沼气脱硫脱碳纯化系统的制作方法

文档序号:9004537阅读:796来源:国知局
沼气脱硫脱碳纯化系统的制作方法
【技术领域】
[0001]本实用新型属于沼气处理设备技术领域,特别涉及一种沼气脱硫脱碳纯化系统。
【背景技术】
[0002]沼气的成分一般有甲烧、二氧化碳、氧气、氮气、一氧化碳、氢气、水和硫化氢等其它气体组成。沼气的纯化工艺主要保留其可燃和助燃成分甲烷、氧气、一氧化碳和氢气,对沼气中的H2S,H2O, 0)2和其它杂质进行去除。
[0003]脱硫是为了避免硫化氢(H2S)腐蚀设备和管道,硫化氢在沼气发动机及内燃机中会使轴承和一些配合表面腐蚀,使发动机的润滑油变质,从而加快发动机磨损;而且泄露的H2S会引起中毒,其燃烧放出的产物SO2、SO3是造成酸雨的罪魁祸首,比H 2S造成的危害还要大。脱水是因为导气管中如果积累了水会溶解硫化氢(H2S)而腐蚀管道,此外当沼气在后期被加压储存时,为了防止因为凝结水而冻坏储气罐,也必须对水进行去除。去除沼气中CO2是因为0)2降低了沼气的能量密度、热值、燃烧速度,且增大了沼气的点火温度,如果所用的沼气需要达到天然气标准或者被用作汽车燃料,那么就必须对其中的CO2进行去除。
[0004]脱除气体中的硫化氢的方法很多,一般可分为干法和湿法两大类。湿法脱硫按溶液的吸收与再生性质又可分为氧化法、化学吸收法、物理吸收法。氧化法是借溶液中载氧体的催化作用,把被吸收的硫化氢转化为硫磺,使溶液获得再生。主要有氨水法、砷碱法和蒽醌二磺酸钠法等。化学吸收法以弱碱性溶液为吸收剂,与硫化氢进行化学反应形成化合物,当富液温度升高压力降低时,该化合物就分懈,使硫化氢放出。这类方法有烷基醇胺、碱性溶液法等。物理吸收法常用有机溶剂为吸收剂,其吸收完全为物理过程,当富液降低压力时,硫化氢就完全放出。这类方法有聚乙二醇二甲醚法,冷甲醇法等。尽管湿法脱硫精度差,需大大降低气体温度,但它可以处理较高硫化氢含量的原料气,运行费用低,适合大规模生产等特点而在工业上广泛使用。干法脱硫按原理和方法可分为化学吸附法、化学吸收法和催化加氢法三种。化学吸附法即脱硫剂吸附气体中的硫化物从而达到脱硫的目的,活性炭和分子筛即属于此类;化学吸收法即脱硫剂与气体中的硫化物反应将硫化物脱除的过程,其脱硫剂有氧化铁、氧化梓、氧化猛等;催化加氛法即含硫气体在钻钥、镇钥等催化剂存在时,使有机硫转化为H2S然后将其脱除。干法脱硫中最早使用的是氧化铁和活性炭法,而近代工业上也常用干法脱硫作为脱除有机硫和精细脱硫的手段。
[0005]由于碳酸钠溶液呈碱性,能吸收酸性气体,而且由于弱酸性的缓冲作用,在吸收酸性气体时,pH值不会很快发生变化,保证了系统的操作稳定性。此溶液对H2S吸收的化学反应方程式为:Na2C03+H2S = NaHC03+NaHSo在采用碱性溶液法去除H2S的工艺中,碱性溶液和H2S反应,会降低碱性溶液的浓度,从而使吸收效率降低;工业中利用碱性溶液法去除H2S,一种是直接将气体通入碱性溶液中,另一种是采用喷淋的方法,前一种方法浪费碱性溶液,而后一种方法普遍存在的问题是喷淋雾液与H2S气体不能有效的充分接触,导致脱硫率较低。
[0006]沼气中的脱碳方法主要是液体吸收法和固体吸附法,液体吸收法分为两大类:一类是物理吸收法,即利用CO2能溶于某些液体的这一特性将其从混合物中分离出来,不同的溶剂吸收CO2的能力不同,最终达到的纯化度也不一样,但一般都比化学吸收的纯化度低。另一类是化学吸收法,根据CO2是酸性气体的特性,利用碱性吸收剂与CO 2进行化学反应来去除。化学吸收法在不太高的压力下就可将气体中的CO2精制到很高的程度。但当用化学吸收时,当化学吸收剂完全反应完后就不再具有吸收CO2的特性,所以化学吸收剂的吸收能力是有限的。
[0007]在采用碱性溶液法去除0)2的工艺中,通常直接将气体通入碱性溶液中,存在CO 2气体不能有效的充分与碱性溶液接触问题,导致脱硫率较低;同时,碱性溶液和CO2反应,会降低碱性溶液的浓度,从而使吸收效率降低。
【实用新型内容】
[0008]本实用新型的目的在于克服现有技术的不足,提供一种沼气脱硫脱碳纯化系统。该系统可有效使喷淋碱性雾液与H2S气体充分接触,提高脱硫效率和脱硫溶液的利用率;同时,该系统可有效使0)2气体充分与碱性溶液相接触,同时利用传感器和电控阀实时提供新的碱性溶液,保证碱性溶液的浓度,以保证持续较高的脱碳效率。
[0009]本实用新型采用以下技术方案来实现:
[0010]一种沼气脱硫脱碳纯化系统,包括脱硫装置、脱碳装置、脱水装置、压缩机、储气罐,以及管道和阀门。
[0011]所述脱硫装置包括脱硫塔、第一碱性溶液罐、以及电控阀和管道;脱硫塔设置有脱硫塔进气口、脱硫塔出气口、脱硫塔进液口和脱硫塔出液口;所述脱硫塔进气口设置在脱硫塔的底端,脱硫塔进气口设置有第七阀门,脱硫塔进气口高出脱硫塔的底面,且脱硫塔进气口的正上方设置有伞罩,以防止喷淋产生的液体进入进气口 ;所述脱硫塔出气口设置在脱硫塔的顶端,在脱硫塔出气口处设置有第一气体检测传感器,用于检测H2S气体的浓度;所述脱硫塔进液口设置在脱硫塔的顶端,脱硫塔进液口处设置有喷头,喷头通过管道与第一碱性溶液罐相联通,在喷头与第一碱性溶液罐相联通的管道上设置有第一电控阀,用于控制调节碱性溶液的流量;所述脱硫塔出液口设置在脱硫塔的底端,脱硫塔出液口设置有第六阀门;在脱硫塔的内部从下至上依次设置有气体均匀分布器、第一级反应板、第二级反应板和液体均匀分布器;所述气体均匀分布器为平板结构,其上均匀分布有第一通孔,通过第一通孔可以使进气口进来的沼气均匀扩散到脱硫塔内部;所述液体均匀分布器为平板结构,其上均匀分布有第二通孔,液体均匀分布器设置有圆形侧壁,液体均匀分布器下表面为平面,液体均匀分布器上表面从中心向圆周具有一定斜度(斜度范围为:与水平方向夹角10-25度),喷淋液体时,液体可从中心位置扩散至四周,并透过第二通孔,从而达到均匀扩散液体的目的;
[0012]所述脱碳装置包括脱碳罐、第二碱性溶液罐、废液收集罐,以及电控阀和管道;脱碳罐设置有脱碳罐进气口、脱碳罐出气口、脱碳罐进液口和脱碳罐出液口 ;所述脱碳罐进气口设置在脱碳罐的底端,沼气从脱碳罐进气口进入脱碳罐内部;所述脱碳罐出气口设置在脱碳罐的顶端,在脱碳罐出气口处设置有第二气体检测传感器,用于检测二氧化碳气体的浓度;所述脱碳罐进液口通过管道与第二碱性溶液罐相联通,在脱碳罐进液口与第二碱性溶液罐相联通的管道上设置有第二电控阀,用于控制调节碱性溶液的流量;所述脱碳罐出液口设置在脱碳罐的底端,脱碳罐出液口通过管道与废液收集罐相连,在脱碳罐出液口与废液收集罐相连的管道上设置有第三电控阀;脱碳罐的内部设置有气体分散装置,所述气体分散装置由气体分散装置主气管和气体分散装置分气管组成,气体分散装置分气管呈圆形均匀分布且与气体分散装置主气管相联通,气体分散装置主气管与脱碳罐进气口相联通,通过气体分散装置可以使从脱碳罐进气口进来的沼气均匀扩散到脱碳罐内部的溶液中;
[0013]脱硫塔出气口通过管道与脱碳罐进气口联通,在脱硫塔出气口与脱碳罐进气口联通的管道上设置有第一阀门和第二阀门,所述第二阀门设置在脱碳罐进气口处,第二阀门为单向阀;脱碳罐出气口通过管道与脱水装置进气口联通,在脱碳罐出气口与脱水装置联通的管道上设置有第三阀门;脱水装置出气口通过管道与压缩机联通,在脱水装置出气口与压缩机联通的管道上设置有第四阀门;压缩机通过管道与储气罐联通,在压缩机与储气罐联通的管道上设置有第五阀门。
[0014]在上述技术方案中,所述第一通孔的孔直径为3-5mm,孔间距为5-10mm。所述第二通孔的孔直径为5-8_,孔间距为8—15_。第一气体检测传感器通过检测H2S气体的浓度,可实时调节电控阀的流量以保证有适量的碱性溶液与H2S气体充分反应。所述气体分散装置分气管的孔直径为3-5mm,气体分散装置分气管的间距为8—15mm。所述气体分散装置分气管的长度为100—200_。通过第二气体检测传感器通过检测CO2气体的浓度,可实时调节第二电控阀和第三电控阀的流量提供新的碱性溶液,以保证有适量浓度的碱性溶液与CO2气体充分反应,从而保证持续高效的脱碳效率。
[0015]本实用新型设计合理,结构简单,可有效使喷淋碱性雾液与H2S气体充分接触,提高脱硫效率和脱硫溶液的利用率;同时,该装置可有效使0)2气体充分与碱性溶液相接触,同时利用传感器和电控阀实时提供新的碱性溶液,保证碱性溶液的浓度,以保证持续较高的脱碳效率。
【附图说明】
[0016]图1是本实用新型的结构示意图,
[0017]图2是本实用新型的脱硫装置中的液体均匀分布器的结构示意图,
[0018]图3是图2的俯视图,
[0019]图4是本实用新型的脱硫装置中的气体均匀分布器的俯视图,
[0020]图5是本实用新型的脱碳装置中的气体分散装置的结构示意图,
[0021]图6是图5的俯视图。
[0022]图中:1为第一碱性溶液罐,2为第一电控阀,3为第二碱性溶液罐,4为第二电控阀,5为脱碳罐,6为第二气体检测传感器,7为脱碳罐出气口,8为第三阀门,9为脱水装置进气口,10为脱水装置,11为储气罐,12第五阀门,13为压缩机,14为第四阀门,15为废液收集罐,16为第二阀门,17脱水装置出气口,18为脱碳罐出液口,19第三电控阀,20为脱碳罐进气口,2
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1