石蜡的低氢气压力催化脱蜡提高润滑油产率的制作方法

文档序号:5112827阅读:341来源:国知局
专利名称:石蜡的低氢气压力催化脱蜡提高润滑油产率的制作方法
技术领域
本发明涉及到含石蜡的烃催化脱蜡的方法。更具体的是,本发明涉及到在低氢气分压的情况下,通过催化脱蜡生产具有预先确定或预先选择的倾点的润滑油基础油。
背景技术
通过含烷烃原料加氢处理生产润滑油基础油众所周知,如原料通过加氢异构化或加氢裂化以生产润滑油基础油。这些方法过程通常是催化过程,并且在相对地高的氢分压,例如>3549kPa(500磅/平方英寸)。在润滑油基础油生产过程中,催化脱蜡是加氢处理的形式,并且包括烷基异构化和一些加氢裂化。
烷烃通过加氢处理,即异构化、裂化、脱蜡,生产润滑油基础油,一般都需要氢气。氢气被认为是很重要的,可以促进延长催化寿命,例如,焦炭还原脱除,见专利U.S.4,872,968。催化脱蜡本质上是将正构烷烃转化为支链烷烃,也就是将蜡分子转化为流动性能好的分子,特别是在低温情况下。催化脱蜡中氢分压范围从大约1480kPa(200psig)到大约6996kPa(1000psig)或更多,见U.S.5,614,079,并且由于催化剂寿命的原因氢分压通常在范围的较高端。
专利U.S.5,362,378公开了氢分压范围在597到1599kPa(72到2305psig)下,应用大孔β沸石催化剂的情况。该专利没有提到催化剂寿命或TIR,即需要的温度增加,这是对维持产品规格诸如倾点或浊点必要的。大孔β沸石催化剂一般不作为脱蜡催化剂,但作为一种异构化催化剂,以及按照U.S.专利5,362,378应用这种催化剂生产的产品将需要脱蜡,目的是为了在此方法中获得低倾点和浊点。
我们已经惊奇的发现,某些特征的一个特别的组合可以允许催化脱蜡在低于3549kPa(500psig)氢分压的情况下,选择反应条件进行加氢异构化,而几乎没有加氢裂化,同时润滑油产率较高,无损于催化剂寿命,产品具有低的倾点和浊点。
发明概述根据本发明,含有至少80wt%正构烷烃的原料,在催化剂存在下,催化剂包含具有一维孔结构平均孔径为0.50到0.65nm的分子筛,以及脱氢金属活性组分,在低于3549kPa(500psig)下,进行催化脱蜡反应。最大孔径和最小孔径之间的差距优选小于等于0.05nm。应用这些方法条件,催化剂失活速率如以下所确定维持在一个低水平,低于16.7K(30°F°F)/年。
分子筛的一些例子是ZSM-23,ZSM-35,ZSM-48,ZSM-22,SSZ-32,沸石β,丝光沸石和稀土离子交换的镁碱沸石。
脱氢组分通常是金属组分,优选为锰,钨,钒,锌,铬,钼,铼,VIII组金属诸如镍,钴,或者贵金属铂和钯。
在这里催化剂失活速率报告为TIR,即为维持预定的倾点(优选低于-12℃)或者浊点“所需的温升”。催化剂失活速率是在足以维持目标倾点或浊点的情况下,根据开始温度和指定时段结束时的温度的差值来确定。
附图简述

图1是倾点℃(纵坐标)对温度(℃)(横坐标)的一条关系曲线,表明催化活性随氢气压力降低而提高。
图2是转化率%(纵坐标)对倾点℃(横坐标)的一条关系曲线,表明异构化反应选择性随氢气压力降低而提高。
图3是反应器平均温度℃(纵坐标)对反应时间(横坐标)的一条关系曲线,表明了当在氢分压为1135.5kPa(150psig),生产倾点-21℃润滑油基础油时回归的失活速率。
图4是在氢分压1825kPa(250psig)下,为达到柴油浊点-15℃时,反应温度℃(纵坐标)对反应时间(横坐标)的一条关系曲线。
图5是与图4类似,为使宽馏分润滑油基础油达到倾点-21℃。
图6是为使371~510℃(700~950°F°F)异构化馏分油倾点达到-21℃时,反应器温度℃(纵坐标)对反应时间(横坐标)的一条关系曲线。
图7是为使510℃+(950°F+°F)以上异构化馏分油浊点达到+8℃时,反应器温度℃(纵坐标)对反应时间(横坐标)的一条关系曲线。
由于具有在这里描述的这些一组特点,氢气分压降低会使催化剂活性提高,并提高异构化反应产率。也就是说,活性的增加几乎全部是异构化活性的增加,几乎没有加氢裂化。然而,当降低氢分压一般会降低催化剂寿命,本发明的特点表明未牺牲催化剂寿命。
为了本发明的目的,倾点测定应用ASTM D-5950方法,浊点测定应用ASTM D-5773方法,分子筛孔参数用X射线衍射法测定。
发明详述本发明所用的原料是一种含烷烃原料,优选是正构烷烃含量大于80wt%的原料,再优选是正构烷烃含量大于90wt%的原料,再优选是正构烷烃含量大于95wt%的原料,再优选是正构烷烃含量大于98wt%的原料。原料的沸点范围一般为221.1℃+(430°F+),优选在232℃+(450°F+),再优选为232~649℃(450~1200°F)(有少量的如小于10%的沸点在649°+C(1200°F+)的物料存在)。原料中正构烷烃含量优选至少90wt%,沸点范围为221.1℃(430°F)以上。
优选原料中不饱和烃类含量很低,也就是说,芳烃和烯烃都很少。不饱和烃类含量优选低于10wt%,再优选低于5wt%,再优选低于2wt%。同样,原料中氮和硫含量要相对低,例如分别低于200ppm,优选分别低于100ppm,再优选氮和硫含量都低于50ppm。如果应用费-托合成油作原料,没有必要进行对催化剂进行预硫化,而事实上,应该避免预硫化。
优选原料是生产正构烷烃的费-托反应的产品,优选费-托方法是用一种非变换催化剂,例如钴或钌,优选是含钴催化剂。应用费-托产品的好处就是这种原料的正构烷烃含量高,杂原子含量低。
催化脱蜡步骤使用的催化剂包括一种分子筛,分子筛具有一维孔结构的和一种金属脱氢组分,平均孔径为0.50到0.65nm,并且最大孔径和最小孔径之间的差距优选≤0.05nm。分子筛包括诸如ZSM-23,ZSM-35,ZSM-22,SSZ-32,沸石β,丝光沸石和稀土离子交换的镁碱沸石,优选是一种ZSM-48催化剂,包括一种金属脱氢活性组分,优选为铂或钯或铂和钯,再优选是铂。其他在结构上等同于ZSM-48的沸石如EU-2、EU-11和ZBM-30也可以应用。ZSM-48是优选的。以这些分子筛为基础制备的催化剂使得在低压(低于3549kPa,500psig)下,高产率的获得低倾点润滑剂成为可能,并且方法具有催化剂失活速率低的特点,低于16.7K(30°F)/年。
分子筛的制备技术为人熟知,例如这些描述见J.Schlenker,et al.,Zeolites 1985,vol.5,November,355-358。
ZSM-48用X射线衍射法表征,见下表1。它在11.8±0.2范围内显示出一个单峰的事实,进一步证实该材料。在显示的区域存在单峰从结构上将ZSM-48与诸如ZSM-12的紧密相关的材料区分开,ZSM-12在11.8±0.2范围内有两条线,即双峰(美国专利U.S.3,832,449中有描述),高硅ZSM-12在显示范围内也有双峰(美国专利U.S.4,104,294也中有描述)。
表1 ZSM-48的特征峰(煅烧后,Na离子交换)

这些数值由标准技术确定,即发射源是Cu K-α双光束辐射源,衍射仪装备有一个闪烁计数器。由一台多电极电子管(compactor)测定峰高I和作为2θ的函数的峰位置,θ是Bragg角。从这些相对强度,计算出100I/I0和d(obs),I0是最强线或峰的强度,d(obs)是对应于所记录的峰的晶面间距()。表1中强度表示为W=弱,S=强,VS=非常强,M=中等,W-M=弱到中等(取决于阳离子的形式)。用其他阳离子对钠离子进行离子交换后,谱图非常接近,仅有一些晶面间距有很小的移动和相对强度的变化。
ZSM-48及其制备方法在美国专利U.S.4,375,573、4,397,827、4,448,675、4,423,021和5,075,269。优选是用美国专利U.S.5,075,269描述的制备方法,这种方法制备的催化剂特别适合用于催化脱蜡方法。
脱氢活性组分优选是贵金属,经常使用铂或钯,或铂和钯。优选是铂。脱氢活性组分通常占催化剂总重的0.01~5.0wt%,优选为0.1~1.5wt%。这些组分可以为交换到分子筛组成里,或浸渍在分子筛上,或者物理掺合在一起。这些组分可以为交换到沸石内或在沸石上面,例如,将沸石与含金属的离子进行处理。因此,在铂的例子中,适合的铂化合物包括氯酸的,氯化亚铂和不同含有四氨合铂的络合物。
根据本发明,用来制备催化剂的金属化合物可以分成金属在化合物的阴离子中和金属在化合物的阳离子中两类,这两种离子中含有金属的化合物都可以使用。在铂的例子中,含有铂金属阳离子或阳离子配合物的溶液,例如Pt(NH3)4Cl2是特别有用的。
在其使用之前,ZSM-48催化剂应该被至少部分地脱水。通常要进行脱水步骤,以脱除催化剂中的水。过量的水会引起载体材料的蒸干,金属的浸出或迁移,产品的污染或其他不希望的反应。脱水可以通过在例如空气,氮等惰性气氛中加热其到100℃到600℃,并在大气压或低于大气压的压力下保持1和48小时。脱水也可以在较低的温度下进行,通过将催化剂放置在真空中。一般来讲,分子筛催化剂颗粒细度可以是粉状,可以是粒状,或模具形状,如挤条成为能够通过2目(Tyler)筛(10毫米孔径)网孔,并能留在400目(Tyler)筛(0.038毫米孔径)上。在催化剂被塑型的情况下,例如被挤条,结晶的硅酸盐可以在干燥之前被挤条,也可以在挤条之前进行干燥或部分干燥。
还可能希望用一种基质材料与ZSM-48结合在一起,可以对温度和脱蜡方法的其他条件有抵抗力。这样的基质材料包括活性的和非活性的材料和合成的或天然的沸石,以及无机材料,如粘土、氧化硅和/或金属氧化物,如氧化铝。后者可以是天然的,或以凝胶状沉淀,溶胶或包括氧化硅和金属氧化物的混合物在内的凝胶。与分子筛一起使用的材料,即结合在一起,如果是活性的,可能提高转化率和/或催化剂的选择性。非活性材料可适当地作为稀释剂以控制一个给定方法的转化率,在没有采用其他控制反应速率的方法的情况下,以便能经济和有目的地获得产品。通常分子筛与天然粘土结合使用,例如膨润土和高岭土。这些材料部分地作用为催化剂的粘结剂。由于在炼油厂催化剂经常要进行苛刻的处理,会将催化剂打碎成粉状物,在方法中会引起问题,需要提供有好的抗压碎强度的催化剂。
可以与分子筛复合的天然粘土包括蒙脱土和高岭土类,包括亚膨润土,以及平常称为Dixie、McNamee、Georgia和Florida粘土的高岭土,或者主要矿物组成为叙永石,高岭石,地开石,珍珠陶土或蠕陶土的其他高岭土。应用这些粘土可以在其原始的矿物状态,也可以经过煅烧、酸处理或化学改性后应用。
除前面提到的基质材料之外,与分子筛复合的材料可以是诸如氧化硅-氧化铝、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-二氧化钛等多孔性的基质材料,以及三元组合物,如氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化锆、氧化硅-氧化铝-氧化镁和氧化硅-氧化镁-氧化锆。基质可以是共凝胶的形式。也可以应用这些组分的混合物。分子筛和无机氧化物凝胶基质的相对比例可以在很大的范围内变化,通常分子筛含量可以是催化剂总重量的1%到90%,更常用的在2%到80%范围内。
根据本发明,催化剂优选的一种是氧化铝粘结的ZSM-48分子筛,优选含有10~90wt%的分子筛晶体和多达2wt%的铂。这种催化剂在对费-托蜡进行长时间的脱蜡反应后,表现出失活速率极低的优点。
通常,脱蜡反应条件可以广泛变化,甚至当氢分压可维持在很低水平时。因此,初始运行温度可以在大约288~343℃(550~650°F)的之间变化。运行结束的条件可以通过生产的产品的性质确定,例如,当不能再满足预定的颜色指标(催化剂失活的迹象),或者不能再获得预定的倾点的时候,或者由于加氢裂化使甲烷产率增加而证明异构化反应的选择性降低。然而,通常运行结束温度应小于427℃(800°F),优选低于399℃(750°F),再优选少于385℃(725°F)。反应温度可以为288℃(550°F)到约427℃(800°F),反应温度在288~385℃可以得到特别好的结果。
根据本发明的实施例,氢分压可以在合理的情况下尽可能维持低水平,而不牺牲催化剂寿命。根据所需要的结果和脱蜡方法苛刻度,即提高反应温度或降低原料粘度或者两者共同作用而引起的苛刻度提高,催化剂寿命可长可短。然而,在运转结束时催化剂必须要复原,或者无法复原时要更换。在这两种情况下,装置必须停工,就损失了宝贵的操作时间。因为本发明的方法催化剂失活速率低,装置的开工周期能够延长。
在本发明的方法中,催化剂失活速率低于13.9K(25°F)/年,优选低于11.1K(20°F)/年,再优选低于5.6K(10°F)/年。在催化脱蜡的条件下,这一催化剂失活速率,在仍然能够满足预定的倾点低于-12℃时,允许本发明的方法运转至少6个月的时间,优选至少12个月,再优选至少18个月,再优选至少24个月,或更长的时间,例如30个月以上或36个月以上,而不需要更换催化剂。
根据本发明,此方法在满足预定的倾点低于-21℃时,所需要的催化剂温升低于16.7℃(30°F)/年,优选低于14℃(25°F)/年,再优选低于11℃(20°F)/年,再优选低于5.6℃(10°F)/年。
催化剂失活认为是催化剂表面上形成焦炭的结果,焦炭覆盖或堵塞通向活性金属的通道,以及堵塞沸石的细孔。催化剂再生可以通过大家熟知的方法,包括热氢气提、氧气处理除去焦炭,或热氢气提、氧气处理的结合。简单地说,氢气气提可以用氢气或氢气与诸如氮气的惰性气体的混合物,在异构化反应温度下,保持一段时间足以允许催化剂恢复到至少大约80%的初始活性,优选恢复到至少大约90%。氧气处理可以在煅烧条件下进行,例如使用空气在温度从500℃到650℃,保持足够时间,在经过随后的还原过程,可以使催化剂恢复到至少80%的初始活性,优选恢复到至少90%。
能够满足催化剂寿命的氢分压为低于3549kPa(500psig),优选低于2859kPa(400psig),再优选氢分压高于101.325kPa(0psig)并低于2859kPa(400psig),再优选在791-2859kPa(100-400psig)范围内,例如791-2515kPa(100-350psig),再优选为大约1136-2515kPa(150-350psig)。
在本发明的方法中,再加氢脱蜡反应的条件下,氢分压低于大约3549kPa(500psig),原料与催化剂接触,当不能满足预定的倾点或浊点时调整(提高)反应温度。首选的倾点是低于-12℃,优选是低于约-18℃或更低。
在氢分压低于3549kPa(500psig),倾点为-12℃或更低,典型的失活速率低于16.7K(30°F)/年。在氢分压低于3549kPa(500psig),倾点为约-18℃或更低,典型的失活速率低于16.7K(30°F)/年。在首选的实施例中,氢分压为1136-2515kPa(150-350psig),倾点约为-21℃或更低,典型的失活速率低于8.3K(15°F)/年。
通常存在氢气时,其他气体也可能存在,这将不会干涉反应,其他气体可能是氮、甲烷,或其他轻质烃类(在反应期间可能产生)。总压力可能在13790kPa(2000psia)以下的范围内,优选在690-13790kPa(100-2000psia)范围,再优选在1034-6895kPa(150-1000psia)范围,再优选1034-3447kPa(150-500psia)范围。氢气可占全部气体的50%~100%,优选占70%~100%,再优选占70%~90%。在这里所述的低氢分压的情况下,由于严重缺少氢气,当异构化反应时会有少量的烯烃和芳烃形成;可能有必要通过加氢补充精制,在人们熟知的条件下去除这些组分。
液时空速通常在大约0.1和大约10(体积空速)之间,并且优选在大约0.5和4之间。氢气与原料之比通常为标准状态101.325kPa,15.5℃下的每升原料,氢气大约为17.8升到大约1781升之间,优选在142.5升到大约712.5升之间。
α值是催化剂与标准催化剂比较,催化裂化活性的一个近似的指标,并且提供一个相对的速度常数(单位催化剂的量单位时间正己烷转化率)。数值是根据氧化硅-氧化铝裂化催化剂的活性,α值作为1(速度常数=0.016sec-1)。对α值的测试方法在美国专利U.S.3,354,078以及Journal of Catalysis.vol.4,p.527(1965);vol.6,p.278(1966)和vol.61,395(1980)有描述,在此引入作为参考。催化剂的α值在负载金属之前优选在大约10到大约50范围内。
根据一个特定的实施例,脱蜡反应的产品要进一步进行加氢精制反应,反应包括将催化剂与加氢补充精制催化剂接触,含有活性金属组分,足够将不希望的可能存在的烯烃和芳烃饱和,方法已为人所熟知。
根据本发明,用本方法得到的产品表现出特别好的性质。并且本发明的方法可以生产低倾点的润滑油产品,低价值的裂化燃料产品的产率非常低,同时还表现出好的活性稳定性。
以下实例用来描述本发明实例1本实例在氢分压从3549kPa降低到1136kPa(500psig到150psig)时,在润滑油基础油产率方面表现出优势。用ZSM-48,应用宽馏分费-托原料,即221℃+(430°F+)原料研究了下列的装置条件和方法参数。
催化脱蜡反应在下流式反应器进行,模拟滴流床反应器,浸没在砂浴中,以维持等温反应器条件。反应器中装有80cc含有占催化剂总重35%的氧化铝和0.6wt%的铂的未硫化ZSM-48催化剂,并用玻璃珠稀释。钴浆催化的费-托方法得到的221℃+(430°F+)以上的蜡,通过温度控制其转化。
方法的操作温度为304-338℃(580-640°F),反应器氢分压在反应器出口为1136-3549kPa(150-500psig)。氢气处理气比例为每升原料320.6-445升标准条件(101.325kPa和15.5℃)的氢气,液时空速为1.25v/v/hr。
用15/5蒸馏装置来分馏液体产品,回收以下馏分IBP/160℃(320°F),160℃/371℃(320/700°F),371℃+(700°F+)以上馏分。分析371℃+(700°F+)馏分的倾点和浊点、运动粘度和粘度指数;分析160℃/371℃(320/700°F)馏分的浊点。
图1中,曲线A、B和C分别表示氢气压力为1136、1824和3549kPa(150、250和500psig)。预定的倾点为-21℃时,催化活性随操作压力降低而增加,见下表2。
表2

除了其他因素,本发明是基于发现脱蜡方法动力学对氢气是负的二级反应,因此随着氢分压的降低产率会提高,但是,另人惊奇与普通常识相反的是,应用特定条件和催化剂失活速率保持在非常低的水平。
随着氢气压力降低润滑油选择性提高。图2中曲线A、B和C表示氢气压力为1136、1825和3549kPa(150、250和500psig)。倾点为-21℃的润滑油在每个压力下的产率见下表3。
表3

这些数据另人惊奇地表现出在较低压力下催化剂活性和润滑油选择性提高。结果整个润滑油产率提高。
然而,通常的想法是随着氢压力减小催化剂寿命大大地降低,因此导致运转时间缩短和长时间停车。为了确定氢气压力降低对催化剂寿命(催化剂失活速率)的影响,进行了另外的实验,在氢气压力1136kPa(150psig),生产倾点为-21℃润滑油基础油,运转70天。通过回归分析,失活速率是11.7K(21°F)/年,用二点活性检测,失活速率是14.4K(26°F)/年。
结果,在一个很低的氢气压力操作导致一个好的失活速率,并清楚地显示,低于3549kPa(500psig)的氢气压力,优选低于2859kPa(400psig),再优选低于1136kPa(150psig),例如963kPa(125psig),或低于791kPa(100psig),或低于791kPa(100psig),例如大约619kPa(75psig),将对异构化反应的选择性和提高润滑油基础油产率都有益处,同时维持失活速率不到大约16.7K(30°F)/年,或者优选低于大约13.9K(25°F)/年,再优选低于大约8.3K(15°F)/年。
实例2用在实例1中被描述的反应器,以221℃+(430°F+)宽馏分费-托蜡为原料,研究在1825kPa(250psig)脱蜡装置的操作。同样应用实例1的催化剂,对每升原料,氢气处理气在标准条件(101.325kPa和15.5℃)是445.3升(2500SCF/bbl)。液时空速是1.0。调整温度以满足润滑油倾点或柴油浊点要求。当为满足柴油浊点-15℃要求进行操作时,失活速率低于1K/年(1.8°F/年)。结果见图4。
当操作本装置为满足宽馏分润滑油倾点-21℃的要求时,失活速率约为3K/年(5.4°F/年)。结果见图5。
实例3对实例1中使用的原料进行加氢异构化,异构化产物蒸馏成二个馏分(i)371℃-510℃(700-950°F的)的轻馏分,(ii)510℃+(950°F+)的重馏分。每个馏分在实例1描述的反应器,并在实例2中描述的条件下处理,分别满足-21℃倾点和+8℃浊点的要求。每个馏分运转四(4)个月。结果见图6和图7;图6显示处理馏分(i)的失活速率(回归分析)约为1.1K(2°F)/年,图7显示处理馏分(ii)的失活速率(回归分析)约为1.1K(2°F)/年。
权利要求
1.一种催化脱蜡方法,包括含有至少80wt%正构烷烃的原料,在包括氢分压低于3549kPa(500psig)的脱蜡条件下,与包含具有一维孔结构平均孔径为0.50到0.65nm的分子筛,以及脱氢金属组分的催化剂接触,催化剂的失活速率,即达到预定的倾点或浊点所需的温升(TIR),低于约16.7K(30°F/年)。
2.根据权利要求1所述的方法,其中氢分压大于101.325kPa(0psig)。
3.根据权利要求1或权利要求2所述的方法,其中氢分压低于2859kPa(400psig)。
4.根据前面任何一项权利要求所述的方法,其中氢分压为1136kPa-2514.5kPa(150-350psig)之间。
5.根据前面任何一项权利要求所述的方法,其中TIR低于13.9K/年(25°F/年)。
6.根据前面任何一项权利要求所述的方法,其中含烷烃原料含有正构烷烃的含量大于90wt%,沸点在高于430°F的范围。
7.根据前面任何一项权利要求所述的方法,其中原料来自于费-托方法并且氮和硫含量都低于50wppm。
8.根据前面任何一项权利要求所述的方法,其中脱氢组分包括铂、钯或它们的混合物。
9.根据前面任何一项权利要求所述的方法,其中分子筛选自ZSM-23、ZSM-35、ZSM-48、ZSM-22、SSZ-32、沸石β、丝光沸石和稀土离子交换的镁碱沸石和它们的混合物。
10.根据权利要求9所述的方法,其中催化剂是氧化铝为粘结剂的包括10-90wt%ZSM-48和多达2wt%铂的ZSM-48催化剂。
11.根据前面任何一项权利要求所述的方法,其中反应温度范围从288℃到427℃(550°F到800°F)。
12.根据前面任何一项权利要求所述的方法,其中反应总压力范围从689到13790kPa(100到2000磅/平方英寸)。
13.根据前面任何一项权利要求所述的方法,其中脱蜡产品进一步进行加氢精制。
14.根据前面任何一项权利要求所述的方法,在生产润滑油基础油或柴油中的用途。
15.根据权利要求1到13任何一项所述的方法,在改进费-托产品的倾点或浊点中的用途。
全文摘要
本发明涉及含烷烃原料,优选由合成气通过非变换费-托催化剂生产的原料,在对具有某种孔结构的脱蜡催化剂寿命没有显著影响的相对低氢分压下进行的催化脱蜡。
文档编号C10G65/04GK1703493SQ200380101172
公开日2005年11月30日 申请日期2003年10月7日 优先权日2002年10月8日
发明者威廉·贝兰·热内蒂, 蒋兆中, 丹尼尔·弗朗西斯·瑞安, 阿德亚纳·里谢勒·毕晓普, 洛伦·列昂·安塞尔, 杰克·韦恩·约翰逊, 南希·玛丽·帕日 申请人:埃克森美孚研究工程公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1