空气净化的制作方法

文档序号:5013856阅读:253来源:国知局
专利名称:空气净化的制作方法
技术领域
本发明涉及在低温空气分离之前将水、二氧化碳和一氧化二氮从空气流中的去除。
低温空气分离需要将高沸点和有害物质除去的预净化步骤。主要的高沸点空气组分包括水和二氧化碳。如果不能实现将这些杂质从环境的空气进料中除去,那末水和二氧化碳将在分离过程的冷区例如热交换器和液态氧(LOX)贮槽中发生结冰。这将引起压力下降、流量改变和操作发生问题。也需要除去各种有害的物质,其中包括乙炔和其它的烃。高沸点烃是一个问题,因为它们会浓集在塔的LOX段,最终造成了潜在的爆炸危险。
众所周知,氮的氧化物也应该除去。一氧化二氮N2O是空气的微量组分,它在环境空气中的存在量是约0.3ppm。它具有类似于二氧化碳的物理特性,因此由于在低温蒸馏设备的塔和热交换器中固体物的形成,一氧化二氮会引起潜在的操作问题。此外,已知一氧化二氮会增强有机物的燃烧作用,具有冲击敏感性。因此,一氧化二氮也会对安全构成成胁。乙烯是空气中的另一个杂质,在低温空气分离之前,需要除去它。
空气的预净化一般是利用吸附净化法进行的。这些方法可以利用US-A-4541851和5137548中描述的变温吸附(TSA)或US-A-5232474描述的变压吸附(PSA)进行操作。
Wenning(U.Wenning,“空气分离装置中的一氧化二氮”,MUST96会志,79-89页描述了二氧化碳如何能够将已经吸附的一氧化二氮从沸石吸附剂中置换出来的情况,在浓度高于环境空气中的浓度时会引起一氧化二氮的穿透。
尽管对这个问题未能给出解决方案,但是Wenning还是指出,以后需要寻找对一氧化二氮更合适的吸附剂。
US-A-4933158提出,对于从NF3中吸附一氧化二氮、二氧化碳和N2F2,各种天然沸石可能优于人造沸石。
EP-A-0284850公开了在空气分离之前,使用多价阳离子交换沸石来从空气中除去水和二氧化碳的情况。虽然未提供具体数据,但也提到能够除去其它的杂质,其中包括氮的氧化物和各类烯烃。在本发明的优选实施中,多价阳离子是钡或锶,它特别具有大于Ca2+的离子半径。可是已经表明,钙虽不是优选的,但还可以使用它。沸石本身可以是13X。由多价阳离子交换沸石的使用所获得的好处是,在低温再生期间可以除水。因此,使用多价阳离子交换沸石吸附水将是非常关键的。
使用多价阳离子交换沸石的另一个陈述的优点是,据称这类沸石能够吸附较多的二氧化碳。因此,坦率地说,是打算使用阳离子交换沸石来吸附二氧化碳以及水。Ca交换13X沸石吸附一氧化二氮的程度没有具体公开。
与二氧化碳相比,吸附剂所显示的对一氧化二氮的选择性可以按两种气体在30℃时的亨利定律常数(起始的等温线斜率)之比来表示。对于13X沸石,我们发现其比值约是0.39。
我们现在已经发现,某些吸附剂对于一氧化二氮的选择性显著地大于对于二氧化碳的选择性。
本发明现在提供了在使富氮气流和/或富氧气流分离的低温蒸馏空气流之前从空气进料流中除去水、二氧化碳、一氧化二氮以及任选地除去乙烯的方法,该方法包括使所述的含有水、二氧化碳和一氧化二氮的空气进料流通过第一吸附剂以吸附水,通过第二吸附剂以除去二氧化碳,和通过第三吸附剂以除去所述的一氧化二氮和任选地从空气进料中除去所述的乙烯。
除水吸附剂(第一吸附剂)和除二氧化碳吸附剂(第二吸附剂)的材料可以相同,可以是单个吸附剂床的上游部分和下游部分。可是除去一氧化二氮和任选地除去乙烯的第三吸附剂无论如何在特性上需要与第一吸附剂和第二吸附剂有区别。
所述的三个吸附剂优选地利用TSA法进行再生。当使用第二组三个吸附剂继续进行净化过程时,优选地定期进行再生,每一组的三个吸附剂在净化过程中都是在线的,并交替地进行再生。
第一除水吸附剂优选含有标准的干燥剂,其中包括活性氧化铝、浸渍氧化铝、硅胶或A型或X型沸石。
所述的第二吸附剂优选含有浸渍氧化铝、浸渍复合的氧化铝/沸石,或A或X型沸石,尤其是13X(NaX)型沸石。
浸渍氧化铝可以是如US-A-5656064所述,其中通过用pH至少为9的碱性溶液例如KHCO3溶液浸渍原料氧化铝,和在足够低的可避免浸渍剂化合物分解为吸附CO2形态的温度下(例如低于200℃),以该化合物在预定的再生条件下不再生的方式进行干燥,可以增加浸渍氧化铝去除CO2的能力。
根据公式 pH≥ZPC-1.4或更优选地ZPC+2≥pH≥ZPC-1.4浸渍溶液的pH与氧化铝的零点电荷(ZPC)有关。
浸渍剂优选为碱金属氢氧化物或氢氧化铵,碳酸盐,碳酸氢盐,磷酸盐或有机酸盐。
所述的第三吸附剂与二氧化碳相比,对于一氧化二氮的亨利定律选择性在30℃时为0.5或大于0.5,更优选地所述选择性至少为0.9。
此外,第三吸附剂的一氧化二氮的吸附亨利定律常数优选地至少是79毫摩尔/克/原子,更优选地至少是500毫摩尔/克/原子,最优选地至少是1000毫摩尔/克/原子。
所述的第三吸附剂优选地是钙交换X沸石。第三吸附剂最优选地是非粘结的钙交换X沸石。
典型地第三层吸附剂是这样的,它对水的吸附在TSA空气净化过程中是不利的。钙交换X吸附剂对于水的暴露是很敏感的。经水暴露之后,即使在很高温度下再生,钙交换X吸附剂对于象二氧化碳或一氧化二氮这样的气体分子显示出容量下降。因此,第二吸附剂应是一种对水敏感性小于钙交换X型沸石的物质。
我们已经测量了若干吸附剂对一氧化二氮和二氧化碳的亨利定律常数。下表1列出了亨利定律常数和亨利定律选择性(亨利定律常数比)。
表1<
可以看出CaX,BaX,Na-丝光沸石和非粘结CaX都满足上述给定的要求,但是钙交换并非总能改进性能。钙交换丝光沸石不及钠-丝光沸石适合。也可以看出,上述的材料与空气的TSA预净化常用的材料13X和5A相比,都具有较高的一氧化二氮/二氧化碳的选择性和较高的一氧化二氮的亨利定律常数。
直到第二吸附剂吸附二氧化碳的容量用尽为止,吸附空气流所含的一氧化二氮所需的第三吸附剂的量优选地不大于150%。
本发明包括空气分离方法,该方法包括从空气进料流中除去水、二氧化碳、一氧化二氮和任选地乙烯,是使含水、二氧化碳、乙烯如果存在和一氧化二氮的所述空气进料流通过第一吸附剂吸附所述水,通过第二吸附剂除去二氧化碳,通过其量足以从所述空气进料流中除去所述一氧化二氮和任选地除去乙烯的第三吸附剂,和进行净化空气流的低温蒸馏,以使富氮气流和/或富氧气流分离。
本发明还包括在使富氮气流和/或富氧气流分离进行空气流低温蒸馏之前从空气进料流中除去水、二氧化碳、一氧化二氮、和任选地除去乙烯的设备,该设备以流体串联连接方式包括第一吸附剂以吸附所述水、第二吸附剂以除去二氧化碳、和第三吸附剂从所述空气流中除去所述一氧化二氮和任选地除去乙烯。
本发明还包括空气分离设备,该设备包括净化装置和低温空气分离装置,该净化装置以流体串联方式包括第一吸附剂以吸附水、第二吸附剂以除去二氧化碳、和第三吸附剂从所述空气流中除去所述一氧化二氮和任选地除去乙烯,该低温空气分离装置用以在所述净化装置中除去水、二氧化碳和一氧化二氮之后,使所述空气进料流中的氮气与氧气分离。
空气进料的温度可以是5-40℃,而进料的压力是2-15大气压。典型的再生温度是80-400℃。再生气可以由N2、O2、CH4、H2、Ar、He、空气和它们的混合物组成。合适的再生压力是0.1-20巴。在典型的优选实施方案中,再生流由产品N2或更合乎需要的由N2装置的废流出物(60%O2/40%N2)组成。
下面将参照附图,根据下列优选实施方案的说明,进一步阐述本发明、附图中

图1是根据本发明的第一个实施方案所使用的设备流程图;图2表示了CO2和N2O穿透13X沸石的曲线图;和图3表示了CO2和N2O穿透CaX沸石的曲线图。
如图1所示,根据本发明使用的设备包括通往主空气压缩机12的空气流的入口10。主空气压缩机12产生的压缩空气送往冷却器14,其中存在的一些水被冷凝,经由排水阀16排出。
冷却的部分干燥的空气经管线17送往设备的净化段,在所例示说明的情况下,设备的净化段利用TSA进行操作。应当理解,设备的这一段可以设计成利用本领域熟知的TSA任何的变型进行操作。
空气由管线17接入含有阀20、22的进气支管18,阀门20和22使管线17和支管1 8与容器24、26相连。阀20、22,支管的下游包含桥管线28,桥管线28含有阀30、32,利用阀30、32,容器24、26可以分别与废气管线34的放空管相连。
容器24、26的下游端与含有阀门36、38的出口支管相连,利用阀36和38两个容器各自与产物出口管线40相连。阀36、38的上游支管包括桥管线42,桥管线含有阀44、46,利用阀44、46两个容器可以分别与清洗气体源管线48相连,管线48由清洗气体源引出,经压缩机50和加热器52与阀44和46之间桥管42相连。清洗气体源可以适合地来自所示设备中由净化空气分离出,然后进行低温蒸馏的氮气或者来自进行低温蒸馏之前例示说明的设备中的净化空气。
在图1的容器24和26的每个容器内,都有三层所述的吸附剂。前两层是常用的水吸附剂24a、26a,和二氧化碳吸附剂24b、26b。这些吸附剂适合地分别是活性氧化铝和13X沸石。但是,也可以使用适合的本领域已知的吸附剂或除水和除二氧化碳的吸附剂,并且这两层也可以合并成单一的一层吸附剂。
所列举的第三层是Ca交换X沸石24c、26c。
当容器24或26工作时,水逐渐地吸附在第一层活性氧化铝的吸附剂中。水的前沿将逐渐地经过吸附剂床,由吸附剂的入口端到出口端。充当第二层吸附剂作用的13X沸石地起着防止水穿透第一层吸附剂的作用,和起着吸附二氧化碳的作用。又二氧化碳的前沿将逐渐地经过第二层吸附剂床。一氧化二氮一开始也将吸附在第二层吸附剂上,但是由于被吸附的二氧化碳的前沿的前移,而连续地被置换通过第二吸附剂床。至此已通过容器的空气所累积的一氧化二氮的内容物将从第二吸附剂被置换出,和将进入Ca交换X沸石的第三吸附剂床。此时,将使所述容器再生,并使其它容器在线使用。
因此,第二吸附剂将用于防止Ca交换X沸石不受到水的污染,水的污染将有破坏效应,因为CaX是对水是敏感的。
第二吸附剂也缓解了担负二氧化碳吸附任务的CaX层,因此,当第二吸附剂的二氧化碳的吸附容量将要用完时,CaX层就需要不大于吸附同样多原料空气的一氧化二氮内容物所需的。将CaX层的尺寸减小到最小是合乎需要的,因为CaX对氮显示的吸附热大13X,在富氮气体增压后,13X的吸附热将不会传到下游低温空气蒸馏过程中。因此,仅仅使用一小段CaX沸石就可以使进料步骤开始时离开吸附床的温度的脉动减低到最小。这可以使下游低温段运行更加平稳。
因此,根据本发明所使用的三层结构,在各吸附剂之间发生以前未知的协同效应,即第二层可以用于保护第三层不发生水穿透过第一层和避免使过度的吸附热传到下游的第三层中的二氧化碳吸附。
图2表示在25℃,100psig下用13X沸石获得的穿透曲线,空气进料含CO2400ppm和N2O 10ppm。数据是在直径1英寸(2.54cm)长6英尺(183cm)的塔内获得的。在实验之前,沸石在200℃的N2气流中进行再生。结果清楚表明,N2O远在CO2之前出现穿透。因为13X对于前端空气预净化是一个工业标准,所以由此可知,如果预净化装置运行到CO2发生穿透,那么大量的N2O将穿过吸附剂床,终止在低温系统中的浓缩液氧中。这个结果与上面引用的Wenning文章所表示的结果相似。图3表示了相同的实验,但是这时使用了非粘结CaX沸石作为吸附剂。令人惊异的是,这时N2O和CO2实质上是在相同的时间发生穿透。
因此,根据本发明,二氧化碳在第二吸附剂层13X的吸附可以连续进行达到该吸附层的容量为止。这将导致如图2所示一氧化二氮离开吸附层的脉冲,接着基本上是空气中环境水平的一氧化二氮离开了第二吸附剂。这将被第三吸附剂的CaX层所吸附,如果不是过程连续进行到第三吸附剂不仅开始吸附二氧化碳(这意味着与预定的操作参数相背离)而且继续吸附二氧化碳直到第三吸附剂也发生二氧化碳的穿透的程度,那末不会出现一氧化二氮从第三吸附剂的穿透。
实例在一个直径约6英寸(15厘米)长4英尺(122厘米)的中试装置中试验了本发明三层床的原理。这种床装有1英尺(30厘米)的碳酸钾浸渍的氧化铝,接着装入2英尺(60厘米)的13X沸石,最终装有一层1英尺(30厘米)的非粘结CaX。进料空气为8.9巴(61kPa)的进料压力,温度14℃,内含370ppm CO2、1ppm乙炔、1ppm乙烯和290ppb N2O,经过该床层,二氧化碳的穿透浓度是20ppb。使用标准的现有技术的两层进行相同的实验,内装1英尺(30厘米)碳酸钾浸渍的氧化铝,接着装3英尺(90厘米)的13X沸石的吸附床。表2列出了两个实验的结果。
表2
表2的结果清楚地表明,与解决这一问题的现有技术相比,本发明显著地增加了乙烯和一氧化二氮的去除率。
权利要求
1.在分离富氮气流和/或富氧气流的空气流低温蒸馏之前从空气进料流中除水、二氧化碳和一氧化二氮的方法,该方法包括使含有水、二氧化碳和一氧化二氮的所述空气进料流通过第一吸附剂从所述空气流中吸附所述水、通过第二吸附剂从所述空气流中除去二氧化碳,第二层吸附剂可以任选地与第一层吸附剂相同,和通过第三吸附剂从所述空气流中除去所述一氧化二氮。
2.权利要求1的方法,其中所述三个吸附剂都利用TSA进行再生。
3.权利要求1的方法,其中第一吸附剂包括活性氧化铝、浸渍氧化铝或硅胶。
4.权利要求1的方法,其中所述第二吸附剂包括NaX、NaA或CaA沸石。
5.权利要求1的方法,其中所述第三吸附剂与二氧化碳相比对一氧化二氮的亨利定律的选择性在30℃为0.5或更多。
6.权利要求5的方法,其中所述选择性至少为0.9。
7.权利要求1的方法,其中第三吸附剂对一氧化二氮的吸附亨利定律常数至少为79毫摩尔/克/原子。
8.权利要求1的方法,其中所述第三吸附剂是钙交换X沸石、Na丝光沸石、Ba交换X沸石或无粘结Ca交换X沸石。
9.权利要求1的方法,其中至第二吸附剂对二氧化碳的吸附容量用完时,为吸附空气流的一氧化二氮含量所需的第三吸附剂量不超过150%。
10.权利要求1的方法,其中所述空气进料流含有乙烯,和所述第三吸附剂除去所述的乙烯。
11.空气分离方法,该方法包括从空气进料流中除去水、二氧化碳和一氧化二氮,是将含有水、二氧化碳和一氧化二氮的所述空气进料流通过第一吸附剂从所述空气流中吸附所述的水,通过第二吸附剂从所述空气流中除去二氧化碳,所述的第二吸附剂可以任选地与所述的第一吸附剂相同,和通过第三吸附剂从所述的空气流中除去一氧化二氮;和进行已净化的空气流的低温蒸馏以分离富氮气流和/或富氧气流。
12.在分离富氮气流和/或富氧气流的低温蒸馏空气流之前从空气进料流中除去水、二氧化碳和一氧化二氮的设备,该设备以流体串联方式包括第一吸附剂从所述空气流吸附所述水、第二吸附剂从所述空气流中除去二氧化碳和第三吸附剂从所述空气流中除去所述的一氧化二氮。
13.空气分离设备,该设备包括净化装置和低温空气分离装置,该净化装置以流体串联方式包括第一吸附剂从所述空气流中吸附所述水、第二吸附剂从所述空气流中除去二氧化碳和第三吸附剂从所述空气流中除去所述一氧化二氮,和在所述净化装置中除去水、二氧化碳和一氧化二氮之后,该低温空气分离装置使所述空气进料流中的氮气与氧气分离。
全文摘要
在已净化的空气流低温分离之前,通过变温吸附,使用第一吸附剂例如氧化铝吸附水,第二吸附剂例如13X沸石吸附二氧化碳和第三吸附剂例如无粘结钙交换X沸石吸附一氧化二氮,以及任选地吸附乙烯,从而除去原料空气流中的二氧化碳、水、一氧化二氮和任选存在的乙烯。
文档编号B01D53/04GK1259649SQ9912089
公开日2000年7月12日 申请日期1999年10月8日 优先权日1998年10月8日
发明者T·C·戈登, F·W·泰勒, L·M·约翰逊, N·H·马利克, C·J·莱斯维尔 申请人:气体产品与化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1