风能设备的转子叶片的制作方法

文档序号:5220028阅读:116来源:国知局
专利名称:风能设备的转子叶片的制作方法
技术领域
本发明涉及一种风能设备的转子叶片以及一种带有至少一个这种转子叶片的风能设备。
风能设备的转子叶片是众所周知的,在任何一个风能设备上都能看见。这种转子叶片具有特殊的形状,以满足特殊的空气动力学要求。为节省材料和重量,这种转子叶片通常由一个第一内部支撑结构和一个包绕该第一支撑结构且设计成具有有利的空气动力学特性的表面组成。
大型风能设备的转子叶片基于空气动力学方面的原因具有很大的尺寸。这一方面会对其制造和运输产生影响,另一方面也会对风能设备运行时的负载产生影响。这种负载主要是由随着尺寸增大自然增大的叶片表面和由此增大的转子叶片扫掠的面积所带来的。
风能设备必须按照规定的用于给定的负载状况的设计准则来设计。这样的负载状况既包括运行中出现的各种负载状况(所谓的运行负载)又包括所谓的极端负载状况。极端的负载状况是由给定的情形或一些故障导致的,例如电网掉电,叶片调整故障以及异常强烈的飓风(50年一遇的飓风)。
显然,由转子叶片传递到风能设备上的负载主要取决于转子的受风表面。在计算极端负载时要假定整个转子叶片表面都承受最大的风。所有后续部份如传动段、机架、风塔、基座等等也都要相应地设计。
由此得出的结论是,受风面积越小亦即转子叶片表面越小,所承受的负载水平就越低,而风能设备又必须针对该负载水平来设计。这也意味着该风能设备的材料费用更低及由此成本更低。
然而,与之相对立地存在一个基于空气动力学原因所需的最小表面尺寸,以获得使风能设备运转所需的力(使发电机运转)。在已公知的转子叶片上存在的缺陷在于,尤其在叶根附近区域内,随着转子叶片尺寸增加,转子叶片的深度也需要随之增加。这样的深度会大到使这种转子叶片在公路上运输不再可能或者只能以极高的费用完成。
本发明要解决的技术问题因此在于提供一种能避免上述缺点的转子叶片,并且该转子叶片具有空气动力学上所需的表面。
上述技术问题通过具有权利要求1所述特征的转子叶片来解决。其进一步的改进设计由其它从属权利要求给出。
本发明基于如下认知,即,在风能设备正常运行时需要一个给定的转子叶片面积(额定面积),而这在极强风力的情况下以及例如在一种运输情况下有可能太大。
本发明因此建议,进一步改造上述类型的转子叶片,使一部分叶片表面可主动变形或可移动。
在本发明的一优选实施形式中,一部分表面由一种可变形的材料制成,并成为一封闭容器的一部分。这个封闭的容器例如可用一种气态的介质充填,在此,该气态介质可被施加一预定的压力。由此,转子叶片具有一局部可膨胀的表面。这部分表面在运输时或者在出现极强风时可被排气并因此只需占用更小的空间或者屈服于风压而变形。由此,转子叶片的有效表面变小及进而导致受风面变小。与此同时作用在后续部分(包括风塔)上的负载也随之一起下降。
在本发明一特别优选的实施形式中,所述转子叶片具有一个在其上和/或其内部可运动的第二支撑结构。
在这样的情况下,所述可变形的材料可固定在这第二个支撑结构上的一些预定位置上。此外,所述可变形的材料以一侧固定在一个可转动的卷盘心上。
在风能设备正常运行时,所述第二支撑结构可以伸出,也就是说折叠臂可以完全伸直或者说伸缩臂可以完全伸出。所述可变形的材料可以一例固定在一个可转动的卷盘心上。现在如果要减小转子叶片表面,就可以象一个遮阳蓬一样转动卷盘心,使它卷绕可变形的材料。同时使折叠臂折叠并使第二支撑结构在可减小的表面区域内减小,由此相应减小转子叶片的表面。
在本发明的另一替代性实施方案中,转子叶片的一部分表面由许多片状的带材组成,这些片状带材分别设置在一根可围绕自身纵向轴线偏转的支撑轨上。这些带片在正常运行状态下定向布置成,使转子叶片的空气动力学有效表面得以扩大。为了运输和/或在极端的负载情况下,将这些支撑轨偏转,使这些带片例如进入其余转子叶片的背风区内并由此相应减小转子叶片的表面。
在本发明另一特别优选的设计中,转子叶片的空气动力学有效表面的一活动部分由一单个的面状元件组成,它沿转子叶片的深度方向可移动。在正常运行时该面状元件优选在吸气侧使转子叶片的表面变长,以创造一个大的空气动力学有效表面。
为减小表面,该面状元件可象一个飞机机翼上的折叠系统一样伸出,从而既可以滑移到转子叶片内部而被转子叶片的其余表面遮盖;又可以滑移到转子叶片的表面上并进而由它来遮盖转子叶片表面。但无论在那一种情况下都会减小转子叶片的表面。
在本发明的一替代性实施形式中,该面状元件以其一侧可偏转地铰接在转子叶片的第一支撑结构上或叶片后缘上。为了改变转子叶片表面的大小,该面状元件可绕其偏转轴线或者向吸气侧偏转或者向转子叶片的压力侧偏转。
所述面状元件偏转大约90°后会导致该元件基本上垂直于空气流动方向地直立在转子叶片上并发挥相应的制动作用,因为它对于沿转子叶片表面流动的空气构成了阻碍。
下面借助附图所示实施方式对本发明予以详细说明,附图中

图1为按照本发明的一个完整的转子叶片的俯视图;图2为按照本发明的一个转子叶片的前半部的俯视图;图3为按照本发明的第一种实施形式的转子叶片的简化的横截面图;图4为按照本发明的第二种实施形式的转子叶片的简化的横截面图;图5a,5b为按照本发明的第三种实施形式的转子叶片的简化的横截面图;图6为按照本发明的第四种实施形式的转子叶片的简化的横截面图;图7为按照本发明的第五种实施形式的转子叶片的简化的横截面图;图8a,8b为按照本发明的第六种实施形式的转子叶片的简化的横截面图;图9为按照本发明的转子叶片结构变型后的俯视图。
图1为按照本发明的一个完整的转子叶片的简化俯视图。转子叶片10被分成两个区域。在此上述转子叶片在一些基本部件中是常用的结构。然而在一个与转子叶片根部12相邻的区域、亦即具有最大叶片深度的区域内却看不到该转子叶片被划分。这一划分表现在转子叶片区14上,这个叶片区的表面在需要时会缩小,并因而会收回风的作用。
转子叶片的固定部分(亦即其表面保持不变的部分)在图2中示出。如在该图中可清楚看出的那样,该转子叶片的空气动力学有效表面明显减小,由此尤其在极强风的情形下所承受的负载也明显小于一个按传统方式构造的转子叶片所承受的负载。
图3为按照本发明的第一种实施形式的转子叶片的简化的横截面图。在此,该转子叶片10被划分成一个前部区域11和一个后部箱盒14。该后部箱盒14由两个用可变形材料18制成的幅面构成。这两个幅面与前部区域11的一个后壁一起构成一个封闭的箱盒16。若现在往该封闭的箱盒16中加压充入一种气体介质,则该可变形的材料18就可构成本发明转子叶片10在正常运行时的空气动力学有效表面的一部分(在图1中这一部分用附图标记14表示出)。
通过适当地选择充气压力,转子叶片的这一部分会具有这样一种稳定性,即,它在正常风力状况下会发挥其正常的作用。但在极强风的情形下,当作用在转子叶片这一部分上的外部风压比内部气压更大时,会导致转子叶片在后部箱盒14区域内发生变形,也就是说转子叶片会屈从于外部风压而变形。由此一来,在极强风情形下的受风面会变小并因而会使作用在后续结构上的负载变小。需要补充说明的是,这个(充有填充介质的)后部箱盒部分例如在风速超过一预定值时可主动地予以排空,以便减小转子叶片的表面。这一主动的排空具有这样的优点,即,转子叶片在任何时候都有确定的形状,而在后部箱盒屈从于外部风压而变形时可能会发生不确定的情况。
为了避免尤其对于箱盒16的损伤,例如可以设置一个图中没有示出的过压阀,它可以让箱盒16中的过压气体逸散出去。
通过采用一压缩机17,可重新建立为正常运行所需的压力。此外,若采用一些图中同样没有示出的控制阀和/或压力传感器,即便在风压出现波动时也可通过对箱盒16中的充气压力进行在后控制,而始终保持最佳的运行条件。
图4示出本发明的第二种实施形式,其中,取替采用一个完整的后部箱盒14,而是加长转子叶片10吸气侧的表面。这样的加长部件是一个面状元件24,它与前部区域11的表面相连。
为了减小空气动力学的有效表面,这个面状元件24可沿箭头所示方向滑移。这一滑移例如可通过液压手段(亦即利用相应的液压缸),或通过气动手段(亦即利用气动缸),或者通过电动驱动装置或者通过其他合适的方式来实现。为此,当然必须设置相应的(然而出于图示清晰起见没有被示出的)泵、压缩机或驱动器(致动器)。
在此,该面状元件24既可以滑移到转子叶片的前部区域中而被该前部区域11的表面遮盖,也可以选择滑移到转子叶片前部区域11的表面上并进而由它来遮盖转子叶片前部区域11的相应表面。在这两种情况下都会减小转子叶片10的空气动力学有效表面。
本发明的第三种实施形式在附图5a和5b中示出。图5a中示出一个卷绕有一种可变形材料的卷盘20和一个处于折叠状态的折叠臂30,其折叠机理和一个遮阳蓬的折叠机理类似。
在图5b中示出该实施形式的转子叶片处于正常运行状态下。此时,折叠臂30伸直。可变形材料18由于固定在该折叠臂上而在折叠臂30伸直时从卷盘20上展开。因此,在图5b所示状态下,卷盘心21已不再卷绕整个材料卷18。
在这样的展开状态下,所述可变形的材料18一侧固定在卷盘心21上,另一侧固定在折叠臂30朝向图右侧的端部上。折叠臂30的两个端部又通过一个没有示出的搭板相互连接,以便一方面实现高的结构强度,另一方面固定可变形的材料。
为了阻止可变形的材料18在卷盘心21和折叠臂30的外端部之间屈服变形,可在可变形的材料18下方设置一个图中没有示出的剪式桁架(scherengitterartig)装置。它和折叠臂30一起被同步操纵并支持可变形材料18处于伸出状态。
减小有效表面按相反的方式进行;折叠臂30和所述图中没有示出的剪式桁架收缩(折叠),同时将可变形的材料18卷绕在卷盘心21上,由此最终又形成图5a中示出的卷盘20并减小转子叶片10的有效表面。
在图6所示的本发明的第四种实施形式中,所述面状元件24可偏转地铰接在所述前部区域11的背侧并因而延长了所述前部区域11的吸气侧。在此,该面状元件24由一个压簧28支撑,该压簧则设置在面状元件24和所述前部区域11的支撑结构之间。
在正常运行时,所述压簧28支撑面状元件24将其保持在期望的位置上。如果现在偏离正常的运行条件在转子叶片10的上侧作用有一风压,导致作用在面状元件24表面上的压力提高并由此克服弹簧28的弹力,则图6中的面状元件24被往下压,亦即屈从于风压并因而相应地减小了空气动力学有效表面。
作为弹簧28的替代实施方案,当然也可以采用相应的用于主动调节面状元件的伸缩式元件,如液压装置或气动装置或机械装置,例如可采用螺纹杆和蜗轮蜗杆传动装置,以便将面状元件保持在第一预定的位置上或移动到第二预定的位置上。为了操纵这些调节元件,当然还必须设置相应的泵、压缩机或驱动装置,但这些装置为保持视图清晰起见在图中也没有示出。
同样又可测算出作用在该面状元件24上的风力,根据该测算出的风力,面状元件24可围绕偏转轴线偏转,以便实现对于当前运行条件而言最佳的调节。
图7示出本发明的第五种实施方式。在这一实施方式中,取替可偏转铰接在所述前部区域11后侧的方式,所述面状元件24被设置在一根绕其固有纵轴线可转动的偏转轴22上。该面状元件在图7中所示的位置上又延长了转子叶片10的空气动力学有效表面。
为减小这个表面,偏转轴22(又)连同固定在其上的面状元件24一起绕其纵轴线转动,使面状元件24的外端部在双向箭头所示的其中一个方向上运动。这又导致转子叶片10的空气动力学有效表面的缩小,并进而随之导致作用在转子叶片10以及所有后续的风能设备部件上的风力的变化。
图7所示实施方式的一种变型在图8a和8b中示出。在此,在图7中用附图标记24表示的面状元件在图8a中被分成三个片状元件26。它们在图8a中被有意间隔示出,以清楚表示这一划分。在一个实际的实施形式中,这三个元件当然要设置成能尽可能地构成一个连续的平面,这个平面又要尽可能地与转子叶片10的前部区域11平滑相连。
各带片26分别设置在各自的一个偏转轴上,各偏转轴28又分别可绕各自的纵向轴线转动。由此使得各带片26可偏转。
图8b示出本发明的装置处于这样一种情形下,此时,各带片偏转后减小了转子叶片10的空气动力学有效表面。在此,各带片26偏转到前部区域11的流动死区中。由此一方面不再作为转子叶片表面,另一方面不再承受风的作用并进而不承受更大的负荷。
上述布置状况这样来实现,即,除了使这些偏转轴28绕其纵轴线转动外,还减小图中左侧的那个偏转轴28和转子叶片10的前部区域11之间的间距以及这些偏转轴28相互间的间距。
在上述附图中仅仅示出了转子叶片的吸气侧表面被延长,当然也可选择或补充地相应改变该转子叶片的压力侧表面。
当一个风能设备配备有所述转子叶片时,就可以在出现极强风的情况下不仅可借助风速测量仪确定这种大的风力,而且也可以通过一个相应的控制装置明显减小转子叶片表面的尺寸。如在图1和2中可看到的那样,图1中的转子叶片的表面积要比图2中的转子叶片表面的面积大10%以上。在风能设备的额定工作状态下(例如当风速在2-20m/s的范围内时),转子叶片有标准的尺寸,而当风速高于20m/s时,转子叶片的表面积就会如图2所示那样明显减小。
所述控制装置优选得到计算机的支持并在需要时实现转子叶片表面积的最佳调节。
图14示出本发明转子叶片的另一结构变型。在此,该结构通过一些可偏转的卡箍32构成,这些卡箍又用一种可变形的薄膜蒙盖并可偏转地支承在一些支承点34上。通过向转子叶片尖端(箭头)方向运动,这些偏转卡箍现在例如可围绕支撑点34偏转并因而改变所述后部箱盒的形状。
剩下的图9a至13b所示实施形式是对于图3至8b所示实施形式的替代性的或补充的形式。
图11b(图11a基本上相当于图6)是对于图6的补充,其中在压力侧示出了一个元件25。由于弹簧28的作用点相对于图6或图11a所示没有发生变化,所述元件24和25必须在叶片后缘相互连接,以便可以绕一个铰接点26偏转。在这样的技术解决方案中可能会出现转子叶片箱盒11沿转子叶片长度搭接在所述元件25上的情况。
图12b所示是对于图7或图12a所示实施方式的扩展设计。其中同样示出一个设置在压力侧的元件25。在这样一种设计中,该压力侧元件25通过一种机械连接就象吸气侧元件24一样固定在同一根轴12上。
图13a和13b表示的也是早已在图8a和8b中示出的实施方式的扩展设计。在此,各个相应设置在压力侧的元件分别具有各自的轴28。图13a象图8a一样示出了处于正常运行状态下的一种转子叶片。在图13b示出的情形中,后部箱盒通过轴28相应的转动或移动变得不再有效。
权利要求
1.一种风能设备的转子叶片,其中,该转子叶片具有在其运行时承受风力作用的一个给定的表面,其特征在于具有用于改变转子叶片的表面积尺寸的器件。
2.如权利要求1所述的转子叶片,其特征在于,该转子叶片具有一个第一支撑结构和一个包绕该第一支撑结构的且设计成具有有利的空气动力学特性的表面,其中,该转子叶片某些部段上的表面积尺寸在极强风的情况下和/或在运输时明显小于在转子叶片在正常运行时的尺寸,其中,所述用于改变转子叶片表面积尺寸的器件被设计成这样,即,借助它们可使转子叶片的横断面改变、变形和/或运动。
3.如权利要求1或2所述的转子叶片,其特征在于,所述用于改变转子叶片的表面积尺寸的器件通过一可变形的表面部分(14)构成,这部分表面是一个封闭容器(16)的一部分。
4.如上述任一项权利要求所述的转子叶片,其特征在于,所述用于改变转子叶片的表面积尺寸的器件通过一个在其上和/或其内部可运动的处于转子叶片表面(14)一预定区域内的第二支撑结构来构成。
5.如权利要求4所述的转子叶片,其特征在于所述可变形材料(18)至少点状地固定在第二支撑结构(30)的一些预定位置上。
6.如权利要求4所述的转子叶片,其特征在于,所述可变形的材料(18)以一侧固定在一个可转动的卷盘心(21)上。
7.如权利要求4所述的转子叶片,其特征在于,至少一个绕其纵轴线可偏转的支撑轨(22,28),在每个支撑轨(22,28)上设有一个面状元件(24,26)。
8.如权利要求7所述的转子叶片,其特征在于多个绕各自的纵轴线可偏转的支撑轨(28)和在这些支撑轨(28)上设置的面状元件(26),其中,这些支撑轨之间的间距沿径向可变。
9.如权利要求4所述的转子叶片,其特征在于一个以其一侧可偏转地铰接在转子叶片的第一支撑结构上的面状元件(24)。
10.如权利要求1或2所述的转子叶片,其特征在于一个沿转子叶片(10)的深度方向可运动的表面部分。
11.如上述任一项权利要求所述的转子叶片,其特征在于,通过所述用于改变转子叶片的表面积尺寸的器件,尤其可改变转子叶片处于叶根区域内或邻近转子叶片叶身的区域(14;参见图1)内的那部分表面。
12.一种风能设备,它具有至少一个如上述任一项权利要求所述的转子叶片。
13.如权利要求12所述的风能设备,其特征在于,设有一个控制装置,通过它来调节所述用于改变转子叶片的表面积尺寸的器件。
14.如权利要求13所述的风能设备,其特征在于,设有一些可测取极强风情况的器件,这些器件与所述控制装置相连,并且在极强风情况下,例如在风速大于20m/s时,转子叶片表面的尺寸小于其在风速低于20m/s时的尺寸。
15.一种风能设备的转子叶片,它具有一个第一支撑结构和一个包绕该第一支撑结构的且设计成具有有利的空气动力学特性的表面,其特征在于具有用于改变转子叶片的表面积尺寸的器件(11,14)。
全文摘要
本发明涉及一种风能设备的转子叶片以及一种带有至少一个这种转子叶片的风能设备。受风面积越小亦即转子叶片表面越小,所承受的负载水平就越低,必须针对该负载水平来设计风能设备,由此转子叶片的运输可更方便。另一方面,从风能设备正常运行所需的尺寸又不可避免地要求转子叶片具有一个不能更低的最小尺寸。为了创造出一种具有所需的空气动力学特性表面并且该表面及进而转子叶片的深度可在预定情况下减小的转子叶片,转子叶片的一部分表面可变形或移动。
文档编号F03D1/06GK1511231SQ01821680
公开日2004年7月7日 申请日期2001年12月20日 优先权日2000年12月23日
发明者阿洛伊斯·沃本, 阿洛伊斯 沃本 申请人:阿洛伊斯·沃本, 阿洛伊斯 沃本
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1