用于计算和应用监视标准的方法与流程

文档序号:12781422阅读:176来源:国知局
用于计算和应用监视标准的方法与流程

本发明涉及任一种用于计算和应用监视标准的方法,所述监视标准是在汽车的废气系中存在含有沸石的SCR催化器的指标。本发明还涉及两个计算机程序以及一种机器可读的存储着这些计算机程序的存储介质,当这些计算机程序在计算机上运行时,它们实施本发明的用于计算和应用监视标准的方法的每个步骤。最后,本发明涉及一种被设计用于实施本发明的方法的电子的控制器。



背景技术:

由于针对Nox排放(氧化氮排放)引入了日益严格的极限值,研发出了各种不同的废气后处理技术,以便实现对柴油机废气中的Nox排放的控制。用于废气后处理的这些技术之一便是在SCR催化器中的有选择性的催化还原。在此,废气中含有的氧化氮在SCR催化器上借助于氨被还原为氮(N2)。尽管在采用SCR催化器情况下按照远离发动机的构造方式在废气系统中这种SCR催化器的老化相当有限,因为SCR催化器于是很少遭受因热的废气引起的高温,但为了遵守排放规定,需要监视SCR催化器的工作能力。

当今的SCR催化器由多个组件构成。在蜂窝状的载体材料上有所谓的涂层(Washcoat),该涂层还由沸石构成。沸石是一种结晶式的有非常细小的孔眼的材料,用于增大表面积。在涂层中或者在其表面上植入催化活性的金属,比如铜或铁。已知的是,沸石吸纳水和其它低分子的物质,且在加热时又可以排出,而不会在这种情况下损坏其结晶结构。一个用于评价水在沸石上的吸附和解吸附效果的影响的代表性的参数是吸附焓。它描述了废气-沸石/SCR催化器的热动态系统的能量含量的增加或减少。

在DE 10 2009 007 763 A1中已公开了一种用于确定可施加以还原剂的SCR催化器的效能的方法,该催化器设置在内燃机的废气系中。在此,借助于SCR催化器吸附废气混合物的至少一种物质,并确定SCR催化器的负载状态,该催化器带有废气混合物的不同于还原剂的被SCR催化器吸附的物质。所述方法的执行方式为,首先测量废气混合物的至少一个参数,所述参数在废气混合物流经SCR催化器期间根据SCR催化器的效能而改变。由如此检测到的测量值和参比值形成差,并将该差与给定值相比较。



技术实现要素:

本发明的方法用于计算监视标准,所述监视标准是在汽车的废气系中存在含有沸石的SCR催化器的指标,在该方法中计算所述监视标准,其方式为,对SCR催化器上游和下游的温度时间变化历程予以比较。采用本发明的监视标准是特别有利的,因为难以描述的因沸石上的水吸附和解吸附所致的热效果不必在模型值中体现,因而无需用于检查SCR催化器的存在状态的温度模型。此外,为了确定监视标准,只需要在SCR催化器下游的温度传感器,从而可以省去在SCR催化器上游安装NOx传感器。后者相比于使用温度传感器可能更破费、昂贵。

特别地,监视标准的值根据已到达SCR催化器的水量来计算。这种做法是特别有利的,因为通过这种方式最佳地考虑到了SCR催化器的在水吸附和解吸附时的放热和恒温特性,所述特性对温度变化历程有明显影响。如果在SCR催化器上游和下游的温度变化历程的比较时间点选择得过早,温度差就有可能尚未足够明显,因为水吸附的放热尚未正式开始。相反,如果把比较的时间点选择得过晚,就会有更大量的水已流过SCR催化器,且吸附和解吸附效果有可能已经丧失,从而仅产生更小的温度差。

有利地,监视标准的值根据在起动时内燃机的温度来计算。通过这种特别有利的做法来保证一同考虑内燃机的起动温度对温度效果的强度的影响。如果内燃机在“热机”状态下再次起动,则水的吸附和解吸附的热效果就会又短又热,因为在温度较高情况下两种效果叠加或者不太明显。因此,如果对监视标准的评价在低的发动机温度情况下、最好在冷起动时进行,则有利于明确地判断SCR催化器的存在状态。

根据本发明的一个实施方式,借助于在SCR催化器上游和下游的温度时间变化历程或温度梯度时间变化历程的交叉相关式来计算监视标准。在此,温度梯度系指带通滤波的温度信号,该温度信号相应于温度信号的低通滤波的第一阶导数。对温度的时间变化历程的交叉相关式的计算如下进行:

其中,CrssCorr是交叉相关式,ySCRUs是在SCR催化器上游的温度信号,而ySCRDs是在SCR催化器下游的温度信号,tEND是相关式计算的终止时间点,τ是两个温度信号之间的时间差。对温度梯度时间变化历程的交叉相关式的计算与公式(1)类似地进行,其中,仅用相应的温度梯度信号来代替在SCR催化器上游的温度信号ySCRUs和在SCR催化器下游的温度信号ySCRDs。借助于交叉相关式可以有利地描述在两个或多个时间函数之间的关系。因此,交叉相关式的相应于监视标准的结果是与给定的时间差τ相关的两个温度变化历程有多大的相似性的量度。无论按照公式(1)计算交叉相关式,还是计算其它下述相关函数,都分别评价结果的量值。因此,作为结果,分别得到相关函数的介于0和1之间的值。

在本发明的另一实施方式中,监视标准优选借助于在SCR催化器上游和下游的温度时间变化历程或温度梯度时间变化历程的能量交叉相关式来计算。在SCR催化器上游和下游的温度信号的标准化的能量交叉相关式如下计算:

其中,EcrssCorr是能量交叉相关式,其它变量具有与公式(1)相同的含义。对于计算温度梯度信号的能量交叉相关式来说,适用于相同的规定,这些规定已经在上面结合交叉相关式提到过。

在又一实施方式中,监视标准有利地通过在SCR催化器上游和下游的温度时间变化历程的二次幂的能量交叉相关式如下计算:

其中,E2crssCorr是二次幂的能量交叉相关式,余下的变量具有与公式(1)和(2)相同的含义。在二次幂的能量交叉相关式的情况下,也可以通过简单的替换来计算温度梯度信号的二次幂的能量交叉相关式(参见用于计算交叉相关式的规定)。二次幂的能量交叉相关式有利地用于简化计算。如果交叉相关式或能量交叉相关式的结果等于零,则两个相互比较的温度信号相互间没有关系,也就是说,它们不相关。相关式的结果的量值越大,两个温度信号就越相似。如果相关式的结果达到了最大值1,则相比较的温度信号在错移停滞时间τ的情况下相关。

由于在SCR催化器中的沸石涂层的有代表性的热效果,在SCR催化器上游和下游的温度信号在吸附和解吸附阶段中相互间的差别很大。因此,相关式的低的效果,即监视标准的低的值,相应于如下情况:在废气系中存在SCR催化器。如果在废气系中没有SCR催化器,或者其沸石涂层不再顺畅地起作用,在SCR催化器上游和下游的温度信号就会相似。这相应于高的相关值。

优选地,无论SCR催化器上游的温度变化历程,还是SCR催化器下游的温度变化历程,都利用温度传感器来测量。这种做法的优点是,通过这种方式,难以描述的因沸石上的水吸附和解吸附所致的热效果不必在模型值中体现。

根据本发明的另一实施方式,在SCR催化器上游的温度变化历程利用算得的模型温度变化历程来予以说明。这样就能以有利的方式省去在SCR催化器上游的温度传感器。

本发明的用于计算监视标准的方法特别是分多个步骤执行。首先检查是否满足SCR催化器的加热条件。即在每次运行周期开始时都检查SCR催化器在先前的运行周期中是否在温度足够高的情况下工作,进而检查在沸石涂层中结合的水分是否又能够充分地排出。为此例如考虑发动机停机时间、系统的起动温度和/或最终温度和/或平均温度或最高温度。在先前的运行周期中已经过SCR催化器的累积起来的热量也可以用作SCR催化器的加热状态的量度。下面开始计算监视标准和蓄存在SCR催化器中的水量。接下来检查从发动机起动起是否有足够量的水已到达SCR催化器。

本发明的应用所计算的监视标准的方法包括:在已执行用于计算监视标准的方法的步骤之后,推断在废气系中SCR催化器的存在状态。借助于这两种方法能以有利的方式实现:以简单的方式计算监视标准,借助于该监视标准可以推断出在汽车的废气系中SCR催化器的存在状态或工作可靠性,其中,一同考虑到了在SCR催化器的沸石涂层上的热效果。

如果监视标准具有相比于阈值Vth较小的值,则特别是推断出在废气系中存在SCR催化器。通过监视标准与可预定的阈值Vth的比较,能有利地以低的计算成本实现判断出在废气系中是否安装有SCR催化器。

在本发明的应用监视标准的方法的一个实施方式中,在运行周期结束时求取监视标准的绝对的最小值。通过这种方式,有利地降低了计算成本,因为在运行周期中监视标准的值不必再多次地与阈值相比较,而是仅仅一次地在运行周期结束时确定监视标准的绝对的最小值。然后,该绝对的最小值也与阈值相比较。

本发明还涵盖两个计算机程序,这些计算机程序被设计用来特别是当它们在计算机或电子的控制器上运行时实施本发明的第一和/或第二方法的每个步骤。这能实现使得本发明的方法在电子的控制器上实施,而不必在此进行结构上的改变。

本发明还涵盖一种机器可读的存储介质以及一种被设计用于实施本发明的方法的电子的控制器,在该存储介质上存储着这些计算机程序。

本发明的其它优点和特征可由结合附图对实施例的后续说明得到。在此,各个特征可以分别单独地实现,或者相互组合地实现。

附图说明

在这些附图中:

图1示意性地示出了废气系和控制器;

图2示意性地示出了根据本发明的第一实施方式的两种方法的流程;

图3示意性地示出了根据本发明的第二实施方式的两种方法的流程;

图4示出了根据本发明的第一实施方式借助温度梯度的二次幂的能量交叉相关函数来计算相互函数的曲线图。

具体实施方式

图1示意性地示出汽车(未示出)的废气系1,带有还原剂配给位置2、在颗粒过滤器上的SCR(SCROF)3、带沸石涂层的SCR催化器4、在SCR催化器4上游的温度传感器5、在SCR催化器4下游的温度传感器6和控制器7。控制器7具有与温度传感器5、6连接的数据线路。

图2示意性地示出了根据本发明的第一实施方式的用于计算监视标准的方法的流程。在该方法的第一步骤10中,使得汽车处于工作中。在随后的步骤11中检查是否满足了SCR催化器4的加热条件。即在每次运行周期开始时都检查SCR催化器4在先前的运行周期中是否在温度足够高的情况下工作,进而检查在沸石涂层中结合的水分是否又能够充分地排出。为此例如考虑发动机停机时间、系统的起动温度和/或平均温度或最高温度。在先前的运行周期中已经过SCR催化器4的累积起来的热量也可以用作SCR催化器4的加热状态的量度。如果加热条件未得到满足,就在步骤12中输出如下警报:在本次运行周期中未能对SCR催化器4进行诊断。

但如果加热条件未得到满足,就希望通过水吸附和解吸附来实现足够强的热效果。在这种情况下,在步骤13中对温度传感器5、6的温度信号予以带通滤波,这相当于温度信号的低通滤波的第一阶导数,并在步骤14中开始计算相关函数和蓄存在SCR催化器4中的水量。相关函数的结果就是监视标准,在计算相关函数时,对在SCR催化器上游和下游的温度梯度的时间变化历程予以比较。在当前实施方式中,采用二次幂的能量交叉相关式,其按照公式(3)来计算。在这种情况下,这里的ySCRUs是在SCR催化器4上游由温度传感器5测得的温度信号的梯度,而ySCRDs是在SCR催化器4下游由温度传感器6测得的温度信号的梯度。监视标准根据在起动时内燃机的温度来计算,因为内燃机的起动温度对SCR催化器4上的温度效果强度有影响。

在图4中示出了二次幂的能量交叉相关式的计算情况。为此,在图4中,上面的曲线示出在SCR催化器4上游(即入流侧)由温度传感器5测得的温度变化历程t5,并与此相对比地示出在SCR催化器4下游(即排流侧)由温度传感器6测得的温度变化历程t6。温度变化历程two表示在没有SCR催化器时下游侧的温度变化历程,其中,t6和two是在同一位置获取的,唯一的差别在于,当存在SCR催化器时测量温度t6,而当不存在SCR催化器时测量温度two。在图4中,下面的曲线示出二次幂的能量交叉相关函数关于以秒为单位的时间的结果。为了计算相关函数cw,采用在SCR催化器4上游或下游的温度信号t5、t6的梯度。在没有SCR催化器的情况下,为了计算相关函数cwo,代替在SCR催化器下游的温度信号t6,而采用下游侧的温度信号two

通过对温度信号的先前的带通滤波,可以借助于相关函数来分析温度梯度。在后续步骤15中检查从发动机起动起是否有足够量的水已到达SCR催化器4。在图4的下面的曲线图中,变化历程mw表示从发动机起动起累积的水量。箭头a1或星号s1表示对于带SCR催化器的废气系统1来说在达到相关函数的绝对的最小值时的时间点。箭头a2或星号s2表示在有足够的水量已到达SCR催化器并相应地评价监视标准即相关函数的结果时所在的时间点。如果在该方法的步骤15中确定出从发动机起动起还没有足够的水到达SCR催化器,就重新执行先前的步骤14。

通过随后的步骤16~19来描述应用所计算的监视标准的方法。如果在步骤15中确定出对于评价监视标准来说已有足够的水量到达SCR催化器4,则在步骤16中把相关函数的测量结果的直到该时间点达到的最小值与可预定的阈值Vth相比较,所述最小值相应于监视标准的最小值。如果监视标准低于阈值Vth,就可以由此在步骤17中推定:在废气系1中安装了SCR催化器4,或者说,安装的SCR催化器4是在起作用的。

如果监视标准在从发动机起动到时间点a2的可预定的时段内超过了阈值Vth,就可以在步骤18中由此推定:在废气系1中不存在SCR催化器4。这在步骤19中被通报给控制器7,并特别是在由于SCR催化器4有缺陷而无法再遵守Nox极限值的情况下,触发必要的后续反应。

在图3中示意性地示出了根据本发明的第二实施方式的两种方法的流程。该方法的步骤10~14与在该方法的第一实施方式中介绍的步骤10~14相同,因而描述用于计算监视标准的方法。于是在后续的步骤中阐述所介绍的方法的应用。在步骤14中已开始计算监视标准和蓄存在SCR催化器4中的水量之后,在第二实施方式中,在该方法的步骤25中结束当前的运行周期。随后在步骤26中确定在整个运行周期期间监视标准的绝对的最小值。后续的步骤16~19也与在该方法的第一实施方式中介绍的步骤16~19相同。在步骤16中也把在步骤26中求取的绝对的最小值与可预定的阈值Vth相比较。在步骤17和18中分别推断出在废气系1中是否存在有SCR催化器4,并推断在步骤19中是否对控制器7发出有时必需的警报。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1