一种低温CO-SCR脱硝Fe-Ce/AC催化剂及其制备方法与应用

文档序号:26142181发布日期:2021-08-03 14:26阅读:116来源:国知局
一种低温CO-SCR脱硝Fe-Ce/AC催化剂及其制备方法与应用

本发明涉及一种低温co-scr脱硝fe-ce/ac催化剂及其制备方法与应用,属于烟气净化技术领域。



背景技术:

氮氧化物(nox)是主要大气污染物,是形成酸雨、破坏臭氧、产生温室效应、制造光化学烟雾和雾霾的原因之一,其大量排放会对人体健康和生态环境造成严重危害。目前,选择性催化还原(scr)脱硝是治理nox的主流技术,其核心是催化剂研发,且以v2o5-wo3(moo3)/tio2为主,脱硝温度窗口范围为300~400℃,具有较高脱硝率,但该技术无法直接应用于低温烟气,且存在氨逃逸、催化剂易中毒、管道腐蚀等问题。因此有必要寻找一种更经济、长效、环保的低温脱硝技术代替nh3-scr。



技术实现要素:

本发明针对现有烟气脱硝技术中nh3-scr工艺存在的问题,提供一种低温co-scr脱硝fe-ce/ac催化剂及其制备方法与应用。活性炭因其材质不同所具有的表面物理化学性质也不同,导致所制备的催化剂性能存在较大差异。本发明以廉价的椰壳活性炭为载体,采用五价钒为主的钒氧化物作为活性组元,实现以co为还原剂,在低温条件下对nox脱除;可解决现有烟气脱硝nh3-scr催化剂在低温条件下脱硝率不高、孔道易堵塞、易被烟气中的重金属、碱土金属等物质毒化问题。

一种低温co-scr脱硝fe-ce/ac催化剂,包括硝酸活化的椰壳活性炭载体、ceox和feoy的复合金属氧化物活性组元,其中ce元素和fe元素的质量与椰壳活性炭质量比为3.62~4.73%;若ce和fe元素质量比过大,金属活性组元会发生团聚现象导致活性炭孔道堵塞和活性位点被覆盖,引起活性位点不足导致催化剂脱硝活性降低;

所述低温co-scr脱硝fe-ce/ac催化剂的制备方法,具体步骤如下:

(1)将椰壳活性炭加入到去离子水中,在温度为60~80℃下超声处理2~3h,过滤干燥,然后再加入到硝酸溶液中,在温度为60~80℃下活化2~3h,经去离子水洗涤至中性,鼓风干燥,即得活性炭载体ac;

(2)将步骤(1)活性炭载体ac加入到硝酸铈和硝酸铁混合溶液中浸渍,再在温度为60~80℃下超声处理2~3h,固液分离,固体经温度为100~110℃、空气氛围下干燥12~24h得到fe-ce/ac催化剂前驱体;

(3)在氮气保护下,将步骤(2)fe-ce/ac催化剂前驱体置于温度为400~500℃下焙烧4~5h得到低温co-scr脱硝fe-ce/ac催化剂;

所述步骤(1)硝酸溶液浓度为3.5~4.5mol/l;

所述椰壳活性炭载体的粒径为10~20目;

以活性炭载体ac质量为100%计,步骤(2)ce元素和fe元素的质量与椰壳活性炭的质量比为3.62~4.73%,ce元素与fe元素的摩尔比为3~9:1;

所述fe-ce/ac催化剂作为低温催化剂在烟气脱除nox中的应用:co为还原剂,催化温度为100~220℃;co为还原剂,催化温度为100~220℃;采用co作为还原气体,还可解决传统还原剂nh3易逃逸问题。

本发明椰壳活性炭采用硝酸活化,可大幅改善椰壳活性炭表面官能团,增大比表面积,改善活性炭内部孔容孔径;超声浸渍方法,可有效保证催化剂表面fe、ce金属活性组元分散性,有效减少钒氧化物群聚现象,从而确保其具有脱硝活性高、氮选择性好等特点;将浸渍后活性炭在n2气氛保护下进行焙烧使铈由ce2+转变为ce4+为主,铁由fe2+变为fe3+为主,形成ce4+和fe3+为主的复合氧化物。

本发明的有益效果是:

(1)本发明以廉价的椰壳活性炭为载体,采用fe和ce的复合氧化物作为活性组元,实现以co为还原剂,在低温条件下对nox脱除;可解决现有烟气脱硝中nh3-scr催化剂在低温条件下脱硝率不高、孔道易堵塞、易中毒等问题;

(2)本发明低温co-scr脱硝fe-ce/ac催化剂具有较高脱硝效率和良好氮选择性,在催化温度100~220℃下,nox的转化率可达到90%;

(3)本发明采用硝酸活化椰壳活性炭,改善椰壳活性炭表面活性官能团,增大比表面积,改善活性炭内部孔容孔径;ac载体经硝酸法活化与超声浸渍活性成分,可大幅提高fe-ce/ac催化剂表面fe-ce复合氧化物的分散性;

(4)本发明采用co代替传统nh3作为还原气体,可解决nh3易逃逸、造成管道阻塞、污染环境等问题,也可避免nh3与烟气中的so3反应生成硫酸铵盐腐蚀下游设备等问题。

附图说明

图1为实施例1的3fe-ce/ac催化剂sem图;

图2为实施例2的6fe-ce/ac催化剂sem图;

图3为实施例3的9fe-ce/ac催化剂sem图;

图4为不同fe-ce负载量催化剂xrd图;

图5为不同fe-ce负载量催化剂ftir图;

图6为不同fe-ce负载量催化剂脱硝率图。

具体实施方式

下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。

实施例1:本实施例低温co-scr脱硝3fe-ce/ac催化剂包括经硝酸活化法活化的椰壳活性炭载体,ceox和feoy复合金属氧化物活性组元,其中fe-ce/ac催化剂中fe元素和ce元素的质量与椰壳活性炭的质量比为3.62~4.73%,ce元素与fe元素的摩尔比为3:1,记为3fe-ce/ac,椰壳活性炭载体粒径为10~20目;

一种低温co-scr脱硝3fe-ce/ac催化剂的制备方法,具体步骤如下:

(1)将椰壳活性炭加入到去离子水中,在温度为80℃下超声处理2h,过滤,固体在温度110℃干燥12h,然后再加入到硝酸溶液中,在温度为80℃下活化2h,经去离子水洗涤至中性,鼓风干燥,即得活性炭载体ac;

(2)将步骤(1)活性炭载体ac加入到硝酸铈和硝酸铁混合溶液中等体积浸渍,其中硝酸铈溶液浓度为0.0478mol/l、硝酸铁溶液浓度为0.00847mol/l,ce元素与fe元素的摩尔比为3:1;再在温度为80℃下超声处理2h,固液分离,固体经温度为110℃、空气氛围下干燥12h得到3fe-ce/ac催化剂前驱体;

(3)在氮气保护下,将步骤(2)3fe-ce/ac催化剂前驱体以15℃/min的升温速率加热至温度为500℃下焙烧4h得到低温co-scr脱硝的3fe-ce/ac催化剂;

本实施例3fe-ce/ac催化剂的sem表征如图1所示,可看出,负载3.62%(ce元素与fe元素的摩尔比为3:1)的fe-ce后活性炭依然保持基体孔径结构,在活性炭基体表面附着fe-ce复合金属氧化物,且有少量团聚现象,少量fe-ce复合氧化物覆盖了活性炭表面结构;

本实施例3fe-ce/ac催化剂的比表面积、孔容、孔径参数如表1所示,从表1可知,3fe-ce/ac催化剂的比表面积为761.458m2/g、孔容为3.800cm3/g,可使催化剂具有较强吸附能力;孔径为1.996nm,属于典型微孔结构;

本实施例3fe-ce/ac催化剂的xrd表征如图4所示,3fe-ce/ac催化剂表面可观察到fe和ce的复合氧化物,分析表明:fe和ce的前驱体和ac表面官能团相互作用使fe离子和ce离子易同时迁移到ac孔内,减缓fe和ce复合氧化物在ac表面凝集长大,提高了fe-ce复合氧化物活性组元在ac上的分散性;且各个角度下的峰并不尖锐,说明3fe-ce/ac催化剂表面金属活性组元负载相对较分散,负载较好;

本实施例3fe-ce/ac催化剂的ftir表征如图5所示,3fe-ce/ac催化剂在3438cm-1处为酚羟基的o-h键伸缩振动吸收峰;在1649cm-1处的峰对应醌基c=o键吸收峰;在1404cm-1处的峰对应羰基吸收峰,且羰基中含有c=o键使其具有较强极性;在1022cm-1处的峰对应羰基、羧基、酚基c-oh伸缩振动、醚基c-o和c=o键伸缩振动吸收峰。丰富的官能团能够提供更多活性吸附位,从而提高3fe-ce/ac催化剂低温脱硝活性;

将本实施例所制备的3fe-ce/ac催化剂,置于固定床脱硝反应器中,在100~220℃范围内进行脱硝,催化剂装填量为10g;脱硝实验开始前先用n2通入固定床反应器进行原位冲洗,排出反应器内其他气体;

模拟烟气成分:no为3.2ml/min、co为4ml/min、o2为120ml/min、n2为平衡气体且流量为800ml/min。各气体混合后送入固定床反应器,在催化剂作用下,co将no还原成n2;反应后的气体经碱性溶液吸收未反应的no、co后排入大气;固定床反应器评价装置进、出口nox浓度采用德国德图仪器公司testo-340烟气分析仪进行检测,脱硝转化率采用如下公式进行计算:

式中,cin为进气口nox浓度,ppm;cout为出气口nox浓度,ppm;

100~220℃范围内,3fe-ce/ac催化剂的脱硝率曲线如图6所示,3fe-ce/ac催化剂在温度较低的100℃条件下,即具有较高脱硝率(90%左右),由于催化剂用量较少,因此随温度升高,脱硝率衰减较大。

实施例2:本实施例低温co-scr脱硝6fe-ce/ac催化剂包括经硝酸活化法活化的椰壳活性炭载体,ceox和feoy复合金属氧化物活性组元,其中6fe-ce/ac催化剂中fe元素和ce元素的质量与椰壳活性炭的质量比为4.12%,ce元素与fe元素的摩尔比为6:1,记为6fe-ce/ac,椰壳活性炭载体粒径为10~20目;

一种低温co-scr脱硝6fe-ce/ac催化剂的制备方法,具体步骤如下:

(1)将椰壳活性炭加入到去离子水中,在温度为75℃下超声处理2.5h,过滤,固体在温度105℃干燥18h,然后再加入到硝酸溶液中,在温度为75℃下活化2.5h,经去离子水洗涤至中性,鼓风干燥,即得活性炭载体ac;

(2)将步骤(1)活性炭载体ac加入到硝酸铈和硝酸铁的混合溶液中等体积浸渍,其中硝酸铈溶液浓度为0.0478mol/l、硝酸铁溶液浓度为0.0167mol/l,ce元素与fe元素的摩尔比为6:1;再在温度为75℃下超声处理2.5h,固液分离,固体经温度为105℃、空气氛围下干燥18h得到6fe-ce/ac催化剂前驱体;

(3)在氮气保护下,将步骤(2)6fe-ce/ac催化剂前驱体以10℃/min的升温速率加热至温度为450℃下焙烧4.5h得到低温co-scr脱硝的6fe-ce/ac催化剂;

本实施例6fe-ce/ac催化剂的sem表征如图2所示,可看出,负载4.12%(ce元素与fe元素的摩尔比为6:1)的fe-ce后活性炭依然保持基体孔径结构,金属氧化物在活性炭基体表面构建出新型复合结构,呈现出大小不一的团聚现象,各金属氧化物主要成类球状;

本实施例6fe-ce/ac催化剂的比表面积、孔容、孔径参数如表1所示,从表1可知,6fe-ce/ac催化剂的比表面积高达792.931m2/g、孔容为4.003cm3/g,可进一步增强催化剂吸附能力;平均孔径为2.019nm,可知其主要为微孔结构;

本实施例6fe-ce/ac催化剂的xrd表征如图4所示,6fe-ce/ac催化剂表面可观察到fe和ce的复合氧化物,分析表明:fe和ce的前驱体和ac表面官能团相互作用使fe离子和ce离子易同时迁移到ac孔内,减缓fe和ce复合氧化物在ac表面凝集长大,提高了fe-ce复合氧化物活性组元在ac上的分散性;

本实施例6fe-ce/ac催化剂的ftir表征如图5所示,6fe-ce/ac催化剂在3434cm-1处为酚羟基的o-h键伸缩振动吸收峰;在1638cm-1处的峰对应醌基c=o键吸收峰;在1400cm-1处的峰对应羰基吸收峰,且羰基中含有c=o键使其具有较强极性;在1033cm-1处的峰对应羰基、羧基、酚基c-oh伸缩振动、醚基c-o和c=o键伸缩振动吸收峰;丰富的官能团能够提供更多活性吸附位,从而提高低温脱硝活性;

6fe-ce/ac催化剂的催化活性测试,设置模拟烟气成分和脱硝率计算方法同实施例1,在100~220℃范围内,6fe-ce/ac催化剂的脱硝率曲线如图6所示,由图6可知,催化剂初始阶段脱硝率可达近70%;随温度升高,其脱硝率同样有所衰减。

实施例3:本实施例低温co-scr脱硝9fe-ce/ac催化剂包括经硝酸活化法活化的椰壳活性炭载体,ceox和feoy复合金属氧化物活性组元,其中9fe-ce/ac催化剂中fe元素和ce元素的总量与椰壳活性炭的质量比为4.73%,ce元素与fe元素的摩尔比为9:1,记为9fe-ce/ac,椰壳活性炭载体粒径为10~20目;

一种低温co-scr脱硝9fe-ce/ac催化剂的制备方法,具体步骤如下:

(1)将椰壳活性炭加入到去离子水中,在温度为60℃下超声处理3h,过滤,固体在温度100℃干燥24h,然后再加入到硝酸溶液中,在温度为60℃下活化3h,经氢氧化钠溶液和去离子水洗涤至中性,真空干燥,破碎即得活性炭载体ac;

(2)将步骤(1)活性炭载体ac加入到硝酸铈和硝酸铁的混合溶液中等体积浸渍,其中硝酸铈溶液浓度为0.0478mol/l、硝酸铁溶液浓度为0.0267mol/l,ce元素与fe元素的摩尔比为9:1;再在温度为60℃下超声处理3h,固液分离,固体经温度为100℃、空气氛围下干燥24h得到9fe-ce/ac催化剂前驱体;

(3)在氮气保护下,将步骤(2)9fe-ce/ac催化剂前驱体以12℃/min的升温速率加热至温度为400℃下焙烧5h得到低温co-scr脱硝的9fe-ce/ac催化剂;

本实施例9fe-ce/ac催化剂的sem表征如图3所示,可看出,负载4.73%(ce元素与fe元素的摩尔比为9:1)的fe-ce后活性炭依然保持基体孔径结构,金属氧化物在活性炭基体表面构建出新型结构,呈现出大小不一的团聚现象,各金属氧化物主要成类球状;

本实施例9fe-ce/ac催化剂的比表面积、孔容、孔径参数如表1所示,

表1fe-ce/ac系列催化剂孔隙结构参数

从表1可知,9fe-ce/ac催化剂的比表面积为783.332m2/g、孔容为4.045cm3/g,可进一步增强催化剂吸附能力;平均孔径为2.065nm,可知其主要为微孔结构;

本实施例9fe-ce/ac催化剂的xrd表征如图4所示,9fe-ce/ac催化剂表面可观察到fe和ce的复合氧化物,分析表明:fe和ce的前驱体和ac表面官能团相互作用使fe离子和ce离子易同时迁移到ac孔内,减缓fe和ce复合氧化物在ac表面凝集长大,提高了fe-ce复合氧化物活性组元在ac上的分散性;ce与fe摩尔比增加到9后,催化剂表面能够附着上更多ce氧化物;

本实施例9fe-ce/ac催化剂的ftir表征如图5所示,9fe-ce/ac催化剂在3422cm-1处为酚羟基的o-h键伸缩振动吸收峰;在1638cm-1处的峰对应醌基c=o键吸收峰;在1394cm-1处的峰对应羰基吸收峰,且羰基中含有c=o键使其具有较强极性;在1022cm-1处的峰对应羰基、羧基、酚基c-oh伸缩振动、醚基c-o和c=o键伸缩振动吸收峰;丰富的官能团能够提供更多的活性吸附位,从而提高低温脱硝活性;

9fe-ce/ac催化剂的催化性能测试,设置模拟烟气成分和脱硝率计算方法同实施例1,在100~220℃范围内,9fe-ce/ac催化剂的脱硝率曲线如图6所示,由图6可知,催化剂初始阶段脱硝率可高达近80%;随着温度升高,其脱硝率同样有所衰减。

上面对本发明的具体实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1