成反比变化的。例如,来自于该吸附剂床的输出流可以配置为低温加工供料流,其满足低温加工规格(例如对于天然气液化(ngl)方法是大约-150°f(-101.1℃)露点或者对于受控的冷冻区(cfz)方法是大约-60°f(-51.1℃)。该低温加工供料流规格可以包括流(例如来自于吸附剂床的输出流或者到低温加工的供料流)中的水含量是0.0ppm-10ppm,0.0ppm-5.0ppm,0.0ppm-2.0ppm,或者0.0ppm-1.0ppm。在吹扫步骤过程中来自于该吸附剂床的所形成的输出流可以在该流体中包括0.0ppm-7磅/标准立方英尺(lb/mscf)的水含量。

在一种或多种实施方案中,本技术可以用于任何类型的变吸附方法。本技术可以用于其的非限制性变吸附方法可以包括变压吸附(psa),真空变压吸附(vpsa),变温吸附(tsa),部分变压吸附(ppsa),快速循环变压吸附(rcpsa),快速循环变热吸附(rctsa),快速循环部分变压吸附(rcppsa)以及这些方法的组合,例如变压和/或变温吸附。示例性动态变吸附方法描述在美国专利申请公开no.2008/0282892,2008/0282887,2008/0282886,2008/0282885,2008/0282884,2014/0013955,2017/0056810,2017/0056813,2017/0056814和2017/0056815中,其每个通过引用整体并入本文。然而,快速循环可以优选用于加工所述流。然而,该自支承性结构可以优选与快速循环变吸附方法一起使用。

此外,在所述系统的某些构造中,本技术可以包括特定的工艺流程以在变吸附系统中除去污染物例如水(h2o)或者酸性气体。例如,该方法可以包括吸附剂步骤和再生步骤,其形成所述循环。该吸附剂步骤可以包括将供料流在供料压力和供料温度送过具有活性材料结构的吸附剂床单元来从供料流中分离一种或多种污染物来形成产物流。该供料流可以在向前方向上(例如从吸附剂床的供料端到吸附剂床的产物端)送过该吸附剂床。然后,可以中断该供料流的流动来用于再生步骤。该再生步骤可以包括一个或多个减压步骤,一个或多个吹扫步骤和/或一个或多个再加压步骤。该减压步骤可以包括对于每个连续的减压步骤将吸附剂床单元的压力下降预定的量,其可以是单个步骤和/或可以是排料步骤。该减压步骤可以提供在向前方向上或者可以优选提供在逆流方向上(例如从该吸附剂床的产物端到吸附剂床的供料端)。该吹扫步骤可以包括将吹扫流送入该吸附剂床单元,其可以是单程吹扫步骤,并且该吹扫流可以相对于供料流逆流提供。来自于吹扫步骤的吹扫产物流可以导离和再循环到另一系统或者在所述系统中再循环。然后,可以进行一个或多个再加压步骤,其中使用每个连续的再加压步骤,该吸附剂床单元内的压力随着每个再加压步骤而增加预定量。然后,该循环可以重复来用于另外的供料流和/或该循环可以调节来进行用于第二构造的不同的循环。该循环持续时间可以是大于1秒到小于600秒的时间,大于2秒到小于300秒的时间,大于2秒到小于200秒的时间或者大于2秒到小于90秒的时间。

此外,本技术可以整合到不同的构造中,其可以包括用于流的各种组合物。上述的吸附性分离方法、设备和系统可用于开发和生产烃,例如天然气和石油加工。具体地,所提供的方法、设备和系统可用于从气体混合物中快速的、大规模的有效分离各种目标气体。具体地,该方法、设备和系统可以用于通过除去污染物和重质烃(例如具有至少2个碳原子的烃)来制备供料产物(例如天然气产物)。所提供的方法、设备和系统可用于制备公共事业所用的气态供料流,包括分离应用。该分离应用可以包括露点控制;脱硫和/或解毒;腐蚀保护和/或控制;脱水;热值;调节;和/或纯化。使用一种或多种分离应用的公用事业的实例包括产生燃气;密封气体;非饮用水;填充气;仪器和控制气体;制冷剂;惰性气体;和/或烃回收。

为了提供穿过吸附剂床单元中的自支承性结构的流体流路,阀组件可以包括提升阀,其每个可以包括连接到主杆元件上的圆盘元件,其可以置于衬套或者阀导向器内。该主杆元件可以连接到致动装置,例如这样的致动装置,其配置来具有各自的阀,来将线性运动赋予各自的主杆。如可以理解的,该致动装置可以对于所述方法的不同步骤独立运行,来启动单个阀,或者单个致动装置可以用于控制两个或者更多个阀。此外,虽然开口尺寸可以是基本上类似的,但是用于入口集管的开口和入口阀的直径可以小于用于出口集管的那些,给定穿过入口的气体体积会倾向于低于穿过出口的产物体积。此外,虽然这种构造具有阀组件,但是阀的数目和运行可以基于要进行的特定循环而变化(例如阀数目可变)。

在在一种或多种实施方案中,该快速循环变吸附方法(其使用了本技术的自支承性结构)可以包括快速循环变温吸附(rctsa)和/或快速循环变压吸附(rcpsa)。例如,总循环时间可以小于600秒,小于300秒,优选小于200秒,更优选小于90秒,和甚至更优选小于60秒。

鉴于所公开的本发明的原理可以适用的许多可能的实施方案,应当理解所述示例性实施方案仅仅是本发明优选的实例,并且不应当用于限制本发明的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1