生物燃料和通过异构化复分解来制备的方法与流程

文档序号:16044435发布日期:2018-11-24 10:44阅读:267来源:国知局

背景技术

越来越多的环境意识和即将出现的化石石油衍生燃料短缺引发了对源自植物油的生物燃料的日益増长的需求。生物柴油目前通过植物油或动物脂肪与甲醇的酯交换产生,其将三酰基甘油转化为脂肪酸甲酯(fame)和甘油。全球植物油产量的约80%(107mt/a)需要满足食品需求,其余20%转化为生物燃料(11mt/a)或用于其它工业用途(15mt/a)。在欧洲联盟,en590目前对柴油燃料的fame含量要求为7%,到2020年计划增加到10%。

生物柴油除了作为国内来源的可再生和可生物降解的材料外,还具有优于常规柴油的一些有益特性,诸如其固有的润滑性、较低硫含量和较高的闪点。当少量添加时,fame对柴油燃料的性质具有大部分有益效果。然而,由于其对氧化、高粘度和倾点的不稳定性以及氮氧化物的増加释放,以较大百分比或纯净形式使用生物柴油是有问题的。因此,能够处理更具挑战性的机械和化学特性的专用引擎对于其目前形式的生物柴油是强制性的。

虽然已经提出了与fame作为生物燃料相关的一些问题的解决方案,但是它们不利的沸腾行为仍然是一个主要挑战。石油柴油在约160℃至390℃范围内具有均匀的升高沸点曲线(图1)。相比之下,主要由c18甲酯组成的油菜籽甲基酯(rme)具有大致330℃至400℃的不利的窄的沸腾范围。生物柴油的初始沸点远高于石油柴油的沸点,这影响了其点火行为,并排除了具有微粒过滤器的现代柴油引擎所要求的后期喷射。

对于石油柴油的标准en590:2013-04要求平稳上升的沸点曲线,以确保最佳的燃料点火和燃烧。目前,植物油需要通过能量密集型加氢处理转化为饱和烃的混合物,以符合该标准并允许为标准柴油引擎提供动力。为了寻找替代方案,2012年,montenegro和meier使rme与1-己烯进行交叉复分解,并获得了烯烃、单酯和二酯的混合物。然而,与平滑的石油柴油曲线相比,产品混合物的曲线具有不连续的步骤并且超出规定(图1)。

用于将不饱和烃转化为各种链长的不饱和烃的组合物的另一种方法是使烯烃复分解异构化。异构化和复分解反应在异构化催化剂和复分解催化剂的存在下同时进行,两者均对特定的双键位置无选择性。唯一有效的异构化催化剂[pd(μ-br)(tbu3p)]2不断地将烯属底物转化为双键异构体的平衡混合物。所有这些在nhc-钌催化剂下连续经历烯烃复分解。通过这种重复的协同作用,双金属系统将单烯烃或烯烃混合物转化为具有可调节平均链长度的限定共混物。

ohlmann等人2012年已证实异构化复分解可用于将油酸酯转化成多种不饱和化合物。此外,如果将己烯加入到反应中,则油酸酯可转化成具有较小平均链长的化合物。产物中的链长分布取决于各种因素,诸如前体的链长和比率以及催化剂的选择和比率。然而,ohlmann的方法通常不适用于生产生物燃料。首先,尚未证明该方法适用于衍生自植物油的粗酯。此外,在工业过程中使用大量的己烯将是相对成本密集的。此外,己烯不能从天然来源获得,因此不是用于制备生物燃料的适当起始化合物,生物燃料应来源于天然来源。

pfister等人2015年已提出异构化复分解将是在存在1-己烯的情况下由油菜籽油生成生物柴油的工具。然而,该方法还需要己烯并且因此由于上述原因不适用于生物燃料生产。此外,没有公开加工条件和产品组合物。

乙烯是一种可从天然来源以大量和低成本获得的烯烃。然而,在上述方法中,由于各种原因,己烯无法简单地由乙烯取代。首先,在这种复杂的过程中难以处理气态乙烯,因此单独的液体己烯不能简单地用乙烯代替。更重要的是,通常已知乙烯结合并抑制用于异构化或复分解的标准催化剂。在那里,三种不同的反应乙烯醇分解、异构化和复分解通常是不相容的。

baader等人2014年已经描述了用于通过异构化乙烯醇分解合成特定有机化合物的方法。然而,他们的方法只能在溶剂中进行。溶剂不适用于工业规模生产生物燃料,因为它们对产品有重大影响并且也出于成本原因。鉴于这些问题,在现有技术中没有描述用于将乙烯加入植物油或fame中的异构化乙烯醇分解。

总之,本领域仍然需要用于由天然来源生产生物燃料和生物柴油的有效方法。此外,一直需要改进生物燃料,使得它们满足或至少接近柴油燃料的基本工业要求。

本发明要解决的问题

本发明要解决的问题是提供克服了上述问题的生物燃料及其生产方法。

本发明要解决的问题是提供一种用于由天然来源诸如植物油生产生物燃料的有效方法。该方法应相对有效,并且仅包括少量的方法步骤。起始化合物应可自由使用。此外,该方法应利用来自天然来源的起始化合物,使得该产品是真正的生物燃料。

本发明的要解决的具体问题是提供一种用于生产生物燃料的方法,该方法使用乙烯作为起始化合物。这种方法比使用己烯的方法更具成本效益,并且能够由纯天然前体生产生物燃料。

本发明的另一个问题是提供具有改善特性的生物燃料,该生物燃料可适用作生物柴油,并且可大量地混合到石油柴油中。因此,物理特性应尽可能与石油柴油相似。本发明的具体问题是提供基本上或完全符合en590:2013-04中定义的石油柴油的标准要求的生物燃料,尤其是关于热特性或沸腾行为。具体地,应提供具有平稳上升的沸点曲线和最佳燃料点火和燃烧行为的生物柴油。



技术实现要素:

1.一种用于由通过植物油的酯交换获得的脂肪酸甲酯(fame)生产生物燃料的方法,包括以下步骤:

(a)在乙烯和乙烯醇分解催化剂存在下脂肪酸甲酯的乙烯醇分解,以及

(b)在异构化催化剂和复分解催化剂存在下的异构化复分解。

2.根据点1所述的方法,其中植物油和/或脂肪酸甲酯包含基于酯化和游离形式的脂肪酸的总量的超过80mol%的不饱和脂肪酸,其中植物油优选是油菜籽油、大豆油、麻风树油或妥尔油。

3.根据前述点中至少一项所述的方法,其中异构化催化剂为有机金属钯催化剂,优选溴(三叔丁基膦)钯(i)二聚体(ic-1)。

4.根据前述点中至少一项所述的方法,其中乙烯醇分解催化剂和/或复分解催化剂是有机金属钌催化剂,优选n-杂环卡宾钌络合物。

5.根据前述点中至少一项所述的方法,其中乙烯醇分解(a)和异构化复分解(b)同时进行。

6.根据点5所述的方法,其中乙烯醇分解催化剂是[[1-[2,6-双(1-甲基乙基)苯基]-3,3,5,5-四甲基-2-吡咯烷亚基]二氯[[2-(1-甲基乙氧基-κo)苯基]亚甲基-κc]钌(ii)(ru-caac),其中优选地异构化催化剂为溴(三叔丁基膦)钯(i)二聚体(ic-1),其中优选地复分解催化剂选自[1,3-双(2,6-二异丙基苯基)-2-咪唑烷亚基]二氯[5-(异丁氧基羰基酰氨基)-2-异丙氧基亚苄基]钌(ii)(m73slpr)、[1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基]二氯(2-碘苯基亚甲基)钌(ii)(m91)和[1,3-双(2,6-二异丙基苯基)-2-咪唑烷亚基]二氯[(2-异丙氧基)(5-五氟苯甲酰基氨基)亚苄基]钌(ii)(m72s1mes)。

7.根据前述点中至少一项所述的方法,其中乙烯醇分解催化剂和复分解催化剂是相同的催化剂。

8.根据前述点中至少一项所述的方法,其中该方法在没有溶剂的情况下进行。

9.根据前述点中至少一项所述的方法,其中步骤(b)中获得的生物燃料在后处理步骤中进一步处理,后处理步骤不化学改变脂肪酸的链长,特别是在物理处理步骤诸如洗涤、过滤或蒸馏中,或在吸附、抗氧化或硫去除处理中。

10.能够通过点1至9中至少一项所述的方法获得的生物燃料。

11.根据点10所述的生物燃料,其中烯烃的平均链长为4.5至14,和/或不饱和单酯的平均链长为6.5至15,和/或不饱和二酯的平均链长为7至17,其中所有量均在氢化后通过气相色谱法测定。

12.根据点10或11所述的生物燃料,其中主链中包含多于22个碳原子的化合物的摩尔量低于2%,其中所有量均在氢化后通过气相色谱法测定。

13.根据点10至12中至少一项所述的生物燃料,其分别具有烯烃和/或不饱和二酯的分子量分布,其基本上遵循具有单一最大值的均匀曲线,其中所有量均在氢化后通过气相色谱法测定。

14.根据点10至13中至少一项所述的生物燃料,其具有根据eniso3405测定的沸腾曲线,其至少在180℃至350℃基本上遵循没有峰值或阶梯的上升曲线,和/或其中分别根据en590:2013-04测定的在250℃下沸腾期间的回收率为<65%,350℃下的回收率为至少85%,和/或360℃下的回收率为至少95%。

15.根据点10至14中至少一项所述的生物燃料,其包含25mol%至90mol%的烯烃、10mol%至80mol%的不饱和单酯和1mol%至20mol%的不饱和二酯,其中所有量在氢化后通过气相色谱法测定。

16.乙烯用于在根据点1至8中任一项所述的方法中调节和/或优化生物燃料组合物的用途。

具体实施方式

令人惊讶的是,发现通过根据权利要求所述的方法、生物燃料和用途克服了本发明要解决的问题。在整个说明书中概述了本发明的其它实施方案。

本发明的主题是一种用于由通过植物油的酯交换获得的脂肪酸甲酯(fame)生产生物燃料的方法,包括以下步骤:

(a)在乙烯和乙烯醇分解催化剂存在下脂肪酸甲酯的乙烯醇分解,以及

(b)在异构化催化剂和复分解催化剂存在下的异构化复分解。

本发明的方法用于生产生物燃料。生物燃料是至少部分地源自生物质的燃料。优选地,它完全源自生物质。优选地,生物燃料是生物柴油。生物柴油基于或包含大量的脂肪酸甲酯。它与石油柴油完全混溶。优选地,生物柴油满足en14214:2012,5.4.3中规定的要求,因此根据dinen590:2013-12可向石油柴油添加高达7.0%(v/v)的量。

本发明方法使用脂肪酸甲酯(fame)作为起始物质。用于通过酯交换由植物油生产fame的方法是本领域熟知的。在此类方法中,用甲醇处理植物油,使得三酰基甘油被转化成fame和甘油。

乙烯醇分解是一种化学过程,其中使用乙烯作为试剂降解内烯烃化合物。该反应是交叉复分解的具体示例。因此,获得两种含有末端烯烃基团(α-烯属化合物)的化合物。在具有挥发性低分子量乙烯的特定结合位点的特定金属催化剂存在下进行乙烯醇分解。在本反应中,乙烯可与单酯、二酯或烯烃反应。

优选地,乙烯为生物乙烯和/或用于生产fame的甲醇是生物甲醇,即来源于天然来源。

复分解是其中两种反应化合物之间的键交换的化学反应。烯烃异构化是其中烯烃化合物中双键的位置发生变化的过程。在异构化复分解中,复分解反应和异构化反应在同一批次中同时进行。由于异构化连续地在不同位置提供具有双键的异构体,并且复分解反应连续地提供各种链长的产物,因此获得了越来越多的统计反应产物。异构化复分解的基本原理如下面的方案1所示。例如,当用乙烯(y=h)处理起始化合物甲酯(x=coome)时,将获得烯烃、单酯和二酯的共混物。如方案1中所示,异构化催化剂通常是有机金属钯催化剂,并且复分解催化剂通常是有机金属钌催化剂。在具有等摩尔量的两种起始化合物的理想的异构化复分解反应中,如方案1的右侧所示,将获得钟形均匀分布的产物(来源:d.m.ohlmann,n.tschauder,j.-p.stockis,k.gooβen,m.dierker,l.j.gooβen,j.am.chem.soc.2012,134,13716-13729)。

方案1:异构化复分解的一般途径

优选地,植物油包含相对高含量的不饱和脂肪酸,主要是酯形式。在一个优选的实施方案中,植物油和/或脂肪酸甲酯包含基于以酯化和游离形式存在的脂肪酸的总量的大于80mol%,优选大于85mol%或大于90mol%的不饱和脂肪酸。通常,在酯交换过程中保留或基本上保留双键以产生fame。不饱和脂肪酸可包含一个或多个双键,例如两个、三个、四个或更多个双键。原则上,本发明方法也适用于包含较少量的不饱和化合物的植物油。然而,所得产物将具有较不理想的性质,因为饱和脂肪酸在本发明方法中不可转化,因此不能进行改性。

在一个优选的实施方案中,植物油是油菜籽油、大豆油、麻风树油或妥尔油。这些油具有相对高含量的不饱和脂肪酸。

在一个非常优选的实施方案中,植物油是油菜籽油。油菜籽油fame包含约65%的油酸甲酯[18:1]、22%的亚油酸甲酯[18:2]、8%的亚麻酸甲酯[18:3]、4%的硬脂酸甲酯[16:0]和1%的棕榈酸甲酯[18:0]。因此,不饱和脂肪酸的总含量为约95%。只有其余的5%硬脂酸酯和棕榈酸酯在本发明方法中不可转化并以未改性形式保留在生物燃料产品中。

在另一实施方案中,采用油菜籽甲酯(rme),其为具有16至22个碳原子的不饱和脂肪酸甲酯的混合物。甲醇与精制油菜籽油的反应产生油菜籽甲酯,为透明、低粘度、易燃和水不溶性液体。

本发明方法需要特定的催化剂,其催化三种主要反应乙烯醇分解、异构化和复分解反应。根据本发明,发现了可适用各种催化剂以及催化剂的组合。一些催化剂甚至能够同时有效地介导乙烯醇分解和复分解。然而,发现选择催化剂的组合以使得与其它反应相比发生有效的乙烯醇分解是至关重要的。乙烯醇分解必须能够与其它反应竞争。发现当乙烯醇分解进行得太慢时,所需的低分子量转变不足并且可能获得不希望的宽分子量分布,导致生物燃料的不希望的物理性质。因此,在异构化和复分解期间或之前,需要将“结构单元”乙烯充分引入目标化合物中。只有这样,才能获得低分子量的强烈整体转变以及相对低含量的不希望的高分子量化合物。这意味着乙烯醇分解催化剂必须非常有效,或者异构化和/或复分解催化剂不应太有效以实现乙烯醇分解和其它反应之间的必要平衡。通过用下面概述的适当的催化剂和反应条件调节这种平衡,可获得具有优异物理特性的生物燃料。

优选地,控制异构化反应使得每个底物分子发生不超过50个、优选不超过20个异构化反应。优选地,每个底物分子发生2至50个,更优选4至20个异构化反应。如果异构化反应的数量太高,则总分子量分布太平并且不需要的高分子量组分的量过高。优选地,控制复分解反应,使得每个fame的底物分子(不饱和分子)发生至少1次复分解反应,优选5至50次复分解反应。通过计算机模拟反应过程,可从真实的生物燃料组合物中确定在给定生物燃料中发生的反应的数量,直到理论结果可尽可能精确地与真实组合物一致。

在具体的实施方案中,通过步骤a)和b)两者按照本发明的方法特定分子平均反应多于一次,因此重复进行乙烯醇分解(a)和异构化复分解(b)。

烯烃异构化催化剂可为均相催化剂或非均相催化剂。

在具体实施方案中,异构化催化剂是有机金属催化剂,该金属选自钌、铑、铱、铂、钯以及它们的组合。在另一个具体实施方案中,异构化催化剂是有机金属钯催化剂。这种有机金属钯催化剂可含有不同氧化态的钯,诸如pd(0)、pd(i)、pd(ii)或它们的组合。优选地,钯催化剂含有至少一种结构元素pd-p(r1r2r3),其中r1至r3基团各自独立地具有2至10个碳原子,每个可为脂族、脂环族、芳族或杂环,前提条件是r1至r3基团中的至少一者含有β-氢。脂族基团可为直链或支链的;它们也可为环状形式的;提及的结构元素也可组合存在。芳族基团也可具有烷基取代基。当钯催化剂中存在pd-p-c-c-h排列时,存在β-氢。发现这种催化剂可以有利的方式与本发明方法中的用于乙烯醇分解和复分解的催化剂组合,并且可有效地调节和控制这种催化剂体系。

优选地,钯催化剂不需要通过附加活化物质进行化学活化。钯催化剂可原样使用或原位生成。

钯催化剂可为单核或多核。在一个实施方案中,钯催化剂每分子含有两个钯原子。两个钯原子可具有相同或不同的氧化态,其可选自pd(0)、pd(i)、pd(ii)或它们的组合。

在一个实施方案中,钯催化剂每分子含有两个钯原子,其中两个钯原子经由间隔基x彼此连接。因此,钯催化剂含有结构元素pd-x-pd。间隔基的性质本身不受任何限制。合适的间隔基x为例如卤素、氧、o-烷基、硫、硫烷基、二取代的氮、一氧化碳、腈、二烯烃。

在一个优选的实施方案中,钯催化剂为化合物(i):

其中:x是选自卤素、氧和o-烷基的间隔基,y1是p(r1r2r3)基团,其中r1、r2和r3各自如上所定义,y2是p(r4r5r6)基团,其中r4、r5和r6各自独立地具有2至10个碳原子,每个可为脂族、脂环族、芳族或杂环。

由该定义得出,化合物(i)在结构元素pd-y1中含有至少一个β-氢(由于其中存在r1至r3基团)。在结构元素pd-y2中,不一定存在β-氢。

在一个优选的实施方案中,钯催化剂为化合物(i-a)

其中x、y1和y2如上面化合物(i)所概述的那样定义。

特别优选其中间隔基为卤素,尤其是溴的那些化合物(i)或(i-a)。非常特别优选其中间隔基x为溴且r1、r2和r3基团各自定义为叔丁基的那些。

在一个实施方案中,钯催化剂为均相催化剂。在一个实施方案中,钯催化剂为非均相催化剂。在一个具体的实施方案中,式(i)的钯催化剂经由y1和/或y2基团固定在固体基质上或离子液体中。

在一个高度优选的实施方案中,钯催化剂为溴(三叔丁基膦)钯(i)二聚体(ic-1,参见方案2)。发现该催化剂比其它基于钯的异构化催化剂更高效。此外,它还与反应体系中的乙烯和其它催化剂相容。

优选地,乙烯醇分解催化剂和/或复分解催化剂是有机金属钌络合物。在一个优选的实施方案中,乙烯醇分解催化剂和/或复分解催化剂,优选两者都是n-杂环卡宾钌络合物。这种催化剂及其在烯烃复分解中的应用是本领域已知的。关于结构和反应,参考beligny,s和blechert,s(2006),“n-heterocyclic“carbene-rutheniumcomplexesinolefinmetathesis”,inn-heterocycliccarbenesinsynthesis(eds.p.nolan),wiley-vchverlaggmbh&co.kgaa,weinheim,germany。一些催化剂能够催化乙烯醇分解和复分解。发现此类催化剂可以有利的方式与本发明方法中的异构化催化剂组合,并且可有效地调节和控制此类催化剂体系。

在一个优选的实施方案中,乙烯醇分解催化剂选自二氯(邻-异丙氧基苯基亚甲基)(三环己基膦)钌(ii)(hgi,hoveydagrubbsi催化剂;方案2)、[1,3-双(2,6-二异丙基苯基)-2-咪唑烷亚基]二氯[5-(异丁氧基羰基酰氨基)-2-异丙氧基亚苄基]钌(ii)和[[1-[2,6-双(1-甲基乙基)苯基]-3,3,5,5-四甲基-2-吡咯烷亚基]二氯[[2-(1-甲基乙氧基-κo)苯基]亚甲基-κc]钌(ii)(ru-caac,方案2)。

在优选的实施方案中,复分解催化剂选自[1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基]-[2-[[(2-甲基苯基)亚氨基]甲基]-苯酚基]-[3-苯基-1h-茚-1-亚基](氯)钌(ii)(ru-1,方案2)、[1,3-双(2,6-二异丙基苯基)-2-咪唑烷亚基]二氯[5-(异丁氧基羰基酰氨基)-2-异丙氧基亚苄基]钌(ii)(m73slpr,得自umicore,de,商标为umicorem73slpr,方案2)、[1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基]二氯(2-碘苯基亚甲基)钌(ii)(umicorem91)或[1,3-双(2,6-二异丙基苯基)-2-咪唑烷亚基]二氯[(2-异丙氧基)(5-五氟苯甲酰氨基)亚苄基]钌(ii)(umicorem72slmes)。这些催化剂也可具有一些乙烯醇分解活性。

在一个优选的实施方案中,在异构化复分解(b)之前进行乙烯醇分解(a)。如果在异构化复分解之前进行乙烯醇分解(a),则可使用任何有效的乙烯醇分解催化剂,诸如hgi或ru-caac。在该实施方案中,优选在异构化复分解之前除去或灭活催化剂。

在一个高度优选的实施方案中,乙烯醇分解(a)和异构化复分解(b)同时进行。换句话说,两种反应在乙烯醇分解催化剂、异构化催化剂和复分解催化剂的存在下在同一批次中进行。反应可部分或优选完全同时进行。在这种组合反应中,特别优选的是,乙烯醇分解催化剂是ru-caac。发现该催化剂介导将“结构单元”乙烯有效引入目标组合物中。该催化剂特别适用于获得所需的向低分子量化合物的总体强烈转变,而不会产生不希望的高分子量化合物的积累。

此外,发现如果乙烯醇分解(a)与异构化复分解(b)在ru-caac存在下在同一批次中同时进行,则复分解催化剂m73slpr、m72slmes或m91是有效的。这些催化剂彼此高度相容,并且也与异构化催化剂,特别是ic-1高度相容。令人惊讶的是,所有三个反应在这些催化剂和乙烯的存在下平行进行。令人惊讶的是,批料中的其它催化剂不受乙烯抑制。此外,通过调节催化剂的量和条件,可严格控制产物组成,从而控制物理性质。

在一个高度优选的实施方案中,乙烯醇分解催化剂和复分解催化剂是一种相同的催化剂。在该实施方案中,总反应仅需要两种催化剂,即异构化催化剂和组合的乙烯醇分解/复分解催化剂。从而显著简化了该方法。

在另一个优选的实施方案中,该方法在单一批次中进行,但在异构化复分解至少部分进行或直至达到平衡之后加入乙烯。在该实施方案中,根据所用的催化剂,在加入乙烯之后可抑制或降低异构化。据发现,也可根据这种修改的方法获得具有有利特性的生物燃料,并且可绕过或减少关于乙烯的催化剂抑制的问题。

虽然随后可随时间推移添加反应物或催化剂,但优选以单釜反应的方式进行该过程,其中将所有反应物和催化剂组合并开始该过程。可将乙烯以固定量装入到反应容器中,或以连续料流的形式引入。

反应温度可由技术人员容易地确定,通常为0℃至100℃,更具体地为20℃至80℃,但在25℃至65℃的温度下可获得良好的结果,或在40℃至60℃的温度下也可获得良好的结果。

在一个优选的实施方案中,参与反应的乙烯:不饱和脂肪酸甲酯的摩尔比为10:1至1:10,优选5:1至1:5,更优选2:1至1:2。选择乙烯的量使得生物燃料具有所需特性。由目标化合物摄取的乙烯越多,则生物燃料组分的平均分子量越低。因此,生物燃料的沸点曲线和其它物理特性不仅可由所使用的催化剂控制,而且还可由所提供的乙烯的量,即乙烯的可用性来控制。通过增加乙烯的量,沸点曲线可转移到较低的温度。乙烯的使用是特别有利的,因为化合物的平均分子量可强烈地并且以受控的方式转移到较低的值。可在较低温度下蒸发相对大量的所得生物燃料。因此,生物燃料适合作为生物柴油。当在该方法中使用高效的乙烯醇分解催化剂诸如ru-caac时,可降低所用的乙烯的量。

在一个优选的实施方案中,该方法在没有溶剂或更具体地没有附加溶剂的情况下进行。令人惊奇的是,据发现当在步骤a)和b)中不加入溶剂时,整个反应进行。这是出乎意料的,因为现有技术中描述的典型的异构化乙烯醇分解反应需要加入溶剂。特别是在单步法中,其中乙烯醇分解和异构化复分解同时进行,出乎意料的是可鉴定催化剂,其在没有溶剂的情况下介导反应。在现有技术中经常需要添加溶剂以使一种或多种所用的催化剂由于低溶解度而可用于反应,在反应混合物中溶解更大量的乙烯,因为它在所用的fame中不能充分溶解,或两者。现有技术中使用的典型溶剂是例如己烷、甲苯或二氯甲烷,它们作为溶剂加入到反应混合物中或用作加入的催化剂溶液的溶剂。根据本发明,这两者都不是必需的。

根据本发明,已发现异构化复分解的标准条件例如由ohlmann等人2012的己烯所描述的,不能转移到本发明的方法中。发现标准乙烯醇分解催化剂与ohlmann等人2012年描述的催化剂体系不相容。不受理论的约束,假定乙烯可能通过乙烯的结合抑制异构化催化剂ic-1。因此,本发明方法可为顺序方法,其中在异构化复分解b)之前进行乙烯醇分解(a)。尽管如此,有必要鉴定无溶剂条件,以使这种顺序反应适用于生物燃料的生产。如上所述,本发明人能够鉴定相容的催化剂并催化同一批次中的三种不同反应。单步方法由特殊反应条件支持。

在一个优选的实施方案中,单步反应不在显著增强的压力下进行,优选低于2巴或低于1.5巴。例如,压力可为0.5巴至1.5巴。优选地,它在常压下进行(即不施加欠压或过压)。令人惊讶的是,该反应在特定催化剂体系的相对低压下有效。通常,与乙烯的反应在增压下进行,以通过将平衡转移到产物来支持反应。然而,发现本发明的方法在增强的压力下可能相对低效。具体地,发现异构化催化剂ic-1的性能在增强的压力下是低的。然而,当在常压下提供乙烯时,发现ic-1具有足够的活性。在一个优选的实施方案中,进行单步方法,使得向组合物提供恒定的乙烯流量。这可通过特殊设备实现,诸如封闭玻璃反应器或钢制高压釜。该反应优选在不存在氧气的惰性条件下进行。

反应中使用的催化剂的量可分别为0.0001mol%至1mol%。用于乙烯醇分解和/或复分解的钌催化剂的量可为0.001mol%至0.5mol%,并且用于异构化的钯催化剂的量可为0.001mol%至0.5mol%。

当达到所需的转化率时,终止总反应,步骤(a)或步骤(b)。可通过抑制或除去催化剂来终止反应。生物燃料与催化剂分离,例如通过机械方法诸如过滤或筛分,或通过蒸馏。在一个优选的实施方案中,用h2o2抑制钌催化剂,并将水相与产物分离。在一个优选的实施方案中,从该水相中获得残余产物以提高收率。

如果需要,可在后处理步骤中处理生物燃料,该后处理步骤不会化学改变脂肪酸的链长。这些后处理步骤可为物理或化学处理步骤。优选的是物理处理步骤,诸如洗涤、过滤或蒸馏。还优选的是吸附、抗氧化或硫去除处理。在一个具体实施方案中,烯烃和酯的化学结构在后处理中基本上不变化。

本发明的主题是还可通过本发明方法获得的生物燃料。在下文中,描述了能够通过本发明方法获得的生物燃料。通过由fame与乙烯的本发明反应,获得特定的独特产物。

已发现,由乙烯获得的产物具有烯烃、脂肪酸酯和脂肪酸二酯的有利组合物,其不可通过已知的反应获得。它也不能通过复分解反应或类似的fame组合物与己烯的异构化复分解反应来获得。原因是乙烯“印记”生物燃料组分上的特定总分子量分布,其由于其较高的分子量而不能用己烯获得。对于己烯,分子量分布不能像乙烯那样转移到所需的低分子量。

如果与己烯的反应进行很长时间,由于统计学原因,将形成一些低分子量化合物,但至少在相同程度上将形成不希望的高分子量化合物,特别是含有超过22个碳原子的那些化合物(在主链中,即不包括甲酯基团)。这些高分子量化合物具有如此高的沸点,使得它们在引擎的标准条件下不能蒸发和充分燃烧。尽管可容忍少量,但是当量增加到显著含量时,生物燃料的质量显著积累。

优选地,主链中包含多于22个碳原子的化合物的摩尔量低于3%,更优选低于2%,最优选低于1%。当摩尔量低于2%时,生物燃料仍可充分均匀地燃烧。

转移至较低分子量的独特分子量分布赋予本发明生物燃料有利的物理性质。最重要的是,沸腾行为与石油柴油非常相似,并且与其它生物燃料相比如已知的在高温或低温下不会表现出不利的行为。因此,本发明的生物燃料在燃料点火和燃烧期间不会引起问题,并且可以相对高的量与石油柴油混合。甚至发现可通过本发明的方法制备生物柴油,其基本上满足en590:2013-04对于石油柴油的要求,特别是关于沸腾行为和沸点曲线的过程。

原则上,本发明的方法可提供多种产品。烯烃、单酯和二酯的分子量分布可在宽范围内进行调节。例如,烯烃的平均链长可为3.5至18,不饱和单酯的平均链长为4.5至18和/或不饱和二酯的平均链长为5.5至18。生物燃料可包含5mol%至98mol%的烯烃、10mol%至90mol%的不饱和单酯和0.5mol%至25mol%的不饱和二酯。

根据该申请,生物燃料的组分的量和比例优选通过气相色谱分析确定。气相色谱(gc)是用于分析柴油燃料和生物燃料的标准工业方法。在gc分析之前将组合物氢化。如本文所用,酯的所有链长或碳原子数均仅涉及脂肪酸部分,而不考虑酯化甲醇的碳原子。

在一个优选的实施方案中,烯烃的平均链长为4.5至14,不饱和单酯的平均链长为6.5与15,和/或不饱和二酯的平均链长为7至17,其中所有量均通过气相色谱法测定。更优选地,烯烃的平均链长为5.5至13,不饱和单酯的平均链长为8至14,并且不饱和二酯的平均链长为12至16。发现包含这种主要组分的平均链长的生物燃料对于生物柴油应用具有特别好的热性质。

在一个高度优选的实施方案中,烯烃的平均链长为4.5至14,特别是5.5至13;不饱和二酯的平均链长为7至17,优选12至16;并且主链中包含多于22个碳原子的化合物的摩尔量低于2%,其中所有量均在氢化后通过气相色谱法测定。发现平均链长的这种特定组合与排除高分子量化合物相结合具有作为生物燃料的非常有利的性质。它可通过本发明方法用如上所述的乙烯获得和调节,特别是通过平衡乙烯醇分解与异构化复分解,使得足够量的乙烯作为结构单元引入组合物中。

在一个优选的实施方案中,生物燃料分别具有烯烃和/或不饱和二酯的分子量分布,其基本上遵循具有单个峰的均匀曲线。根据本申请,在氢化后通过气相色谱法测定分子量分布。具体地,烯烃和/或不饱和二酯的分子量分布类似于钟形曲线,然而这通常将不对称。所谓“均匀曲线”是指烯烃和/或二酯的分布的曲线不具有不规则的増加或凹陷,尤其是除了单个主峰之外不具有不规则的峰。但是,特别是烯烃曲线可在低分子量末端“截止”。图2和图3中对于烯烃和二酯所示的曲线被认为符合本说明书。这些基本上均匀的曲线表示大量反应的统计结果。术语“基本上”意味着,不能排除例如在至多2%或至多5%范围内的微小误差或变化,也是由于通过gc确定量导致的典型误差范围。尤其是,分别对于10个最丰富的烯烃和/或二酯,应观察到基本上均匀的曲线。据发现,包含此类均匀分布的生物燃料尤其具有用于生物柴油应用的良好的热特性。

在图2或图3中,也可看出,某些单酯峰落在以其它方式观察到不饱和单酯的均匀曲线之外。这是由于植物油中饱和单酯的初始含量,其在本发明方法中是惰性的并保留在产物中。

在一个优选的实施方案中,生物燃料具有根据eniso3405测定的沸腾曲线,其基本上遵循没有峰或阶梯的上升曲线。具体地,在180℃至300℃,优选在100℃至350℃观察到均匀的曲线。平稳上升的沸腾曲线是非常有利的,因为它类似于石油柴油的沸腾行为(图4)。如上文进一步概述的和如图1所示,通过现有技术中描述的交叉复分解方法无法获得具有均匀沸腾曲线的生物燃料。具有这种均匀沸点曲线的生物燃料对于生物柴油应用具有特别好的热性质。

优选地,沸腾曲线在200℃以下开始,优选在150℃以下开始。优选地,曲线在100℃以上开始,更优选在100℃至150℃开始。

优选地,产品通过astmd6751(2008)关于生物柴油的规定,因为在360℃以下蒸馏出90%的组合物。

在一个优选的实施方案中,根据en590:2013-04测定,250℃下的回收率为<65%,并且在350℃下的回收率为至少85%。因此,本发明的生物燃料满足了在这方面对于石油柴油的工业标准所定义的要求。

在一个优选的实施方案中,根据en590:2013-04测定,360℃下的回收率为至少95%。同样在这方面,本发明的生物燃料满足生物柴油的工业要求。

在一个优选的实施方案中,生物燃料包含25mol%至90mol%的烯烃、10mol%至80mol%的不饱和单酯和1mol%至20mol%的不饱和二酯,其中所有量通过气相色谱法测定。优选地,这三种主要组分的总量为生物燃料的至少90%,更优选至少95重量%。发现包含此类主要组分的含量的生物燃料对于生物柴油应用具有特别好的热性质。然而,如上所述,根据所需的产品特性,可在宽范围内调节组分的摩尔范围。组分的摩尔比还取决于衍生fame的植物油,以及脂肪酸中不饱和双键的含量。

根据本发明,发现这样的产品可用作生物燃料或甚至生物柴油。因此,在一个优选的实施方案中,产物不会进一步用烃、其它酯或有机化合物稀释,尤其是为了调节热性质。

本发明的主题还在于乙烯用于调节和/或优化本发明方法中生物燃料的组成的用途。具体地,该用途用于调节生物燃料的沸腾曲线,尤其是在100℃至200℃或150℃至250℃的较低范围内。

该方法、生物燃料和用途解决了上述问题。生物燃料具有优异的热性能和可用作生物柴油或柴油燃料的混合物的其它性质。可在宽的期望范围内调节组成和热性质。生产过程高效便捷并且使用乙烯,乙烯可自由提供。使用生物乙烯,可获得完全来源于天然来源的生物燃料。

附图中示出了本发明的示例性实施方案和本发明的各方面。

图1:标准石油柴油(点线)、纯rme(上连续线)和交叉复分解rme(虚线)的示意性沸点曲线。

图2:根据实施例1的顺序反应制备的来自rme和乙烯的氢化产物的质量校正气相色谱图。

图3:根据实施例2在单步反应中产生的来自rme和乙烯的氢化产物的质量校正的气相色谱图(由于工艺变化,图2和图3中的保留时间不能直接比较)。

图4:根据eniso3405:2001-04测定的根据实施例1的顺序反应中(点线)、在根据实施例2的单步反应中(虚线)和石油柴油(连续线)产生的来自rme和乙烯的产物的沸点曲线。左上角和右下角的区域显示了en590中定义的石油柴油的“禁用”区域。

实施例

催化剂

在先前的实验中,鉴定了适用于组合的乙烯醇分解和异构化复分解的催化剂。需要大量的实验和勤奋研究来鉴定催化剂和相容且适于同时分批反应的组合。为了克服上述气体乙烯的已知问题及其对钯催化剂的抑制效应,关于异构化复分解的已知方案必须进行相当大的修改。根据工作例使用的由此鉴定的催化剂总结在下面的方案2中。

方案2:优选的催化剂

ic-1:溴(三叔丁基膦)钯(i)二聚体;cas号185812-86-6;sigmaaldrich。

ru-1:[1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基]-[2-[[(2-甲基苯基)亚氨基]甲基]-苯酚基]-[3-苯基-1h-吲哚-1-亚基](氯)钌(ii);cas号:934538-12-2;umicorem42。

ru-caac:[[1-[2,6-双(1-甲基乙基)苯基]-3,3,5,5-四甲基-2-吡咯烷亚基]二氯[[2-(1-甲基乙氧基-κo)苯基]亚甲基-κc]钌(ii);cas号959712-80-2;根据lavallo等人2005年、marx等人2015年和anderson等人2007年制备的。

hgi:二氯(o-异丙氧基苯基亚甲基)(三环己基膦)钌(ii);cas号203714-71-0;hoveydagrubbsi催化剂;sigmaaldrich。

m73sipr:[1,3-双(2,6-二异丙基苯基)-2-咪唑烷亚基]二氯[5-(异丁氧基羰基酰氨基)-2-异丙氧基亚苄基]钌(ii);cas号:1212009-05-6;umicorem73slpr。

实施例1:顺序反应

步骤1:rme的乙烯醇分解

在氩气氛下,向1l搅拌的parr高压釜中装入hgi催化剂(hoveydagrubbsi;3.60g,600μmol)和油菜籽油甲酯(178g,200ml,600mmol,基于油酸甲酯)。将容器用10巴乙烯加压,并且在25℃下搅拌16小时。将反应器冷却至-20℃,并且缓慢释放乙烯压力。升温至环境温度后,将反应混合物在二氧化硅上过滤并在真空下蒸馏(1×10-3mbar,至多250℃),得到比例为82.7:10.0:5.00的1-癸烯和癸烯酸甲酯的混合物:油酸甲酯:二甲基十八碳-9-烯二酸酯以及少量的其它烯烃和rme的饱和组分。由于反应是平衡的,因此无法实现完全转化。在上述无溶剂条件下,溶液中过量的乙烯太少而不能将平衡完全转移到乙烯醇分解产物的一侧。

步骤2:异构化复分解

在氮气氛下的手套箱中,向100mlbüchibmd075微型驱动高压釜中装入根据上述步骤1制备的混合物(54.0g,60.0ml)、ic-1催化剂(303mg,390μmol)和ru-1催化剂(329mg,390μmol)。将所得反应混合物在50℃下搅拌18小时。将反应器冷却至环境温度,并且在剧烈搅拌(1000rpm,kpg搅拌器)下,在0℃下缓慢加入30%的h2o2(27.6ml,270mmol)溶液。分离有机相,在分子筛上干燥,并且在短柱的硅藻土和mgso4上过滤。由于rme并且因此乙烯醇分解产物是不同化合物的混合物,因此仅可基于体积给出收率。从60ml乙烯醇分解混合物开始,分离出50ml的异构化复分解共混物(83%)。通过气相色谱法(gc)分析组合物。为了促进gc,在分析前将样品氢化。通过gc-ms指定峰并校正其质量以生成图2的直方图。

实施例2:单步反应大规模

在氮气气氛下的手套箱中,向1lparr高压釜中装入ru-caac催化剂[cas:959712-80-2](243mg,0.40mmol)、ic-1(1.24g,1.60mmol)、m73slpr催化剂(330mg,0.40mmol)和rme(135ml,400mmol,基于油酸甲酯)。在大气压下将所得反应混合物置于乙烯流下,并且在60℃下搅拌16小时。将反应器冷却至环境温度,并且在剧烈搅拌下,在0℃下缓慢加入30%的h2o2(40.9ml,400mmol)溶液。分离有机相,在mgso4上干燥,并且在短柱的硅藻土和mgso4上过滤,得到75ml的棕色油(基于体积为55%)。如果从水相中回收更多的产物,总收率可増加至75%或更高。在真空下蒸馏(1e-3mbar,>350℃)后,获得产物混合物为浅黄色液体(在蒸馏后>98重量%回收率)。通过气相色谱法(gc)分析组合物。为了促进gc,在分析前将样品氢化。通过gc-ms指定峰并校正其质量以生成图3的直方图。

实施例3:具有优化收率的单步反应

在氮气气氛下的手套箱中,向30ml的玻璃反应器中装入ru-caac催化剂[cas:959712-80-2](30.3mg,50.0μmol)、ic-1(155mg,200μmol)、m73slpr催化剂(41.3mg,50.0μmol)和rme(16.9ml,50mmol,基于油酸甲酯)。在大气压下将所得反应混合物置于乙烯流下,并且在60℃下搅拌16小时。将这些批次中的两批合并,冷却至环境温度,并在剧烈搅拌下在0℃缓慢加入30%h2o2溶液(5.11ml,50mmol)。分离有机相,在mgso4上干燥,并且在短柱的硅藻土和mgso4上过滤,得到25ml的棕色油(基于体积为74%)。在真空下蒸馏(1e-3mbar,>350℃)后,获得24ml的产物混合物为浅黄色液体(在蒸馏后回收率为96%)。

实施例4:作为生物柴油的产物特性和适用性

研究了实施例1和实施例2的产物的物理和化学特性以及作为生物柴油的适用性。蒸馏分析在eniso3405:2001-04装置中进行,并提供图4中所示的实验沸点曲线(连续线是用于比较的石油柴油)。由于在360℃以下蒸馏90%后,该产品通过astmd6751(2008)在此方面关于生物柴油的规定。它还通过了en590:2013-04中详述的关于石油柴油燃料的规定,即在250℃时回收率<65%,并且在350℃时回收率为至少85%。实施例1的产物在最多360℃下具有约95%的回收率。实施例2的产品清楚地满足了在最高360℃下至少95%的要求,因此满足所有沸腾规定。此外,在蒸馏过程中对所有产物都没有看到分解,这表明非常高分子量的不希望的组分的低含量,以及不需要的多不饱和组分。可遵循本发明的反应提供具有优异物理性质的生物燃料,并且由于更均匀的组合物,一步反应的产物甚至更有利。

使用用于燃料测试的标准方法进行的进一步分析表明,该材料的硫含量<5mg/kg,粘度为2.12mm2/s,润滑性为232μm,所有数值均符合en590的规定。此外,0.360mgkoh/g的酸值低于纯生物柴油的阈值。仅氧化稳定性分析尚未满足en590,但这可使用标准抗氧化添加剂进行调节。未明确指定的混浊和倾点明显低于0℃,因此在未改性燃料的良好范围内。

总之,与乙烯的异构化复分解允许将rme转化为烯烃和酯的混合物,其符合en590中规定的柴油燃料的沸腾行为。本发明的组合物可用作纯生物柴油,而不需要用石油柴油或其它烃稀释。本发明的技术可能成为提高柴油燃料中可再生能源的含量的决定性突破-理想情况下高达100%。

为了比较,实施了rme与1-己烯的异构化复分解。需要付出很大努力来鉴定产生均质产物的特定催化剂。1-己烯/rme产物示出在360℃下的回收率为93%,这错过了石油柴油所需的至少95%的值。在蒸馏结束时,衍生自1-己烯的产物部分地分解并形成烟雾。这是生物柴油的常见问题,由敏感的多不饱和脂肪酸衍生物的氧化引起,并且通常通过产物馏分的部分氢化来解决。此外,己烯产品在较低的温度下显示出较不利的初始沸腾行为。总的来说,结果表明己烯产物具有不同且不太有利的性质,这可归因于与乙烯相比较高的己烯分子量和所得产物的较不利的分子量分布。

文献

s.baader,p.e.podsiadly,d.j.cole-hamilton,l.j.gooβen,greenchem.2014,16,4885-4890。

r.e.montenegro,m.a.r.meier,eur.j.lipidsci.technol.2012,114,55-62。

d.m.ohlmann,n.tschauder,j.-p.stockis,k.gooβen,m.dierker,l.j.gooβen,j.am.chem.soc.2012,134,13716-13729。

kaif.pfister,sabrinabaader,8thworkshoponfatsandoilsasrenewablefeedstockforthechemicalindustry,march29-31,2015,karlsruhe,germany

v.lavallo,y.canac,c.b.donnadieu,g.bertrand,angew.chem.int.ed.2005,44,5705-5709。

v.m.marx,a.h.sullivan,m.melaimi,s.c.virgil,b.k.keitz,d.s.weinberger,g.bertrand,r.h.grubbs,angew.chem.int.ed.2015,54,1919-1923。

d.r.anderson,v.lavallo,d.j.o‘leary,g.bertrand,r.h.grubbs,angew.chem.int.ed.2007,46,7262-7265。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1