带烟气激冷的一体化束状辐射预热混合式能源利用装置的制作方法

文档序号:5113433阅读:253来源:国知局
专利名称:带烟气激冷的一体化束状辐射预热混合式能源利用装置的制作方法
技术领域
本实用新型涉及煤气化技术的能源利用装置,特别是带烟气激冷的一体化束状辐射预热混合式能源利用装置。
背景技术
煤气化是洁净、高效利用煤炭的最主要途径之一,气化原料和氧化剂混合进入气化炉内,迅速发生反应,产生的高温合成气(约1400°C)经冷却、除尘,送至下一个车间进行有效利用。煤气化技术中高温合成气的冷却方式主要有两种,一种为激冷流程,另一种为废锅流程。激冷流程是高温合成气与激冷水充分接触,使煤气降温冷却、熔渣固化。激冷流程不回收高温合成气中的显热,能源利用效率低。废锅流程中高温合成气依次进入辐射锅炉和预热锅炉进行换热降温,并进行初步除尘。它能最大限度的回收合成气中的显热,以产生高压蒸汽或预热其他工艺介质,这种方式可以回收相当于原料煤低位热量中15 18%的能量,使得热煤气效率可达到90、5%,提高了系统的能源利用效率。在现有的气流床气化技术中,采用废热锅炉回收高温合成气的热量一般有两种方式:一是以Shell公司为代表的气流床粉煤加压气化技术,循环冷气返回气化炉高温合成气出口将合成气冷却至700 750 V,然后再进入对流废热锅炉换热副产中压蒸汽。另一种是以GE公司为代表的水煤浆气化工艺,高温合成气显热采用辐射锅炉+对流锅炉的方式回收,副产高压饱和蒸汽。但是,现有技术中的废热锅炉还存在结构复杂、故障率高、使用寿命较短等问题,主要表现在:(1)Shell粉煤气化技术采用1.3 1.5倍的循环冷气激冷高温合成气,增加了对流废热锅炉及其后续合成气除尘设备的尺寸,同时增加了设备的投资,合成气循环压缩机增加了气化装置的能耗;由于对流锅炉积灰,降低了对流锅炉的换热效果,为保证换热需要加入比设计激冷气量更多的激冷气。(2)GE水煤浆气 化工艺中的合成气全显热回收系统由辐射废热锅炉和对流废热锅炉两个设备组成,设备投资大,占用空间大,同时系统运行的可靠性也由于设备的复杂性而受到影响;同时辐射锅炉合成气温度缺乏调节手段致使对流锅炉积灰堵塞。

实用新型内容本实用新型为克服现有气化炉废热锅炉的缺陷和不足,提供了带烟气激冷的一体化束状辐射预热混合式能源利用装置,将辐射锅炉和对流锅炉结合为一个整体,达到充分回收高温合成气和熔渣所带显热,降低投资和节约能源,提高热效率的目的。为解决上述技术问题,本实用新型的技术方案如下:带烟气激冷的一体化束状辐射预热混合式能源利用装置,其特征在于:包括通过法兰连接的气化炉体和热回收装置,气化炉体设置于热回收装置上方;气化炉体包括气化炉的压力壳体、气化炉的耐火衬里或者水冷壁、喷嘴通道,气化炉的压力壳体内设置的气化炉的耐火衬里或者水冷壁,气化炉体的顶部设置喷嘴通道;所述热回收装置包括压力壳体、合成气入口、辐射换热组件、烟气激冷组件、对流换热组件、渣池、合成气出口,合成气入口位于压力壳体的顶部,合成气出口位于压力壳体侧壁的上端;辐射换热组件固定设于压力壳体内的上部,与带热量的气体充分换热;烟气激冷组件、对流换热组件均固定设置于压力壳体内的下部,对流换热组件在烟气激冷组件和压力壳体之间;渣池设置于压力壳体内的底部,渣池的底端与压力壳体的底端共同形成排渣口 ;辐射换热组件、对流换热组件、烟气激冷组件、渣池位于压力壳体内形成一体。所述合成气入口下端为一窄长通道,该通道的内壁为耐火衬里。所述辐射换热组件纵向设于压力壳体内,与带热量的气体充分换热;辐射换热组件包括辐射水冷壁和辐射屏,辐射水冷壁是由若干个纵向平行设置的立管围成的圆筒壁,相邻的两个立管通过焊接连接,圆筒壁的中间为辐射换热腔,圆筒壁向下延伸至渣池上端,辐射屏位于圆筒壁内上端;辐射换热组件还包括辐射水冷壁上集箱、辐射水冷壁下集箱、辐射水冷壁进水管、辐射水冷壁引出管和辐射水冷壁受热面,辐射水冷壁上集箱与每个立管的上端连通,辐射水冷壁下集箱与每个立管的下端连通,辐射水冷壁进水管的一端与压力壳体固接并设在压力壳体的外部、辐射水冷壁进水管的另一端与辐射水冷壁上集箱连通,辐射水冷壁引出管的一端与压力壳体的上封头固接、另一端与辐射水冷壁上集箱连通。所述辐射屏由若干个立管排形成,立管排以热回收装置的中心向外发散分布于辐射换热腔内,每个立管排由若干立管形成,立管排的相邻两个立管紧贴设置;辐射换热组件还包括辐射屏上集箱、辐射屏下集箱、辐射屏进水管、辐射屏引出管,辐射屏受热面的下端与辐射屏下集箱连通,辐射屏受热面的上端与辐射屏上集箱连通,辐射屏进水管和辐射屏弓I出管分别与辐射屏下集箱和辐射屏上集箱连通,并引出到压力壳体外。所述烟气激冷组件包括激冷气入口和气体混合室,气体混合室由辐射屏下面的辐射水冷壁与激冷气入口形成;所述激冷气入口均匀分布于辐射水冷壁上,并延伸至压力壳体外。所述对流换热组件包括蒸发器、过热器和省煤器,蒸发器、过热器和省煤器从上往下依次布置于气体混合室和压力壳体之间。所述蒸发器、过热器和省煤器分别由一组螺旋盘管形成,每组螺旋盘管分别包括四层螺旋环管,每两层螺旋环管之间有一定的距离,每层螺旋环管是由管子紧密环绕形成的。所述蒸发器还包括蒸发器上集箱、蒸发器下集箱、蒸发器进水管、蒸发器引出管,形成蒸发器的螺旋盘管的上端与蒸发器上集箱连通,形成蒸发器的螺旋盘管的下端与蒸发器下集箱连通,蒸发器进水管与蒸发器下集箱连通,蒸发器引出管与蒸发器上集箱连通;所述过热器还包括过热器上集箱、过热器下集箱、过热器进水管、过热器引出管,形成过热器的螺旋盘管的上端与过热器上集箱连通,形成过热器的螺旋盘管的下端与过热器下集箱连通,过热器进水管与过热器下集箱连通,过热器引出管与过热器上集箱连通;所述省煤器还包括省煤器上集箱、省煤器下集箱、省煤器进水管、省煤器引出管,形成过热器的螺旋盘管的上端与省煤器上集箱连通,形成省煤器的螺旋盘管的下端与省煤器下集箱连通,省煤器进水管与省煤器下集箱连通,省煤器引出管与省煤器上集箱连通;蒸发器进水管、蒸发器引出管、过热器进水管、过热 器引出管、省煤器进水管、省煤器引出管均延伸至压力壳体外。[0017]所述渣池的上端与对流换热水冷壁下端连接。所述能源利用装置为气流床气化炉,可以是单喷嘴或多喷嘴气化炉,也可以是煤浆或粉煤气化炉,也可以是水冷壁或耐火衬里气化炉等各种形式的气化炉。本实用新型的工作原理如下:气化原料和氧化剂混合进入气化炉体中,迅速发生气化反应,生成高温高压的粗合成气;当高温高压的合成气及熔融渣出气化炉体后,通过热回收装置的合成气入口进入辐射换热组件,在辐射换热腔中,对高温合成气流和熔融渣进行辐射水冷降温;然后,合成气及熔融渣穿过辐射换热腔后进入气体混合室,与通入的激冷气混合,在气体混合室内进一步迅速冷却;冷却后的熔融渣直接进入渣池,在渣池中,熔融渣与水混合急剧冷却,形成高硬度的固态灰渣,固态灰渣随水排出;合成气经过气体混合室冷却后,经过渣池水面的反折向上进入对流换热组件内,依次流过蒸发器、过热器、省煤器并进行换热冷却,由合成气出口排出。本实用新型的有益效果如下:(I)本实用新型提供的一体化束状辐射锅炉预热锅炉混合式能源利用装置,可有效吸收气化后的粗合成气显热,产生高压蒸汽或中压蒸汽用于发电或预热其他工质,整体能源利用率大大提高,具有能量回收利用率高的优点。(2)本实用新型提供的一体化束状辐射锅炉预热锅炉混合式能源利用装置,其热回收装置采用双层水冷壁结构设计并设置辐射换热屏和对流换热面,有效地缩减了废热锅炉整体尺寸,制造、 运输和安装较为方便。

图1为本实用新型的剖视示意图;图2为本实用新型图1中的A-A截面剖视示意图;请在图2中表明图3为本实用新型图1中的B-B截面剖视示意图;图4为本实用新型图1中的I部的局部示意图。其中,附图标记为:1气化炉体,2热回收装置,3压力壳体,4气化炉的耐火衬里(或水冷壁),5喷嘴通道,6合成气入口,7辐射换热组件,7-1辐射水冷壁,7-2辐射屏,8对流换热组件,8-1对流换热水冷壁,8-2蒸发器,8-3过热器,8-4省煤器,9烟气激冷组件,9_1激冷器进气管,9-2激冷室,10渣池,10-1排渣口,11法兰,12通道,13热回收装置的耐火衬里(或水冷壁)。
具体实施方式
如图1-4所示,带烟气激冷的一体化束状辐射预热混合式能源利用装置,包括通过法兰连接的气化炉体和热回收装置,气化炉体设置于热回收装置上方;气化炉体包括气化炉的压力壳体、气化炉的耐火衬里或者水冷壁、喷嘴通道,气化炉的压力壳体内设置的气化炉的耐火衬里或者水冷壁,气化炉体的顶部设置喷嘴通道;所述热回收装置包括压力壳体、合成气入口、辐射换热组件、烟气激冷组件、对流换热组件、渣池、合成气出口,合成气入口位于压力壳体的顶部,合成气出口位于压力壳体侧壁的上端;辐射换热组件固定设于压力壳体内的上部,与带热量的气体充分换热;烟气激冷组件、对流换热组件均固定设置于压力壳体内的下部,对流换热组件在烟气激冷组件和压力壳体之间;渣池设置于压力壳体内的底部,渣池的底端与压力壳体的底端共同形成排渣口 ;辐射换热组件、对流换热组件、烟气激冷组件、渣池位于压力壳体内形成一体。所述合成气入口 6下端为一窄长通道12,该通道12的内壁为耐火衬里13。所述辐射换热组件纵向设于压力壳体内,与带热量的气体充分换热;辐射换热组件包括辐射水冷壁和辐射屏,辐射水冷壁是由若干个纵向平行设置的立管围成的圆筒壁,相邻的两个立管通过焊接连接,圆筒壁的中间为辐射换热腔,圆筒壁向下延伸至渣池上端,辐射屏位于圆筒壁内上端;辐射换热组件还包括辐射水冷壁上集箱、辐射水冷壁下集箱、辐射水冷壁进水管、辐射水冷壁引出管和辐射水冷壁受热面,辐射水冷壁上集箱与每个立管的上端连通,辐射水冷壁下集箱与每个立管的下端连通,辐射水冷壁进水管的一端与压力壳体固接并设在压力壳体的外部、辐射水冷壁进水管的另一端与辐射水冷壁上集箱连通,辐射水冷壁引出管的一端与压力壳体的上封头固接、另一端与辐射水冷壁上集箱连通。所述辐射屏由若干个立管排形成,立管排以热回收装置的中心向外发散分布于辐射换热腔内,每个立管排由若干立管形成,立管排的相邻两个立管紧贴设置;辐射换热组件还包括辐射屏上集箱、辐射屏下集箱、辐射屏进水管、辐射屏引出管,辐射屏受热面的下端与辐射屏下集箱连通,辐射屏受热面的上端与辐射屏上集箱连通,辐射屏进水管和辐射屏弓I出管分别与辐射屏下集箱和辐射屏上集箱连通,并引出到压力壳体外。所述烟气激冷组件包括激冷气入口和气体混合室,气体混合室由辐射屏下面的辐射水冷壁与激冷气入口形成;所述激冷气入口均匀分布于辐射水冷壁上,并延伸至压力壳体外。所述对流换热组 件包括蒸发器、过热器和省煤器,蒸发器、过热器和省煤器从上往下依次布置于气体混合室和压力壳体之间。所述蒸发器、过热器和省煤器分别由一组螺旋盘管形成,每组螺旋盘管分别包括四层螺旋环管,每两层螺旋环管之间有一定的距离,每层螺旋环管是由管子紧密环绕形成的。所述蒸发器还包括蒸发器上集箱、蒸发器下集箱、蒸发器进水管、蒸发器引出管,形成蒸发器的螺旋盘管的上端与蒸发器上集箱连通,形成蒸发器的螺旋盘管的下端与蒸发器下集箱连通,蒸发器进水管与蒸发器下集箱连通,蒸发器引出管与蒸发器上集箱连通;所述过热器还包括过热器上集箱、过热器下集箱、过热器进水管、过热器引出管,形成过热器的螺旋盘管的上端与过热器上集箱连通,形成过热器的螺旋盘管的下端与过热器下集箱连通,过热器进水管与过热器下集箱连通,过热器引出管与过热器上集箱连通;所述省煤器还包括省煤器上集箱、省煤器下集箱、省煤器进水管、省煤器引出管,形成过热器的螺旋盘管的上端与省煤器上集箱连通,形成省煤器的螺旋盘管的下端与省煤器下集箱连通,省煤器进水管与省煤器下集箱连通,省煤器引出管与省煤器上集箱连通;蒸发器进水管、蒸发器引出管、过热器进水管、过热器引出管、省煤器进水管、省煤器引出管均延伸至压力壳体外。所述渣池的上端与对流换热水冷壁下端连接。所述能源利用装置为气流床气化炉,可以是单喷嘴或多喷嘴气化炉,也可以是煤浆或粉煤气化炉,也可以是水冷壁或耐火衬里气化炉等各种形式的气化炉。[0042]本实用新型的工作过程为:气化原料(水煤浆或者干煤粉)和氧化剂混合进入气化炉体中,迅速发生气化反应,生成高温高压的粗合成气(温度约为1400°C)。高温合成气流从合成气入口进入热回收装置后,向下通过辐射换热腔后,改变方向,反折向上进行降温冷却,并回收大量的显热。该热回收装置省去了辐射锅炉与预热锅炉之间的连接部分,并尽可能多的回收高温合成气所带显热。热回收装置的气体入口为一窄长的喉部通道,内壁为耐火衬里。高温合成气及熔融渣(温度约1400°C)出气化炉后,通过窄长的喉部通道,以较高的气流速度进入辐射换热部分。辐射换热部分由膜式水冷壁腔及腔内的辐射换热屏组成。高温合成气及熔融渣进入水冷壁腔中,以辐射传热的方式将热量传给四周的膜式水冷壁。由于流通面积扩大,熔融渣在气流作用下向四周喷溅,从离开喉部通道至到达膜式水冷壁的过程中,被充分冷却,固化失去黏结性,在重力作用下落入辐射换热部分底部的渣池中。辐射换热屏在膜式水冷壁腔的中下部,它的存在增大了辐射换热面,减少了辐射换热部分的体积,使换热效果更好。渣池处于辐射换热部分的底部。固化后的灰渣穿过膜式水冷壁腔后,落入底部的渣池中,在渣池中与水混合急剧冷却,形成高硬度的固态灰渣。灰渣随水排入锁渣罐中。在渣池附近设置吹扫装置,进行防结渣沉淀扰动,保证排渣系统的可靠稳定运行。对流换热部分由若干组螺旋盘管组成,螺旋盘管外层为膜式水冷壁。每组螺旋盘管由四层紧密环绕的螺旋环管组成,每组螺旋盘管错列布置。经排水降温的合成气依次流过蒸发器、过热器、省煤器·并与里面的水进行换热冷却。
权利要求1.带烟气激冷的一体化束状辐射预热混合式能源利用装置,其特征在于:包括通过法兰连接的气化炉体和热回收装置,气化炉体设置于热回收装置上方;气化炉体包括气化炉的压力壳体、气化炉的耐火衬里或者水冷壁、喷嘴通道,气化炉的压力壳体内设置的气化炉的耐火衬里或者水冷壁,气化炉体的顶部设置喷嘴通道;所述热回收装置包括压力壳体、合成气入口、辐射换热组件、烟气激冷组件、对流换热组件、渣池、合成气出口,合成气入口位于压力壳体的顶部,合成气出口位于压力壳体侧壁的上端;辐射换热组件固定设于压力壳体内的上部,与带热量的气体充分换热;烟气激冷组件、对流换热组件均固定设置于压力壳体内的下部,对流换热组件在烟气激冷组件和压力壳体之间;渣池设置于压力壳体内的底部,渣池的底端与压力壳体的底端共同形成排渣口 ;辐射换热组件、对流换热组件、烟气激冷组件、渣池位于压力壳体内形成一体。
2.根据权利要求1所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述合成气入口下端为一窄长通道,该通道的内壁为耐火衬里。
3.根据权利要求1所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述辐射换热组件纵向设于压力壳体内;辐射换热组件包括辐射水冷壁和辐射屏,辐射水冷壁是由若干个纵向平行设置的立管围成的圆筒壁,相邻的两个立管通过焊接连接,圆筒壁的中间为辐射换热腔,圆筒壁向下延伸至渣池上端,辐射屏位于圆筒壁内上端;辐射换热组件还包括辐射水冷壁上集箱、辐射水冷壁下集箱、辐射水冷壁进水管、辐射水冷壁引出管和辐射水冷壁受热面,辐射水冷壁上集箱与每个立管的上端连通,辐射水冷壁下集箱与每个立管的下端连通,辐射水冷壁进水管的一端与压力壳体固接并设在压力壳体的外部、辐射水冷壁进水管的另一端与辐射水冷壁上集箱连通,辐射水冷壁引出管的一端与压力壳体的上封头固接、另一端与辐射水冷壁上集箱连通。
4.根据权利要求3所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述辐射屏由若干个立管排形成,立管排以热回收装置的中心向外发散分布于辐射换热腔内,每个立管排由若干立管形成,立管排的相邻两个立管紧贴设置;辐射换热组件还包括辐射屏上集箱、辐射屏下集箱、辐射屏进水管、辐射屏引出管,辐射屏受热面的下端与辐射屏下集箱连通,辐射屏受热面的上端与辐射屏上集箱连通,辐射屏进水管和辐射屏引出管分别与辐射屏下集 箱和辐射屏上集箱连通,并引出到压力壳体外。
5.根据权利要求3或4所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述烟气激冷组件包括激冷气入口和气体混合室,气体混合室由辐射屏下面的辐射水冷壁与激冷气入口形成;所述激冷气入口均匀分布于辐射水冷壁上,并延伸至压力壳体外。
6.根据权利要求1所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述对流换热组件包括蒸发器、过热器和省煤器,蒸发器、过热器和省煤器从上往下依次布置于气体混合室和压力壳体之间。
7.根据权利要求6所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述蒸发器、过热器和省煤器分别由一组螺旋盘管形成,每组螺旋盘管分别包括四层螺旋环管,每两层螺旋环管之间有一定的距离,每层螺旋环管是由管子紧密环绕形成的。
8.根据权利要求7所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述蒸发器还包括蒸发器上集箱、蒸发器下集箱、蒸发器进水管、蒸发器引出管,形成蒸发器的螺旋盘管的上端与蒸发器上集箱连通,形成蒸发器的螺旋盘管的下端与蒸发器下集箱连通,蒸发器进水管与蒸发器下集箱连通,蒸发器引出管与蒸发器上集箱连通;所述过热器还包括过热器上集箱、过热器下集箱、过热器进水管、过热器引出管,形成过热器的螺旋盘管的上端与过热器上集箱连通,形成过热器的螺旋盘管的下端与过热器下集箱连通,过热器进水管与过热器下集箱连通,过热器引出管与过热器上集箱连通;所述省煤器还包括省煤器上集箱、省煤器下集箱、省煤器进水管、省煤器引出管,形成过热器的螺旋盘管的上端与省煤器上集箱连通,形成省煤器的螺旋盘管的下端与省煤器下集箱连通,省煤器进水管与省煤器下集箱连通,省煤器引出管与省煤器上集箱连通;蒸发器进水管、蒸发器引出管、过热器进水管、过热器引出管、省煤器进水管、省煤器引出管均延伸至压力壳体外。
9.根据权利要求1所述的一体化束状辐射锅炉预热锅炉混合式热回收装置,其特征在于:所述渣池的上 端与对流换热水冷壁下端连接。
专利摘要本实用新型涉及带烟气激冷的一体化束状辐射预热混合式能源利用装置,包括气化炉体和热回收装置,热回收装置为束状热回收装置,包括辐射换热组件、烟气激冷组件、对流换热组件,辐射换热组件设于压力壳体内的上部,与带热量的气体充分换热;烟气激冷组件、对流换热组件均设置于压力壳体内的下部,对流换热组件在烟气激冷组件和压力壳体之间;辐射换热组件、烟气激冷组件、对流换热组件形成一体;本实用新型可有效吸收气化后的粗合成气显热,产生高压蒸汽或中压蒸汽用于发电或预热其他工质,整体能源利用率大大提高,能量回收利用率高;有效地缩减了废热锅炉整体尺寸,制造、运输和安装较为方便,可消除对流换热面的积灰问题。
文档编号C10J3/74GK203128511SQ201220678719
公开日2013年8月14日 申请日期2012年12月11日 优先权日2012年12月11日
发明者曹立勇, 张春飞, 张媛, 张鑫, 刘正宁, 郭盼, 杜奇, 樊伟, 李阳, 胡春云, 胡红伟 申请人:中国东方电气集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1