对至少一个设置在内燃机排气管路内的NOx-存储催化剂脱硫的方法

文档序号:5242819阅读:262来源:国知局
专利名称:对至少一个设置在内燃机排气管路内的NOx-存储催化剂脱硫的方法
技术领域
本发明涉及一种具有在权利要求1前序部分中所述特征的用于对至少一个设置在内燃机排气管路内的NOx-存储催化剂脱硫的方法。
对NOx-存储催化剂脱硫的方法是公知的。其中在脱硫时必须对诸如在NOx-存储催化剂上的最低温度和将内燃机的工作模式调整到λ≤1等所谓的再生参数进行调整。
在内燃机的工作模式为λ<1时,尾气中诸如CO、HC或H2等还原的气体组分的浓度超过氧的浓度(富空气)。在λ>1时,氧浓度占绝大比重(贫空气)。在内燃机以贫空气的情况下工作时,除了NOx,由于在燃油混合物中的变化的硫分量的燃烧生成SO2。该SO2与在贫空气时的NOx相同同样被NOx-存储催化剂吸收,其中由于硫酸盐颗粒的形成,因而对SO2-吸收将造成局部的不均匀性。该过程将导致NOx-存储催化剂的催化活性表面的缩小和NOx-存储催化剂容量的降低并构成腐蚀过程的侵蚀点,该腐蚀将会带来对NOx-存储催化剂的持续的损伤。
已知根据对NOx还原(转化反应)效率的检定可测出NOx-存储催化剂的硫化度并且在达到一阈值后通过至少暂时对内燃机的一个工作参数施加影响(措施)启动脱硫。这些措施包括例如推迟点火、在一燃烧过程前或在燃烧过程中延后喷油或对内燃机进行汽缸选择平衡,但因此势必导致燃料的过量消耗。为了提高NOx-存储催化剂前的尾气温度并以此达到在NOx-存储催化剂上的最低温度,要频繁地采取这些措施。这些已知的方法的缺点是,仅根据转化反应的效率,即在达到阈值之后才启动脱硫并因此对在实际中出现的内燃机的较为有利的工作状况,其中并未达到阈值,但NOx-存储催化剂的温度已接近最低温度,并未得到利用。此点将导致燃油的过量消耗。
本发明的目的在于对NOx-存储催化剂的脱硫进行更为动态的设计,即为对脱硫必要性进行判定,除了催化剂的硫化度外,还要对再生参数加以考虑。
该目的通过应用一种用于对至少一个设置在内燃机排气管路内的具有在权利要求1特征部分中所述特征的对NOx-存储催化剂脱硫的方法得以实现。由于根据实际的λ值和/或取决于在NOx-存储催化剂中存储的NOx-质量(硫化度)的在NOx-存储催化剂的上游和下游的NOx浓度的比例,和/或NOx-存储催化剂的实际温度启动脱硫,因而可以更为有效地,即更节省燃油地实现脱硫。另一个优点是,由于从整体上更为频繁地进行脱硫,因而可以将因脱硫而形成的硫酸盐颗粒的粒度保持在较小的程度。
根据本方法的一优选的设计,为对脱硫必要性进行判定求出由硫化度、λ值和NOx-存储催化剂温度构成的参数。该参数在以内燃机的负载与转速的比例关系为特征的特性范围内。所述特性范围可以分成任意数量的分范围,在这些范围中例如随着温度的升高,脱硫的阈值下降。采取此方式可以非常动态地对实际的工作状况就脱硫的启动作出反应。
从属权利要求中的其它特征对本发明的进一步的优选的设计做了描述。
下面将以一实施例为例对照附图对本发明做进一步的说明。图中示出

图1示出在内燃机的排气管路中催化剂系统的配置和图2为内燃机的负载与转速的比例关系图。
图1中示意示出设置在内燃机14排气管路12中的催化剂系统10。催化剂系统10包括NOx-存储催化剂16和前置催化剂18以及相应的气体传感器20和温度传感器22。可以利用马达控制器24对内燃机14的工作模式进行调整。当需要λ<1(富空气)的工作模式时,则必须在燃油-空气-混合物燃烧前降低抽气管26内的氧的浓度。与氧分量相比将相应提高在尾气中的还原的气体成分的分量。例如这种工作模式是利用一节流阀28减少抽吸的空气流量并同时通过一尾气回流阀30馈送贫氧尾气实现的。
在λ>1(贫空气)的工作模式时,除了对NOx,还将SO2吸收在NOx-存储催化剂16上,同时少量的还原的气体成分在前置催化剂18上几乎被完全转换。根据NOx-存储催化剂16的容量和解吸温度必须以λ≤1对内燃机进行调整控制,以便进行再生。在这样一种工作模式时,预先被吸收在NOx-存储催化剂16的催化活性表面上的NOx将被还原。
同样被吸收的SO2以硫酸盐形式被储存在NOx-存储催化剂16上,其中当然这种储存过程的可逆性与对NOx的储存相比需要高得多的温度。所以为实现脱硫必须达到最低脱硫温度和λ≤1(再生参数)。
根据NOx-存储催化剂16的转化反应的效率、NOx-存储催化剂16的实时温度和/或实时λ值判定脱硫的必要性。可以利用气体传感器20对所述效率进行检测,该传感器对NOx-存储催化剂16下游的NOx-浓度进行测量。可根据经验值或通过在NOx-存储催化剂16上游对NOx-浓度的测量以此方式非常简单地实现对硫化度和随之对效率进行的测定。通过温度传感器22可以测出在NOx-存储催化剂16上的实际的温度,同时通过气体传感器20又可以确定出实时λ值。以此得出的每一时刻的硫化度、温度和λ值被综合,导出判定脱硫必要性的参数。
图2示出负载W与内燃机14转速U的关系的特性曲线。如果在负载W不变的情况下提高转速U,则将会导致燃油的过量消耗,其中将因此使λ值降低并且尾气的温度升高。根据负载W和内燃机14转速U的可能的参数在此被分成四个任意的应用范围。其中在范围32内以如下方式对脱硫的必要性进行选择,即脱硫的必要性基本由硫化度确定,这意味着,在达到预给定硫化度的阈值时开始脱硫。在范围34内,与此相比除硫化度外,还要考虑NOx-催化剂16的实时温度对脱硫的必要性进行判定。例如在达到阈值的70%并且在温度高于400℃时开始脱硫。阈值100%系指其伴随的NOx-活性干扰同样尚能满足标准验收检验中法律允许的有害物质-极限值的硫化度。
当温度上升到550℃时,则仅达到阈值50%时即被判定为有必要脱硫(范围36),而在范围38中既存在λ值又存在温度,它们与硫化度无关,构成对NOx-存储催化剂16当然的脱硫。
通过对所示的脱硫过程的控制,一方面由于要将NOx-存储催化剂16加热到最低温度而减少对燃油的过量消耗并且另一方面通过在温度较高时降低阈值可以提前开始脱硫,以致形成的硫酸盐颗粒的粒度较小。因而可避免锈蚀,例如避免生成裂纹。
替代举例示出的分范围的对脱硫必要性的判定,也可以利用一个将用于脱硫的能量需求量与脱硫的必要性进行对照的判断矩阵进行连续的判定。能量需求量取决于NOx-存储催化剂温度和硫化度。
权利要求
1.用于对至少一个设置在内燃机排气管路内的NOx-存储催化剂脱硫的方法,其中为实现脱硫对在NOx-存储催化剂上的最低温度进行调整并将内燃机的工作模式调整到λ≤1以及对至少一个内燃机的工作参数进行至少暂时的影响,以便实现该工作模式和/或最低温度,其特征在于,根据实际的λ值和/或取决于在NOx-存储催化剂上存储的NOx-质量(脱硫度)的在NOx-存储催化剂(16)的上游和下游的NOx浓度的比例和/或NOx-存储催化剂(16)的实际温度开始脱硫。
2.按照权利要求1所述的方法,其特征在于,根据实际的λ值和/或硫化度和/或NOx-存储催化剂(16)的实时温度连续地或分阶段地对脱硫是否必要进行判断。
3.按照上述权利要求中任一项所述的方法,其特征在于,当NOx-存储催化剂(16)的温度上升时,将降低开始脱硫的硫化度阈值。
全文摘要
本发明涉及一种用于对至少一个设置在内燃机排气气管路内的NOx-存储催化剂脱硫的方法,其中为实现脱硫对在NOx-存储催化剂上的最低温度进行调整并将内燃机的工作模式调整到λ≤1以及对至少一个内燃机的工作参数进行至少暂时的影响,以便实现该工作模式和/或最低温度。其中根据实际的λ值和/或取决于存储在NOx-存储催化剂上的NOx-质量(硫化度)的在NOx-存储催化剂上游和下游的NOx浓度的比例和/或NOx-存储催化剂(16)的实时温度开始脱硫。
文档编号F01N13/02GK1348527SQ00806767
公开日2002年5月8日 申请日期2000年4月20日 优先权日1999年5月12日
发明者埃克哈德·波特 申请人:大众汽车股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1