组合脉谱对发动机控制的方法

文档序号:5251432阅读:191来源:国知局
专利名称:组合脉谱对发动机控制的方法
技术领域
组合脉谱对发动机控制的方法,属于汽车汽油发动机控制技术领域。
背景技术
车用汽油发动机的控制主要分为点火控制和喷油器控制。
在控制过程中,控制单元根据基本控制条件査控制脉谱参数,并且根据各传感器反 映的发动机状态条件对控制脉谱参数进行修正输出,控制各执行器对目标进行控制。控 制分为开环控制和闭环控制。
对发动机点火正时的开环控制主要依据进气流量信号和节气门信号确定的发动机 负荷信号、发动机转速信号和曲轴位置信号闭环控制是利用爆震传感器的信号反馈对 点火系统进行调节。
对喷油器控制主要是检测进气流量,通过进气流量信号和其它传感器信号按不同的 工况,计算喷油时间来决定喷油量;对喷油量的控制实际上就是控制空燃比。闭环控制 是通过氧传感器检测排气中的氧含量,由此而测出发动机燃烧室内混合气空燃比的稀 浓,将其信号反饿到中央控制器ECU中与设定的目标空燃比进行比较后得出误差信号, 确定喷油脉宽,使空燃比保持在设定目标值附近。现用的空燃比闭环控制大多是把空燃 比控制在理论空燃比14.7附近的一个很窄范围内这种原因是为满足排放要求而使用 三元催化装置以牺牲部分经济性和动力性为代价的。而在大多数工况下都要解除闭环控 制而进入开环控制(如发动机起动、暖机、怠速、大负荷、加减速)。
发动机的其它控制有怠速控制、EGR控制(废气再循环系统)、进气控制等,进气 控制分为VTEC控制(可变气门正时系统)、涡轮增压控制、可变进气管长度与可变进气 歧管长度控制、谐振腔进气惯量控制等。
发动机怠速控制是进气量闭环控制;废气再循环系统EGR控制是开环控制,参与控 制的量是发动机水温、进气温度、转速和节气门开度;进气控制系统中的VTEC控制是 机械控制系统,其作用是将固定的气门行程改成随发动机转速改变而改变的可变行程; 涡轮增压控审j是对进气可变截面控制;可变进气管长度与可变进气歧管长度控制以及谐 振腔进气惯量控制利用进气压力波特性的气波惯量增压控制。上述控制方法在汽油发动机上得到很好的应用,但现有的脉谱参数控制策略对下列 问题无能为力
(1) 各传感器及执行器件的制造偏差及使用--段时间的磨损及老化引起的工作特 性改变,更换配件引起的匹配偏差等,从而使控制精度变差;
(2) 环境、季节的改变,各种工作介质的的变化(如机械油的粘度改变等)、各种 电器及辅助动力的接入改装、对发动机的操控等引起的负荷变化;
(3) 在台架对控制单元优化时测量仪器及处理手段引起的的测量偏差以及未曾考 虑在内的其它未知因素等
(4) 各传感器的信号传递时滞、控制单元的运算过程时滞、执行器件的运动时滞 等带来的控制实时性偏差等。
以上这些因素的影响只应用台架优化的基本点火脉谱参数与基本喷油脉谱参数以 及其它控制脉谱参数显然偏离控制目标以各传感器反馈的各种状态信号由于各种时滞 效应只能对控制数据修正局部的偏差,而不能完全控制目标偏差,使发动机未能达到合 理的使用。

发明内容
本发明要解决的技术问题是针对目前汽油发动机的控制方式所存在的问题,提供 一种能在工作过程中根据发动机相关特性改变和发动机使用条件改变而自适应生成动 态脉谱参数的策略,进而提供一种与原有台架确定的基本脉谱参数组合控制的组合脉谱 对发动机控制的方法。
本发明解决其技术问题所采用的技术方案是该组合脉谱对发动机控制的方法,其 特征在于包括基本脉谱参数和动态脉谱参数,基本脉谱参数是经过台架标定的脉谱参 数,动态脉谱参数是控制系统自学习在线自标定和自优化生成的脉谱参数,通过控制系 统按控制策略对汽油发动机进行自适应控制。
基本脉谱参数还包括经过台架及道路参数优化标定的脉谱参数。
脉谱参数的组成是不同工况分区的若干个子脉谱参数区域之和,每个区域都按该区 域的控制目标值分为闭环控制目标和开环控制区域。
动态脉谱参数的生成方法是,根据工况条件和使用条件的变化以及发动机自身因素 变化学习生成的一系列自适应参数,该自适应参数在工作过程中按工况依据条件变化@ 适应学习和经验聚类,反复应用和实时修正而不断刷新
小脑关节控制器CMAC对控制过程进行自适应学习,并将学习参数分工况、分条件进行经验聚类暂存;
微处理器在控制中不断按控制策略对同工况、同条件下的基本脉谱参数和暂存的f
适应学习参数按寻优条件进行比判,暂存的自适应学习参数符合规定的条件时,形成该 工况该条件下的动态脉谱参数进行存储,并且在以后的控制中不断学习,反复进行以上 过程并不断刷新;
当动态脉谱参数更适合于发动机的不同控制目标控制时,该工况、该条件卜'的动态 脉谱参数全部或部分取代该工况该条件下的基本脉谱参数对发动机的不同控制H标进 行控制。
控制策略包括动态脉谱生成策略、组合控制策略、常规修正控制策略或其他控制策略。
动态脉谱的生成策略是
a、 动态脉谱生成区域确定方法以同--工况、同--条件下的某-控制目标的基本 脉谱,以及表征此刻的工况与条件的相关各特征信号值为数据节点,以该节点的基本修 正脉谱参数y为中心值,以期望控制目标和实际控制目标偏差为基本参考半径,找出动 态脉谱生成区域(y—厶y, y+厶y);
b、 动态脉谱生成的寻优区域确定方法在同维空间区域利用该数据节点中表征该 工况的相关各特征信号值的变化率大小进行动态脉谱生成趋势判定,从而判定更小的区 域在(y—厶y)还是在(y+厶y) —边,确定后以(y—厶y)或(y十厶y)区域的中值为目标逼 近后的新节点,并且以该目标为中心,确定新的逼近后的动态脉谱生成区域,如此反复, 不断逼近,直到最小的区域min(y—Ay, y+厶y)出现,该区域为寻优区域;
c、 动态脉谱的生成方法当表征该工况的相关各特征信号值趋近于一个近似于零 的常数e时,以及进行概率统计处理的相关特征信号的概率分布在允许的范围内,确定 min(y—厶y, y+厶y)中的中值点y.,该点即为生成的动态脉谱参数;
d、 动态脉谱的确定方法重复以上过程a-c,进行经验聚类,当相关各特征信号 值的变化率e以及相关特征信号的概率分布稳定在一个允许的变化范围内时,确定该动 态脉谱参数,存入铁电存储器,此时,确定的动态脉谱参数和所对应的相关各特征信号 值为一组数据节点,该节点即为动态脉谱参数,该动态脉谱参数的集合构成动态脉谱;
e、动态脉谱的刷新方法生成的动态脉谱在控制过程中,由于发动机自身特性及 使用环境改变使其控制目标也有所变化,其所组成的数据节点在进行a-d的过程时,当 确定其相关各特征信号值变化率e改变以及相关特征信号的概率分布不在允许的变化范围时,重新生成新的动态脉谱参数,经经验聚类确定,对原来数据节点地址单元刷新: 动态脉谱的组合控制策略是
a、 组合作用对象作用于组合脉谱,对应于相同或非常相近的査表条件,既有基 本脉谱,又有生成的动态脉谱时,即作用条件是该工况所对应的控制目标具有动态脉谱;
b、 组合原则对同工况、同条件或同工况具有非常相近的条件,即数据节点既有 存在于基木脉谱的,也有存在于动态脉谱的,当组成数据节点的元素中,相关各特征信 号值相同而目标参数不同时,选动态脉谱参数;相关各特征信号值不完全相同但目标参 数相同时,对该不相同特征信号值分别按前一循环值与当次循环值计算变化率,比较该 变化率,取小判优,确定组合脉谱参数相关各特征信号值相同而目标参数相差较大时, 取两目标中值按动态脉谱生成策略进行逼近生成新的动态脉谱参数插入动态脉谱中
c、 组合方法从动态脉谱中选择动态脉谱参数后,原同工况、同条件或同工况具 有非常相近的条件下的基本脉谱参数被屏蔽;动态脉谱参数对控制目标进行控制,当被 确定使用的动态脉谱参数在对目标控制时,相关各特征信号值的变化率无法稳定在允许 范围内时,放弃该动态脉谱参数,回到该工况、该条件下的基本脉谱,应用动态脉谱生 成策略重新学习生成
组合作用下,通过对部分控制目标的动态脉谱参数应用,对同一工况,或代换-部 分基本脉谱参数,或取代该工况下的全部基本脉谱。 动态脉谱的常规修正控制策略是
a、 常规修正控制策略的组成其一是来自反映发动机工况的相关各传感器的特征 信号值对基本脉谱的修正,这一部分在常规控制方式下输出基本修正脉谱通过执行器对 目标进行控制;其二是采用新的相关各传感器的特征信号处理方式对不可直接测得量进 行软测量方法推断以及推断而得到软测量特征信号值对基本脉谱进行修正;其三是利用 小脑关节控制器CMAC通过期望目标与实际目标进行纠偏过程中进行权值匹配而自萄应 学习的相关各传感器的特征信号值对基本脉谱进行修正。
b、 測量方式的修正;
C、小脑关节控制器CMAC权值匹配方式修正;
相关各传感器的特征信号即发动机上的传感器的信号以及采用软测量方式推断出 的特征信号;并对各信号考虑了其多因素作用的相关联性如发动机的曲轴位置及转速 信号、上止点信号、转矩信号、喷油脉宽信号、节气门位置信号、氧传感器信号、燃油 温度信号、机油温度信号、环境压力信号、供电回路电压信号、水温传感器信号、排气温度信号、进气压力信号,空燃比信号、爆震信号、火焰传导角信号,以及爆震信号在 几个循环的选频频率的概率分布、火焰传导角信号超过时间阈值的概率。
以上控制策略分别作用于汽油机的喷油控制、点火提前角和点火闭合角控制、电子 节气门控制、进气系统控制、EGR率的控制、基于电子节气门的怠速和自动巡航、以及 车身稳定系统控制。
组合脉谱参数包括发动机点火组合脉谱参数、发动机喷油组合脉谱参数、发动机进 气组合脉谱参数、发动机怠速控制组合脉谱参数、EGR率组合脉谱参数和发动机点火闭 合角组合脉谱参数。
控制系统包括微处理器、小脑关节控制器CMAC、铁电存储器、模拟信号、数字信 号、电源检测及稳压、通信接口 CAN、 UN和外部诊断电路、大功率驱动电路、开关 量驱动电路、驱动电路,模拟信号一部分通过输入调理电路、模拟信号通道与微处理器 相连,模拟信号另一部分通过输入调理缓冲电路、数字信号通道与微处理器相连,数字 信号通过输入调理缓冲电路、数字信号通道与微处理器相连,电源检测及稳压与微处理 器相连,铁电存储器与小脑关节控制器CMAC互联,小脑关节控制器CMAC与微处理器互 联,微处理器与通信接口 CAN、 LIN和外部诊断电路互联,微处理器与大功率驱动电 路、开关量驱动电路、驱动电路相连。
控制系统根据发动机相关各传感器的特征信号变化率判定工况变化趋势对部分时 滞偏差过大的控制目标进行给定期望值预测控制,同时以预测控制目标值为数据节点, 利用小脑关节控制器CMAC的自适应调整和学习能力,降低或消除各方面信号滞后带来 的误差;
控制系统还根据发动机相关各传感器的特征信号变化率判定工况变化趋势进行经 济模式、动力模式、正常模式判定,在不同的控制模式下自适应选定不同的闭环控制目 标进行控制;在控制过程中,对模式目标进行优化,并在今后的控制中依据条件的改变, 不断修改和被优化。
工况是指中小负荷工况、大负荷工况,起动工况、加减速工况以及怠速工况。 与现有技术相比,本发明组合脉谱对发动机控制的方法,所具有的有益效果是由 于采用了以自适应学习方法合成的组合脉谱参数控制方式,使得被控系统发生改变和未 知变化对发动机的影响得到了修正,从而提髙了控制的精度和速度。也利用动态脉谱参 数的规划和生成,对闭环控制目标进行了修正和选定,改善了发动机自身条件变化吋控 制系统无法响应,通过自适应学习控制产生动态脉谱参数的策略提前预测控制,最大可能的修正了各种时滞效应带来的控制滞后,提髙了控制的实时性。


图1本发明实施例的控制系统电路方框原理图
图2自适应方案示意图
图3实现控制过程程序流程框图4喷油脉宽控制方案示意图5点火正时控制方案示意图
图6进气控制方案示意图
图7怠速控制方案示意图8EGR率控制方案示意图9控制系统电路原理图1;
图10控制系统电路原理图2。
图1-IO是本发明的最佳实施例。图6中l进气管、2空气滤清器、3进气温度传 感器、4稳压箱、5进气流量检测仪、6电子节气门控制器、7旁通管、8旁通进气电磁 阀、9调速电控压气机、IO控制器、ll引射空气喷射口、 12辅助稳压箱、13引射腔、 14发动机、15喷油器、16排气管、17氧传感器、18油门踏板位置信号、19节气门力 矩电机驱动信号、20油门操纵信号、21比例电磁阀、22其他传感器信号。
图9-IO中Ul微处理器、U2缓存器、U3锁相环、U4、 U6运算放大器、U5对数放 大器、U7比较器、U8磁变换器、U9运算放大器、U10运算放大器、Ull反相器、U12 门电路、U13 CAN通信接收器、U14异步串行通讯处理器、U15电子开关、U16寄存器、 U17、 U18微功耗运算放大器、U19锁相环、U20斯密特触发器、U21时基电路、U22锁 存器、U23动态储存器、U24微处理器、U25存储器、U26扩展口、 U27、 U28开关量驱 动器、U29信号放大器、U30、 U31开关量驱动器、U32大功率驱动管、U33--U38开关 量驱动器、DS 8段数码管、DB9通讯口、 0P1—0P31光电耦合器、Ml-M4喷油器、Tl- T4 升压器、MG1步进电机、MG2节气门电机、DJ1电磁阀、BT1-BT5功率驱动管、DE3-DE6 稳压管、Q3、 QIO、 Q11-Q18功率驱动器、QE1功率驱动器、R1—R140电阻、VR1-VR2 可调电阻、C2-C62电容、Dl-D12稳压整流二极管、QI- Q2、 Q4~<J9三极管、LI-L2电 感、Y1-Y2晶振、DE1-DE2稳压管。
具体实施例方式
本发明提出的组合脉谱对发动机控制的方法通过常规控制器(中央控制器ECU)和小脑关节控制器CMAC根据控制策略对控制功能的实现中;控制功能包括喷油控制、点
火控制(点火提前角和点火闭合角)、进气控制、怠速控制、排放控制(碳罐蒸发、废气
再循环系统EGR)和辅助控制(电气负荷、方向助力、油泵、空调等)。以下对实施过程 分别说明。
下面结合附图1-10对本发明组合脉谱对发动机控制的方法做进一步的详细说明 如图1所示本发明的控制系统包括微处理器、小脑关节控制器CMAC、铁电存储 器、模拟信号、数字信号、电源检测及稳压、通信接口 CAN、 LIN和外部诊断电路、 大功率驱动电路、开关量驱动电路、驱动电路,模拟信号一部分通过输入调理电路、模 拟信号通道与微处理器相连,模拟信号另一部分通过输入调理缓冲电路、数字信号通道 与微处理器相连,数字信号通过输入调理缓冲电路、数字信号通道与微处理器相连,电 源检测及稳压与微处理器相连,铁电存储器与小脑关节控制器CMAC互联,小脑关节控 制器CMAC与微处理器互联,微处理器与通信接口CAN、 LIN和外部诊断电路互联,微 处理器与大功率驱动电路、开关量驱动电路、驱动电路相连。
外部传感器的模拟信号通过输入调理电路将信号输入到微处理器;输入调理电路对 模拟信号的处理分两部分一部分由输入调理电路将信号调理为数字信号经数字信号通 道输入微处理器;另--部分输入调理电路将信号直接经模拟通道输入微处理内部的A / D端口。
模拟信号主要包括进气压力或进气流量信号、节气门位置信号、大气压力信号、 进气温度信号、冷却水温度信号、氧传感器信号、环境温度信号、油门踏板信号、系统 电压变化信号等。
传感器的数字信号通过输入调理缓冲电路转换为微处理器能接收的输入信号;输入 调理缓冲电路的作用是对传感器数字信号的幅度、波形及干扰进行处理,即滤波处理。
数字信号主要有曲轴位置信号、喷油脉宽信号、车速信号、爆震信号、空调请求 信号、方向助力请求信号、空挡信号、大灯开关信号等。
电源通过电源检测及稳压电路处理后接入微处理器。电源检测及稳压电路的主要功 能是给系统各芯片提供稳压电源、给传感器提供工作电源和给RAM提供电源保持。电 源检測及稳压电路由DC/DC转换器、过流过压保护器、电压变化信号变送器及抗干扰电 路组成。
通信接口电路包括故障诊断接口和车载网络接口 ,车载网络接口包括通讯辟线 CAN-BUS和通讯总线LIN-BUS,通用故障诊断标准OBD~n/iso-9141K线,这些总线分别连接仪表及车身控制系统等;这些系统的信号分别通过网络总线及其总线驱动器与微处 理器保持信息的交流。
微处理器由32位的CPU内核,内置常规控制器控制策略和算法、各类脉谱及其它 相关控制目标数据及通信总线处理器等。
小脑关节控制器CMAC由另一片32位微处理器为内核,与外部电路构成;其内置自 适应学习算法及控制策略,与主微处理器共同组成控制系统核心,接受外部信号变化, 根据控制策略及时作出决策,进行自适应学习聚类刷新动态脉谱参数,发出指令控制外 部执行机构动作和运行。
铁电存储器对系统基本脉谱参数进行备份,经自适应学习后参与工况控制后被判定 为使系统按要求稳定工作的那部分动态脉谱参数也会作为经验数据存入其中。微处理器 判定系统失控时会自动将基本脉谱参数从铁电存储器写入微处理器中。
大功率驱动电路采用专用控制驱动芯片和外围电路,驱动喷油器、点火模块、进气
系统的伺服电机与电磁阀等。
开关量驱动电路驱动怠速阀、进气谐振引射器开关、燃油泵开关、碳罐电磁阀开关、 ERG电磁阀开关、故障指示报瞀开关、空调功率开关、髙低速风扇开关。
驱动电路给出4路备用中功率控制驱动。
在这里特别说明的是,为便于区别新的控制方法,本发明将传统处理方式和方法, 如PID控制策略的使用等,均定义为常规控制器,常规控制器作为控制系统一部分,控 制系统的另一部分称之为小脑关节控制器CMAC。
如图2所示按照本发明组合脉谱对发动机控制的方法的自适应控制策略, 一但投 入使用的发动机,除开始是通过经台架试验优化的基本脉谱参数工作外,由于自适应策 略的作用,不断自适应产生新的优化动态脉谱参数,因而工作一段时间的发动机,其基 本脉谱参数已或多或少发生改变,即是同时投入使用和经过相同工作时间后的发动机, 其同控制目标的基本脉谱参数也改变的不再相同这是因为器件的制造偏差、安装的工 艺以及器件本身特性的差异,发动机使用环境的不同,使用条件的不同,操纵方法的差 异等。
控制单元对不同的目标实施控制将应用不同的基本脉谱参数,如循环喷油量控制使 用"1"的组合,点火正时控制使用"2"的组合,……,第n个控制使用"n"组合等, 各基本脉谱参数对应于不同的工况将给出不同的目标值,该目标值由于各种使用环境、 条件、传递时滞、机构传动时滞、特性差异等,与实际目标产生偏差;对实际目标的信号反馈,由于传感器的特性、信号的传递时滞、信号运算处理过程的时滞等还包括随 机产生的干扰和千扰引起的器件特性突变等;以上等等因素的存在,影响到控制的实时 性和准确性,加上无法"因地制易"调整的台架标定基本脉谱参数,使控制系统无法准 确确定控制目标。
使用小脑关节控制器CMAC,结合传统PID控制的自适应控制策略从二方面实施控 制, 一方面针对控制目标的偏差进行自适应控制,即确保系统稳定的自适应控制和保证 控制目标性能最优的自校正自适应控制(在线辨识系统)。另--方面是对控制目标的相关 传感器信号进行变化率跟踪的自适应学习控制,即本发明给出的控制策略,即采集传感 器反馈量变化率趋势判定与系统稳定性聚类逼近,以及稳定目标后的自学习调整时滞性 的预测实时控制。
图2中,(1)设被控制输出量力C/:-厶么■),在此条件下连续测量发动机/7个 工作循环的时间f,和转速信号、节气门位置信号、喷油脉宽信号、进气压力信号、氧传 感器信号、爆震信号、大气压力信号、水温信号、燃油温度信号、机油温度与机油压力 信号、VNT截面开度(有涡轮增压器时)和EGR阀开度信号、蓄电池电压信号以及以上各 信号的变化率,并特别处理氧传感器和爆震传感器信号,如根据氧传感器反馈量变化率 的变化趋势进行软测量方式的目标空燃比控制;根据爆震传感器信号经选频检波器作用 后按n个循环爆簾发生的概率在2%-5%以内为最佳点火调整阈值,而取代传统的爆震 安全角距离。
以上信号经控制系统并以以下公式
ww www
w。0,Zx=0' "o》,+。,IX-》,少,=o
,-, 'h j=I 'h /,1
进行拟合计算处理,得到基本控制目标x
公式中,"。为基本脉谱参数值或传感器信号值,a,为控制目标变化率或传感器信
号变化率;f,第i个循环时间;少,第i个循环的控制目标平均变化量。
(2) 通过拟合的数据再利用关系 =,^,2-,…,)拟合,式中,dl/dt,
d2/dt,, dn/dt,分别为相关测值变化率;将被控制输出量改变为/,".,^/, (7-/, 么《 ...人
(3) 设计控制律逻辑确定被控制输出量由力-,改为力之后,发动机各被测量的变 化率趋近于零,该趋近于零的值e被视为最佳条件,该条件卜'的目标值y被优化选出成为新的控制目标,以及对应的査表条件改变。
<formula>formula see original document page 15</formula>
(4) 以上是以发动机各相关传感器测量值及其变化矢量为反馈参数的对y进行自 适应控制的过程。该过程在/J次工作循环屮若使发动机平稳工作(各条件参数变化不大, 即有趋近于零的f,概率分布在允许的范围内),则控制目标y被定义在6^-」y, "几何体区域内,得出控制目标空间区域,并对区域内不断定步长插值逼进极小空间区 域而进行控制;此时表现出的发动机各参数即为发动机最优条件参数,该条件下的目标 值即被优化选出的控制目标。此时该控制目标按规定被聚类写入动态脉谱参数区,该地 址有不合条件的数据时被取代。
(5) 当变化趋势在n次循环中稳定或最佳条件出现时,控制策略对控制单元及发 动机的各时滞效应将按学习的模式进行预测消除,相同事件再次发生时联想控制;工况 变化或同工况下条件变化时再按上述原则,如此反复;
(6) 以上过程中,n以稳定的鲁棒性为界而确定,e值为一多因素相关微小量常 数。这两个参数在台架数据时反复验证并予以确认。
如图3所示发动机进入工作时,控制系统根据不同的操作条件和各传感器的状态 信号判定发动机当前的工况类别,即基本操作条件与当前相关传感器的状态构成控制系 统选定工况的当前基本工况条件,控制系统根据上述条件确定当前工况,计算输出该工 况下的基本脉谱参数。如果此过程有经过自适应学习生成的动态脉谱参数存在,控制系 统经稳定性优化判比,若该动态脉谱参数更优于基本脉谱参数,则输出的是新生成的动 态脉谱参数。该动态脉谱参数被传感器的反馈信号进行当前修正,修正后的动态脉谱参 数分别对各执行器控制,如控制喷油器以决定喷油脉宽,以改变空燃比;控制点火模块 以决定点火正时;控制怠速阀以决定怠速转速;控制进气系统,以调整进气充量系数和 空燃比控制EGR阀以改善排放等控制;这一过程进行的同时, 一是通过各位置状态信 号测量反馈上--循环的执行机构目标定位情况,控制系统将实际目标值与输出的修正目 标值计算偏差及偏差变化率输入小脑关节控制器CMAC进行自适应权值修正,二是通过 前饿方式训练和跟踪获得被控目标逆模型,用x(k)表示系统状态,u(k)表示控制向量 时,对执行机构的控制描述为x(kU)二g[x(k), x(k):];三是控制系统通过对与控制目标相关的传感器信号在规定循环周期内算出其信号量的变化率,通过变化率确定变化趋 势,以确定控制方向,通过控制策略利用该变化趋势预测给出期望输出目标,通过与实 测目标的偏差和偏差变化率计算,各相关传感器信号的变化率计算,不断修正权值,按 各变化率趋近于零的稳定性趋势,逼近控制目标。
当系统自适应学习的经验聚类信号与基于变化率达到稳定阈值的偏差变化率最小 以及偏差最小时,该预测控制目标被确定为将要选定的动态脉谱参数值。该动态脉谱参 数值被送丁-暂存器中用于对控制目标的输出,重复前述的过程,不断计算前一循环的各 相关变化率,在当前循环中控制和学习,在下一循环中预測输出。学习与控制交替进行。
当稳定性阈值出现时,该预测控制目标的动态脉谱参数值即生成的动态脉谱参数, 被存入铁电存储器中,稳定性阈值出现时的各传感器信号值也同时被确定为决定该动态 脉谱参数输出的工况条件信号,而与被控目标共同构成数据节点。同理,在条件发生变 化时,重复以上过程,不断生成相对应的动态脉谱参数。
在学习与控制交替进行过程中,生成的动态脉谱参数和生成该动态脉谱参炎时的各 相关传感器的信号值按控制策略中的数据处理原则被聚类优化存储;优化的原则分两个 方面, 一是不断对基木工况条件和记忆的操作条件对动态脉谱参数值按趋势找出寻优区
域不断逼近控制,确定最优条件e出现时的数据节点,这样减少了空间占用率,同时也
縮短了动态脉谱参数的生成周期。二是采用紧凑型地址空间存储策略,避免多余单元重 新分配地址,即采用统一地址求余运算得到训练存放权值的空间,以满足硬件实现要求。
如以上小脑关节控制器CMAC流程,以怠速控制说明该控制器的工作过程。 在当前学习与控制阶段,控制系统中小脑关节控制器CMAC根据前 -循环的节气门 电机位置、负荷及电器接入状态以及与之相关的传感器信号变化率确定下一循环的预测 输出。因而首先以前一循环的脉谱参数为中心,根据与之相关传感器信号变化范围(如 转速)及信号的变化率范围确定工况条件输入空间6^= [a, 6 ] X [c, 根据预 测目标和实际目标偏差范围及偏差变化率范围确定脉谱参数跟踪修正空间tt^[e, /'] X [,,力],如步进电机调整行程在1到1. 6,其变化率在0到1,则标准乘积空间为 =[7,丄< ] X [A J ];并选取合适的量化级数,给出初始权系数矩阵,以当前与之 相关传感器信号变化及信号的变化率和当前执行器位置信号及信号变化率为节点,选取 合适的参数和空间几何体半径,根据给定的样本找出包含该点的空间超几何体,确定选 择矩阵S此时小脑关节控制器CMAC的输出定义在以激活节点为中心的超几何体上的
基函数线性组合, 即 j),:《5(;c,h , 其中 <formula>formula see original document page 17</formula>是权系数向量,5<1=[>,丄—为权系数
选择向量,这样对于每个样本,只需局部调整权系数即可。这样经不断学习与控制,不 断重复以上过程,学习与控制交替进行,生成符合要求的动态脉谱参数,对下一循环中 怠速喷油脉宽与电机进行预测控制,经过一段时间(多个循环过程)的学习聚类,通过多 次逼近达到了实际目标值,最大能力的消除了时滞带来的控制偏差,从而使怠速达到精 确控制。
如图4所示控制系统根据转速信号、进气压力信号和反映操纵状态的节气门位置 信号按喷油脉宽控制策略给出基本喷油脉谱参数,该基本喷油脉谱参数在系统闭环控制 状态时其控制策略还受氧传感器信号的反馈调节而且受组合控制策略匹配。
由于发动机相关工况参数(如冷却水温度、燃油温度、进气温度等)的反馈,系统将 按不同工况的要求控制常规控制器依据工况参数对基本喷油脉谱参数进行修正,修正后 的基本喷油脉谱参数提供给小脑关节控制器CMAC和喷油器;小脑关节控制器CMAC对修 正的喷油器控制目标(脉谱参数)进行自适应学习和跟踪,并根据发动机相关工况参数的 变化率、氧传感器信号的变化率、喷油脉宽的偏差及偏差变化率按图2和图3给出的方 法,生成喷油脉宽动态脉谱参数,该动态脉谱参数经寻优条件确定后写入铁电存储器; 当喷油脉宽控制策略判比确定应用组合脉谱参数策略时,喷油脉宽动态脉谱参数在组合 控制策略的作用下,与基本喷油脉谱参数合成组合脉谱参数对发动机喷油器进行喷油脉 宽自适应控制。
另外,控制系统将根据上述工况参数对发动机当前工况模糊判定出单目标寻优方 向,即功率目标、经济目标和正常目标,该优化目标一经选定,控制系统将给定空燃比 目标(即给定喷油脉宽或对喷油脉宽和进气量进行软测量定混合比的双因素联调给定空 燃比)进行预測闭环控制。
预测闭环控制以及预测控制的确定由控制系统对氧传感器信号的变化率按变化方 向判别趋势给出,这样最大能力的将时滞影响降到最小,其带来的扰动被小脑关节控制 器CMAC进行消偏差和抗干扰处理,目的是被控的空燃比目标按期望的动态特性跟踪期 望(预测)空燃比,使系统达到稳定的精确控制。
如图5所示控制系统根据反映转速和上止点位置的曲轴位置信号、反映负荷大小 的进气压力信号、反映空燃比状况的喷油脉宽信号、反映操纵意图的节气门位置信号和 这些信号的多因素相关性,按点火正时控制策略给出基本点火正时脉谱参数。
由于针对点火正时控制相关的工况参数在控制系统中是一个多因素相关过程,点火正时与发动机转速、负荷、空燃比、冷却水温度、压缩比、进气压力、燃油辛烷值、混 合气湍流程度、EGR率以及燃烧室的形状均有关系实施控制时,控制系统采集与点火 正时相关的发动机工况参数,以及闭环控制时的爆震信号,如果有必要时,对火焰信号 角(火焰电离传感器信号)也进行概率统计处理,将有更好的效果,这是因为该传感器可 表征燃烧过程,即测定火焰前峰到达时刻,利用湍流、燃烧学的统计现论和小脑关节控 制器CMAC的软测量处理功能,推算出层流火焰传播速度,从而推算出燃烧持续角而自 适应修正点火正时脉谱参数;特别说明的是基本点火正时脉谱参数将以以上相关因素为 基本条件,通过点火控制策略分为按工况以及条件区分的经济性、动力性、排放性和综 合性基本点火正时脉谱参数,在控制过程中自适应选择。
常规控制器通过采集与点火正时相关的工况参数对基本点火正时脉谱参数进行修 正输出,其修正由相关选定开关影响,相关选定开关是针对燃油辛烷值和压缩比设置的, 因为辛垸值不同,燃烧速度也不同,压縮比不同,火焰传播距离和传播时间不同;其中, 辛烷值的选定是根据爆震信号在单位时间内的概率密度或火焰传导角信号和曲轴位置 信号加速度来确定压缩比选定是按不同发动机的压縮比不同,通过台架试验确定一个 影响常数。特别说明的是组合脉谱参数控制策略对输入常规控制器的点火正时脉谱参数 的作用,在组合控制策略的作用下,当有合适动态脉谱参数时,根据控制的判别,当使 发动机最稳定条件时所确定的动态脉谱参数,将在该所有条件具备时,可能全部或部分 取代原台架标定的基本点火正时脉谱参数,此时点火正时控制策略通过组合控制策略直 接将铁电存储器中该工况、该条件下的动态脉谱参数送入常规控制器,经常规控制器修 正处理输出点火正时修正脉谱参数,该动态脉谱参数驱动点火控制模块(器)控制火花塞 点火。
小脑关节控制器CMAC对修正的点火模块控制目标(脉谱参数)进行自适应学习和跟 踪,并根据发动机相关工况参数的变化率、爆震传感器信号的概率密度分布、进气压力 变化率、喷油脉宽变化率、节气门位置变化率、曲轴转角加速度、着火延迟角和燃烧持 续角的偏差及偏差变化率按图2和图3给出的方法,生成点火正时动态脉谱参数,该动 态脉谱参数经寻优条件确定后写入铁电存储器;当点火正时控制策略判比确定应用组合 脉谱参数策略时,点火正时动态脉谱参数在组合控制策略的作用下,与基本喷油脉谱参 数合成组合脉谱参数对发动机点火控制模块(器)进行点火正时自适应控制。
对于点火正时的自适应控制,综合火焰传导角信号的作用,在这里给出了爆震传感 器信号经选频检波器作用后按n个循环爆震发生的概率在2% -5%以内为最佳点火调整目标阈值,爆震发生的概率超过这个阈值将延迟点火角;在这个范围内相关传感器的信 号经聚类判别被确定为该动态点火脉谱参数的最佳条件,当部分条件改变时,小脑关节 控制器CMAC将以该闲值为期望目标不断学习与控制,从而取代传统的爆震安全角距离。
如图6所示发动机进气通过进气管1和空气滤清器2、稳压箱4,通过进气流量 检测仪5和电子节气门控制器6和引射腔13,经进气歧管进入发动机14:当对空燃比 目标强制调整时,经过进气管1和空气滤清器2到达稳压箱4的进气还要通过旁通管7 和旁通进气电磁阀8进入辅助稳压箱12,通过调速电控压气机9、比例电磁陶21或引 射空气喷射口 11,经引射腔13和进气歧管进入发动机14。
实施过程中,控制器10根据进气温度传感器3信号、油门踏板位置信号18、电子 节气门控制器6的位置信号、喷油器15的喷油脉宽信号、氧传感器17信号以及来自发 动机14的其它进气相关状态信号22(如转速信号、进气压力信号、水温信号、火焰信 号传导角等),控制进气系统执行器,如旁通进气电磁阅8、调速电控压气机9、比例电 磁阀21对发动机14进行进气控制。
控制机理是第一个方面,由于旁通管7气路的作用,使一部分进气绕过了进气流 量检测仪5和电子节气门控制器6, 一定量的空气在调速电控压气机9、比例电磁阀21、 引射空气喷射口ll、和引射腔13的作用下流过该通道,强制调整了空燃比,使进气得 到了补偿控制;第二个方面是由于使用稳压箱4和辅助稳压箱12,并且在不同的工况 条件下不同程度的并联使用,由于稳压箱具有亥姆赫兹谐振器的效应,进气通过稳压箱 4起到进气管内压力波的幅值和相位调整作用,由此改变了惯性气波增压效果;而且也 降低了调速电控压气机9和进气系统带来的噪音;第三个方面是,通过调速电控压气机 9、引射空气喷射口 11和引射腔13、比例电磁阀21的作用对进入进气歧管的气流进行 了涡流强度调整,并且对喷油雾化和燃烧起到了有益的作用。
控制过程中,控制器10根据以上相关控制信号和油门操纵信号20输出旁通进气电 磁阀8控制信号、电子节气门控制器6控制脉谱、调速电控压气机9控制脉谱、比例电 磁阀21控制脉谱,以上控制量经电子节气门控制器6的位置传感器信号、喷油器15.的 喷油脉宽信号、氧传感器17信号,以及其它如进气压力、温度和水温等信号通过控制 器10的常规控制器对输出信号和输出脉谱进行修正输出,输出过程由控制器10的小脑 关节控制器CMAC自适应跟踪学习并根据曲轴位置加速度、喷油脉宽变化率、氧传感器 17信号变化率、进气压力和进气流量变化率进行图1到图3的控制和学习过程当产
生动态控制脉谱时,控制器io根据内置控制策略以及组合控制策略输出组合脉谱对以上执行器进行控制。如图7所示通过节气门位置反饿控制的实施例之一。本例中,通过组合脉谱参数 控制方法对电子节气门实施闭环控制,使节气门的开度稳定在一个相对固定的怠速位 置。控制系统根据发动机怠速工况状态信号,即节气门位置信号、进气流量信号、转速 信号、冷却水温度信号、喷油脉宽信号以及其它相关信号,如大气压力、进气温度等, 按控制策略,查取经台架标定的节气门力矩电机的基本脉谱参数,通过常规控制器对基 本脉谱参数进行修正输出控制节气门力矩电机运动。常规控制器内置怠速的PID模糊控制策略,利用怠速工况发动机各状态参数,如冷 却水温度和大气压力等,并利用上一工作循环的相关状态参数的变化率和偏差,如曲轴 转角加速度和转速偏差,以及各辅助电器开关状态,如空调开关,对基本脉谱参数进行 修正输出。小脑关节控制器CMAC对控制节气门力矩电机的输出基本脉谱参数进行自适应学习 跟踪,并根据控制策略生成相应的动态脉谱参数暂存聚类,该动态脉谱参数通过组合控 制策略参与控制目标控制,在几个循环的反复验证、判比和不断参与修改、聚类和联想, 当发动机在怠.速工况最稳定的工况条件出现时,确定该动态脉谱参数以及稳定条件确 定的动态脉谱参数被存入铁电存储器,取代基本怠速脉谱参数对目标进行控制。当器件特性和使用环境发生改变时,重复以上过程进行控制。当负荷突变时,控制 系统充分考虑发动机各状态信号的传递时滞效应,依据聚类的联想记忆学习经验对目标 进行预测控制,并在几个工作循环内对工况信号变化率进行趋势判定,以尽快自适应学 习该状态进行聚类暂存,类似情况连续发生时进行自适应跟踪调整修正,生成动态脉谱 参数。类似情况随机发生时,聚类记忆生成突变时的动态脉谱参数和工况条件,再次发 生时进行预測控制。如图8所示本发明组合脉谱对发动机控制的方法的EGR率控制实施例之--;在图 8中,控制要求是在部分负荷下采用EGR率,全负荷及节气门开度低于20%的工况下, EGR率取零。EGR率的控制范围为5%—25%。控制过程中,控制系统根据节气门位置信号和由曲轴位传感器测出的转速信号,.按 EGR率控制策略,査出EGil率基本脉谱参数,常规控制器根据节气门位置信号、转速信 号、进气压力信号、冷却水温度信号确定当前所在工况,对符合EGR率控制要求的工况, 按该工况下相关传感器的信号对EGR率脉谱参数进行调整修正后输出EGR率修正脉谱参数,该EGR率修正脉谱参数控制EGR率比例电磁阀工作。小脑关节控制器CMAC对控制EGR率比例电磁阀的EGR率修正脉谱参数进行自适应 跟踪并学习,这里特别指出的是小脑关节控制器CMAC利用节气门位置偏差和曲轴转角 加速度的变化对EGR率的控制修正进行了软测量方式推定,使EGR率在5%- 25%的范 围内进行了自适应最佳配比。小脑关节控制器CMAC的另一个作用是通过自适应学习, 依据本发明前面叙述的自适应控制策略和动态脉谱参数生成策略生成动态脉谱参数,该 动态脉谱参数经判比适合于对目标控制时将按照组合脉谱参数控制策略全部和部分取 代EGR率基本脉谱参数重复上述过程。如图9所示微处理器U1的31、 32脚分别与存储器U16的29、 24脚相连,40 脚通过电阻R1接VCC髙电平,通过电容C1接地,通过开关S1接地微处理器U1 的73、 74脚之间接有晶振n,并且通过电容C2、 C3接地;进气压力、大气压力传感器的信号经过缓存器U2进入锁相环U3进行V/F转换处理 后,通过光电耦合器0P1输入到微处理器Ul的A/D 口 P50、 P51脚,供微处理器Uj进 行分析计算处理。氧传感器信号经运算放大器U4对其进行10倍放大后输入对数放大器U5,经对数 放大器U5的放大后由对数放大器U5的10脚输出后,经运算放大器U6进行工-V变换 为5-OV电压信号输入到微处理器Ul的A/D 口 P52脚,供微处理器Ul对空燃比进行分 析判定。将冷却水温度信号、进气温度信号、环境温度信号通过串接分压电阻转换为模拟电 压信号供比较器U7比判,比较器U7依次输出数字信号输入到微处理器U1的A/D 口 P54、 P55、 P56脚,供微处理器Ul来分析判断发动机工况。曲轴位置传感器信号输入到磁变换器U8进行转换处理后,输入到微处理器Ul的A/D 口 P57脚,供微处理器Ul进行分析计算处理。节气门位置信号、油门踏板信号经降压后输入到运算放大器U9放大处理后,输入 到微处理器U1的A/D 口 P46、 P47脚,供微处理器U1进行分析计算处理,爆震的信号通过由运算放大器U10及其外围电路组成的信号选频放大电路进行放 大处理后,输入到由运算放大器U10E组成的检波电路,检波器的输出信号经过一个非 门缓冲后输入微处理器Ul的P16脚,供微处理器Ul进行分析计算处理。反相器Ull和门电路U12组成喷油信号脉冲鉴宽电路;喷油信号输入到微处理器Ul 的INTPO 口P01脚,供微处理器U1进行分析计算处理。由CAN通信接收器U13组成CAN通讯模块的接收节点单元。由异步串行通讯处理器U14、通讯口 DB9和电子开关U15等组成系统写入程序通讯 电路。由寄存器U16和8段数码管DS组成系统故障代码显示电路,以判比系统故障信。电离传感器信号通过由微功耗运算放大器U18、 U17及其外围电路组成的恒电位仪 电路和电流检测电路处理后,传感器信号的电位被控制在一个定值,传感器信号经处理 后输入到微处理器U1的P27脚,供微处理器U1进行分析计算处理。电源通过由锁相环U19组成的电源检测电路处理后,通过光电耦合器OP3输入微处 理器U1的P26脚,实时检测电瓶电压量,为系统提供可靠性稳压直流电源。大灯开关信号、空档位置信号、方向助力信号、空调请求信号通过串接分压电阻转 换为模拟电压信号供斯密特触发器U20整形后,依次输出数字信号输入到微处理器Ul 的P21、 P22、 P23、 P24脚,给微处理器Ul来判断分析发动机工况。转速信号经过时基电路U21调理后,通过光电耦合器0P4输入到微处理器U1的P20 脚,供微处理器Ul进行分析计算处理。微处理器U24、锁存器U22、动态储存器U23构成小脑关节控制器CMAC,在微处理 器U1的控制下,依据内置控制策略自适应学习,并对受空燃比目标值进行调节逼近; 动态储存器U23是闪存存储器,其对类聚调节参数进行刷新存储,在微处理器U24的控 制下参与新工况下的控制器控制。由扩展口 U26和存储器U25构成预备扩展闪存器,存储系统脉谱MAP数据。如图IO所示微处理器U1利用其1/0端口 P70-P77,通过开关量驱动器U37、 U38 对喷油信号进行采集与反馈分析判比处理后,通过功率驱动管Qll-Q14对发动机的喷油 进行实时控制。微处理器Ul利用其I/O端口 P120-P127输出控制信号经过光电耦合器0P31-0P24 组成的抗干扰电路隔离后,通过开关量驱动器U35、 U36对信号进行采集与反馈分析判 比处理后,通过功率驱动管BT12-BT15组成的驱动电路,驱动故障指示报警开关、进 气谐振引射开关、EGR电磁阀开关及炭罐电磁阀开关的开关量控制。微处理器Ul利用其I/O端口 P30-P37,通过开关量驱动器U33、 U34对点火信号进 行采集与反馈分析判比处理后,通过功率驱动管BT8-BT11对发动机的点火进行实时控 制。微处理器U1利用其1/0端口 P110"P111输出步进电机及电磁阀的驱动信号,经过光电耦合器0P22、 OP23组成的抗干扰电路隔离后,分别驱动三极管和H桥电路及功率 驱动器QE1电路,驱动步进电机MG1动作和电磁阀DJ1动作,进行进气流量控制。微处理器Ul利用其I/O端口 P100-P107输出控制信号经过光电耦合器0P14-0P21 组成的抗干扰电路隔离后,通过开关量驱动器U30、 U31对信号进行采集与反馈分析判 比处理后,通过功率驱动管BT5-Bt7、大功率驱动管U32组成的驱动电路,进行开关量 的控制。微处理器Ul驱动控制信号经光电耦合器0P13隔离处理后,通过三极管Q2放大后 驱动功率管Q3,控制驱动电子节气门的髙低电位;并且通过由信号放大器U29组成的 电流监控电路处理后,输入到微处理器U1的A/D口P46脚,实时对电流进行监控,并 用于位置反馈处理。微处理器Ul利用其I/O端口 P150-P157输出控制信号经过光电耦合器0P5- 01,12 组成的抗干扰电路隔离后,通过功率驱动管BT1-BT4组成的驱动电路,驱动备用的开 关量控制。由微处理器U1的P130、 P131脚分别输出PWM1、 PWM2控制信号,通过功率驱动器 Q15-Q18组成的H桥驱动电路,经过稳压整流二极管Dll -D14组成的整流隔离电路来驱 动控制节气门电机MG2。
权利要求
1、组合脉谱对发动机控制的方法,其特征在于包括基本脉谱参数和动态脉谱参数,基本脉谱参数是经过台架标定的脉谱参数,动态脉谱参数是控制系统自学习在线自标定和自优化生成的脉谱参数,基本脉谱参数和动态脉谱参数构成组合脉谱参数,组合脉谱参数通过控制系统按控制策略对汽油发动机进行自适应控制。
全文摘要
组合脉谱对发动机控制的方法,属于汽车汽油发动机控制技术领域。包括基本脉谱参数和动态脉谱参数,基本脉谱参数是经过台架标定的脉谱参数,动态脉谱参数是控制系统自学习在线自标定和自优化生成的脉谱参数,基本脉谱参数和动态脉谱参数构成组合脉谱参数,组合脉谱参数通过控制系统按控制策略对汽油发动机进行自适应控制。由于采用了以自适应学习方法合成的组合脉谱参数控制方式,使得被控系统发生改变和未知变化对发动机的影响得到了修正,从而提高了控制精度和速度。通过自适应学习控制产生动态脉谱参数的策略提前预测控制,最大可能的修正了各种时滞效应带来的控制滞后,提高了控制的实时性。
文档编号F02D43/04GK101285431SQ20071030202
公开日2008年10月15日 申请日期2007年12月20日 优先权日2007年4月9日
发明者宫春勇, 华 赵, 高小群 申请人:山东申普汽车控制技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1