具有铸造芯部的金属板涡轮机外壳的制作方法

文档序号:15114273发布日期:2018-08-07 19:24阅读:141来源:国知局

本文所描述的主题涉及美国专利申请序列号xx/xxx,xxx(代理人案号0033)、美国专利申请序列号xx/xxx,xxx(代理人案号0034)和美国专利申请序列号xx/xxx,xxx(代理人案号0035)中所描述的主题,这些专利申请全部与本申请同时提交。

技术领域

本文所描述的主题总体上涉及流动控制系统,并且更具体地涉及用于涡轮增压器系统中的涡轮机外壳。



背景技术:

涡轮增压器系统经常用于提高内燃发动机的效率。两级涡轮增压器系统可以用于进一步提高在包括单个涡轮机和单个压缩机的单级涡轮增压器系统上的发动机效率。虽然在机动车辆中使用两级涡轮增压器系统可以是期望的,例如为了实现燃料经济性目标或其它环境目标,但是增加的财务成本与尺寸、包装、组装或安装约束的组合可能是被禁止的。此外,将涡轮机引入到排气流中可以降低排气的温度,并且可以降低下游排放控制装置(诸如催化转化器)的效力。因此,期望提供具有较低热惯性的涡轮机外壳,同时还实现其它性能目标并维持结构完整性。



技术实现要素:

提供具有直接涡轮机界面的涡轮机组件和相关的涡轮增压器系统。示例性涡轮机组件包括:旁通阀组件结构,其包括引导部分;内金属板壳体,其包括内入口部分和提供蜗壳外轮廓的蜗壳部分,其中内入口部分的端部由引导部分包围并与旁通阀组件结构间隔开;以及外金属板壳体,其径向包围蜗壳部分的至少一部分并包括外入口部分,外入口部分包围内入口部分并接触旁通阀组件的引导部分。

在另一个实施例中,涡轮机外壳组件包括:铸造金属结构,其具有入口开口和横向于入口开口的旁通开口;内金属板壳体,其包括内基部部分和蜗壳部分,内基部部分具有设置在入口开口内的端部,蜗壳部分限定蜗壳的外轮廓;以及外金属板壳体,其包围蜗壳部分并包括外基部部分,该外基部部分外接内基部部分,其中外基部部分连结到铸造金属结构,并且内基部部分的端部相对于铸造金属结构是独立式的。

在仍另一个实施例中,涡轮机外壳组件包括:铸造旁通阀组件结构,其包括围绕入口开口的引导部分和横向于入口开口的旁通开口;内金属板壳体,其包括内入口部分和限定蜗壳的外轮廓的蜗壳部分,其中内入口部分的端部设置在入口开口内并由引导部分包围;以及外金属板壳体,其包围蜗壳部分并包括外入口部分,外入口部分外接内入口部分并接触旁通阀组件的引导部分,其中外入口部分连结到铸造旁通阀组件结构,并且内入口部分的端部相对于铸造旁通阀组件结构是独立式的。

涡轮机外壳组件的另一个实施例包括内壳体,该内壳体具有限定入口的内基部部分和限定与入口流体连通的蜗壳的外轮廓的蜗壳部分。该涡轮机外壳组件还包括外壳体,该外壳体在径向平面中外接蜗壳部分并包括外接内基部部分的外基部部分,其中内壳体包括在径向平面中彼此连结的第一多个金属板结构,该外壳体包括第二多个金属板结构,并且包围蜗壳部分的第二多个金属板结构的第一部分在横向于径向平面的轴向平面中彼此连结。

在另一个实施例中,涡轮机外壳组件包括:内壳体,其包括在径向平面中的第一缝处彼此连结的第一多个金属板结构;以及外壳体,其包括第二多个金属板结构,该第二多个金属板结构在横向于径向平面的轴向平面中的第二缝处彼此连结。内壳体包括在径向平面中限定蜗壳的外轮廓的蜗壳部分,外壳体基本上包围蜗壳部分并在轴向方向上包封蜗壳部分,并且外壳体的外基部部分外接内壳体的内基部部分,该内壳体限定与蜗壳流体连通的入口。

在仍另一个实施例中,涡轮机外壳组件包括内金属板壳体和外板壳体,该内金属板壳体包括沿与涡轮机叶轮旋转轴线正交的径向平面联接在一起的第一对金属板结构,该外板壳体包括沿横向于径向平面的第一平面联接在一起的第二对金属板结构。第一对金属板结构中的每个包括在径向平面中限定蜗壳的外轮廓的蜗壳部分,和限定与蜗壳流体连通的入口的基部部分,并且第二对金属板结构中的每个包括在径向平面中与蜗壳部分的至少一部分径向重叠的弓形部分,和在横向于径向平面的第二平面中与基部部分的至少一部分径向重叠的外基部部分。

涡轮机外壳组件的另一个实施例包括:内壳体,其限定内入口部分和提供蜗壳的外轮廓的蜗壳部分,该内壳体包括在第一平面中联接在一起的第一多个金属板结构;外壳体,其包围蜗壳部分并限定外接内入口部分的外入口部分,该外壳体包括在横向于第一平面的第二平面中联接在一起的第二多个金属板结构;和在外壳体与内壳体之间联接到外壳体的内表面的一个或更多个能量吸收构件。

在另一个实施例中,涡轮机外壳组件包括:内壳体,其包括在径向平面中的第一接头处彼此连结的第一对金属板结构;外壳体,其包括在横向于径向平面的轴向平面中的第二接头处围绕内壳体彼此连结的第二对金属板结构,第二对金属板表面各自具有内表面;以及一对能量吸收构件,其在第二对金属板结构的内表面中的相应一个上,其中该对能量吸收构件设置在第二对金属板结构之间的界面附近。

在仍另一个实施例中,涡轮机外壳组件包括:较薄的内金属板壳体,其包括在与涡轮机叶轮旋转轴线正交的径向平面中彼此连接并连结的第一对金属板结构;以及较厚的外板壳体,其包括在横向于径向平面的第一平面中彼此连接并连结的第二对金属板结构;以及第三对弓形金属板结构,其中第一对金属板结构中的每个包括在径向平面中限定蜗壳的外轮廓的蜗壳部分,和限定与蜗壳流体连通的入口的基部部分,第二对金属板结构中的每个包括在径向平面中与蜗壳部分的至少一部分径向重叠的弓形部分,和在横向于径向平面的第二平面中与基部部分的至少一部分径向重叠的外基部部分,并且弓形金属板结构中的每个设置在第一对金属板结构的蜗壳部分与第二对金属板结构的相应金属板结构的弓形部分之间。

涡轮机外壳组件的另一个实施例包括:芯部结构,该芯部结构具有限定轴向出口的中空内部区域和限定蜗壳的内轮廓的外表面;内金属板壳体,其包括限定与蜗壳流体连通的入口的内基部部分,和限定蜗壳外轮廓的蜗壳部分,其中限定轴向出口的芯部结构的至少一部分在轴向方向上延伸通过由蜗壳部分限定的内金属板壳体中的开口;以及外金属板壳体,其包围蜗壳部分并包括外接内基部部分的外基部部分。

在另一个实施例中,涡轮机外壳组件包括内金属板壳体,该内金属板壳体包括在与涡轮机叶轮旋转轴线正交的径向平面中彼此连结的第一对金属板结构,其中第一对金属板结构中的每个包括在径向平面中限定蜗壳的外轮廓的蜗壳部分和用于轴向出口的开口,以及限定与蜗壳流体连通的入口的基部部分。该涡轮机外壳组件还包括设置在开口内的芯部结构,该芯部结构具有限定轴向出口的中空内部区域和限定蜗壳的内轮廓的外表面;以及包括第二对金属板结构的外金属板壳体,该第二对金属板结构在横向于径向平面的第一平面中围绕内金属板壳体彼此连结。

在仍另一个实施例中,涡轮机外壳组件包括:铸造旁通阀组件结构,其包括围绕入口开口的引导部分和倾斜于入口开口的旁通开口;内金属板壳体,其包括内入口部分和限定蜗壳外轮廓的蜗壳部分,其中内入口部分的端部设置在入口开口内并由引导部分接收;铸造芯部结构,其设置在由内金属板壳体的蜗壳部分限定的开口内,该芯部结构具有限定蜗壳的内轮廓的表面;以及外金属板壳体,其包围蜗壳部分并包括外入口部分,该外入口部分外接内入口部分并接触旁通阀组件结构的引导部分,其中外入口部分连结到铸造旁通阀组件结构,并且内入口部分的端部相对于铸造旁通阀组件结构是独立式的。

附图说明

在下文中将结合以下附图来描述主题的实施例,其中相似的附图标记表示相似的元件,并且:

图1是一个或更多个示例性实施例中的两级涡轮增压器系统的示意图;

图2是适用于一个或更多个示例性实施例中的图1的两级涡轮增压器系统中使用的示例性涡轮机外壳组件的透视图;

图3至图4是图2的涡轮机外壳组件的平面视图;

图5是图2至图4的涡轮机布置结构的分解透视图;

图6是沿图3中的线6-6截取的图2至图5的涡轮机布置结构的横截面视图;

图7是沿图6中的线7-7截取的图6的涡轮机布置结构的局部横截面视图;以及

图8描绘根据一个或更多个示例性实施例的图2至图6的涡轮机布置结构中的旁通阀组件结构的顶视图;以及

图9是根据一个或更多个实施例的图6的涡轮机布置结构的一部分的放大横截面视图。

具体实施方式

本文所描述的主题的实施例涉及涡轮增压器系统,该涡轮增压器系统包括具有多层金属板外壳的一个或更多个涡轮机级。如下面在图2至图8的情况下更详细描述的,在本文所描述的示例性实施例中,涡轮机外壳包括:内金属板壳体,其限定用于涡轮机叶轮的蜗壳的至少一部分;以及外金属板壳体,其径向地包封内金属板壳体,同时还在与涡轮机叶轮相对的轴向方向上包封内金属板壳体。应该注意,在本公开的实施例中可以存在许多替代的或附加的功能关系或物理连接。另外,虽然本文所示的附图描绘具有某些元件布置结构的示例,但是在实际的实施例中可以存在附加的介于中间的元件、装置、特征或部件。还应该理解,附图仅仅是说明性的,并且可以不是按比例绘制的。

如本文所使用的,术语“轴向”指的是通常平行于一个或更多个部件的旋转轴线、对称轴线或中心线或者与之重合的方向。例如,在具有中心线和大致圆形的端部或相对面的圆柱或盘中,“轴向”方向可以指的是通常平行于相对端或面之间的中心线延伸的方向。在某些情况下,术语“轴向”可以相对于不是圆柱形(或以其它方式径向对称)的部件利用。例如,包含旋转轴的矩形外壳的“轴向”方向可以被视为通常平行于轴的旋转轴线或与之重合的方向。此外,如本文所使用的术语“径向地”可以指的是部件相对于从共享的中心线、轴线或类似参考(例如在垂直于中心线或轴线的圆柱或盘的平面中)向外延伸的线的方向或关系。在某些情况下,即使部件中的一个或两个可能不是圆柱形(或以其它方式径向对称),这些部件也可以被视为“径向”对齐。此外,术语“轴向”和“径向”(以及任何派生物)可以包括除了与真实的轴向和径向尺寸精确对齐(例如,倾斜于)的方向关系,只要该关系主要在相应的标称轴向或径向方向即可。

如下面更详细描述的,内金属板壳体包括一对金属板结构,该对金属板结构在轴向方向上面向彼此,并且在径向平面中基本上彼此周向地连结以限定蜗壳的外部部分。内金属板壳体包括用于接收芯部结构的中心开口,该芯部结构限定用于涡轮机的轴向出口。芯部结构包括内部中空区域,该内部中空区域接收并支撑涡轮机叶轮的鼻部,该涡轮机叶轮在中心区域内的径向平面中旋转,该中心区域由蜗壳径向外接。芯部结构的外表面的至少一部分面向内金属板壳体的内表面,并且被设计轮廓以限定与蜗壳的外部部分相对的蜗壳的内部部分,其由内金属板壳体的有轮廓的内表面限定。换句话说,芯部结构和内金属板壳体配合地限定涡轮机的蜗壳,该蜗壳径向地包围涡轮机叶轮。

外金属板壳体包括第二对金属板结构,该第二对金属板结构在与径向平面对齐的方向上面向彼此并且在轴向平面中连结,该轴向平面横向于径向平面或以其它方式与径向平面相交,该内金属板壳体连结在该径向平面中。在这方面,内金属板壳体和外金属板壳体为涡轮机的蜗壳提供双轴外壳构造。在示例性实施例中,内金属板结构相对薄,以降低与排气通道相关联的热惯性,而外金属板结构较厚以提供额外的容纳坚固性。在一些实施例中,外金属板结构的厚度至少是内金属板结构的厚度的两倍。此外,在示例性实施例中,在易受冲击的位置处将能量吸收构件(或阻尼器)设置在外壳体金属板结构的内表面上。在一个或更多个实施例中,内金属板、外金属板和能量吸收构件的总的组合厚度基本上等于相应的铸造外壳结构的厚度,否则将利用该铸造外壳结构代替金属板壳体。在一些实施例中,内金属板、外金属板和能量吸收构件的总的组合厚度大于对应的铸造外壳结构的厚度,以提供与铸造部件相等或更大的坚固性。在这方面,能量吸收构件可以允许处于或靠近涡轮机外壳的入口和/或出口的金属板壳体的厚度具有小于铸造部件厚度的组合厚度,同时仍实现在涡轮机外壳的蜗壳部分处或周围的足够容纳。

在示例性实施例中,由内金属板壳体和外金属板壳体限定的金属板涡轮机外壳的入口连结到旁通阀组件,该旁通阀组件被实现为铸造金属。如下面更详细描述的,旁通阀组件包括:一个或更多个引导部分或凹槽,其适于接收外金属板壳体的入口部分,用于以将外金属板壳体气密地密封到旁通阀组件的方式,将外金属板壳体连结到旁通阀组件。在这方面,旁通阀组件的特征包封或以其它方式外接外金属板壳体的入口部分的端部。内金属板壳体的入口部分比外金属板壳体的入口部分的端部延伸到旁通阀组件中的更远处,以使泄漏最小化,但通过空气间隙保持与旁通阀组件间隔开,使得内金属板壳体相对于旁通阀组件是浮动的或独立式的。换句话说,内金属板壳体不接触旁通阀组件,并且通过空气间隙与旁通阀组件隔开一定距离。虽然可以操作旁通阀组件的旁通阀以减少或防止通过涡轮机的排气流,并且从而减轻涡轮机外壳的热惯性的冲击,但是在本文所描述的示例性实施例中,旁通阀在低的发动机每分钟转数(RPM)下关闭以增加进气空气。因此,降低排气通道的热惯性减少了可归因于涡轮机外壳的排气的冷却量,这又继而有助于在启动状态下减轻涡轮机对下游排放控制装置的任何潜在冲击。

图1描绘了两级涡轮增压器系统100的示例性实施例,该两级涡轮增压器系统100包括一对涡轮增压器布置结构110、120,并且可以被设计成且用于任何类型的车辆,诸如例如重型车辆或性能机动车辆到轻型机动车辆。第一涡轮增压器布置结构110包括具有入口的第一压缩机112,该入口布置成接收空气过滤器102下游的环境空气,用于压缩,以便为车辆发动机106的汽缸提供增压空气。第一涡轮机114与第一压缩机112同轴并同心地对齐并且包括涡轮机叶轮,该涡轮机叶轮经由共同旋转轴115安装到或以其它方式联接到低压压缩机112的压缩机叶轮(或推进器)。第一涡轮增压器布置结构110还包括旁通布置结构116,该旁通布置结构116可操作以选择性地旁通第一涡轮机114,并且允许排气的至少一部分经由管道或另一个导管流动通过与旁通布置结构116相关联的旁通阀以到达下游排放布置结构108,而不进入用于涡轮机叶轮的蜗壳。如下面更详细描述的,在示例性实施例中,旁通布置结构116被实现为铸造金属结构,该铸造金属结构连结到或以其它方式安装到涡轮机114的外壳。

第二涡轮增压器布置结构120包括具有入口的第二压缩机112,该入口布置成接收第一压缩机112下游的增压空气,以用于经受旁通布置结构128的操作而被进一步压缩(例如,增压)。在这方面,当旁通布置结构128打开以旁通第二压缩机122时,来自第一压缩机112的增压空气在被提供到发动机进气部或入口歧管之前,从第一压缩机112的出口流动并通过管道或另一个导管到增压空气冷却器104的入口,而不进入用于压缩机叶轮的蜗壳或不以其它方式冲击第二压缩机叶轮。第二涡轮机124与第二压缩机122同轴并同心地对齐并且包括涡轮机叶轮,该涡轮机叶轮经由共同的旋转轴125安装到或以其它方式联接到压缩机122的压缩机叶轮。第二涡轮增压器布置结构120还包括旁通布置结构126,该旁通布置结构126可操作以选择性地旁通第二涡轮机124,并且允许来自发动机汽缸106的排气的至少一部分从一个或更多个排气歧管经由管道或另一个导管流动通过与旁通布置结构126相关联的旁通阀到第一涡轮机114的入口,而不进入用于涡轮机叶轮的蜗壳或以其它方式冲击涡轮机叶轮。

借助于涡轮机114、124的所谓的“串联”构造,第二涡轮机入口处的输入排气的压力大于第一涡轮机入口处的排气的压力,并且因此,第二涡轮机124在本文中可以可选地被称为高压(HP)涡轮机,而第一涡轮机114在本文中可以可选地被称为低压(LP)涡轮机。类似地,借助于压缩机112、112的所谓的“串联”构造,第二压缩机入口处的输入排气的压力大于第一涡轮机入口处的排气的压力,并且因此,第二压缩机122在本文中可以可选地被称为高压(HP)压缩机,而第一压缩机112在本文中可以可选地被称为低压(LP)压缩机。

在示例性实施例中,排放布置结构108包括催化转化器或类似排放控制装置,该催化转化器或类似排放控制装置具有在其入口处受排气的温度影响的功效。因此,期望使与发动机106的一个或更多个排气歧管下游的涡轮增压器系统100相关联的热惯性最小化,以促进在排放布置结构108的入口处的较高排气温度。在图1中所描绘的构造中,在启动状态期间或在低于转换阈值的每分钟转数(RPM)下,关闭低压涡轮机旁通布置结构116以实现通过LP涡轮机114的排气流和LP压缩机112的对应操作,以将增压空气提供到发动机106。转换阈值可以被选择为LP涡轮机114变得饱和或扼流(choke)的可能性大于LP涡轮机阈值百分比的RPM。类似地,也可以关闭HP旁通布置结构126、128,以实现通过HP涡轮增压器布置结构120的排气流,直到达到HP涡轮机124变得饱和或扼流的可能性大于HP涡轮机阈值百分比的第二转换阈值。

在示例性实施例中,HP涡轮机旁通布置结构126开始以初始转换阈值(其小于LP涡轮机旁通布置结构116的初始转换阈值(例如,1500 RPM对4500 RPM))调节或打开,使得在涡轮增压器系统100的操作期间,通过LP涡轮机114的排气流比通过HP涡轮机124的排气流更一致并更大。因此,降低与LP涡轮机114相关联的热惯性对排放布置结构108的效力具有更大的冲击。因此,如下面更详细描述的,在本文所描述的示例性实施例中,LP涡轮机114包括多层金属板外壳,该多层金属板外壳限定通过LP涡轮机114的排气通道的至少一部分,并且从而降低LP涡轮机114的热惯性。

图2至图9描绘了适用于在图1的涡轮增压器系统100(并且特别地具有LP涡轮机114)中使用的涡轮机外壳组件200的示例性实施例。在这方面,图6描绘了当包括涡轮机叶轮610(例如,涡轮机叶轮)和对应的压缩机叶轮652(例如,压缩机叶轮)的旋转组件650被插入到涡轮机外壳组件200中并与凸缘240连结或安装时的涡轮机外壳组件200。

首先参考图2至图7,涡轮机外壳组件200包括由内金属板壳体202、204,外金属板壳体206、208和中心芯部结构220限定的涡轮机外壳。内金属板壳体202、204包括第一金属板结构202,该第一金属板结构202在与涡轮机叶轮610的旋转轴线600对齐(或平行)的轴向方向(x参考方向)上面向第二金属板结构204,使得金属板结构202、204在与涡轮机叶轮610旋转的平面(yz参考平面)对齐(或平行)的径向平面中连接并连结。为了解释的目的,最靠近涡轮机叶轮610的内金属板结构202在本文中可以可选地被称为近侧内金属板结构,并且离涡轮机叶轮610最远的内金属板结构204在本文中可以可选地被称为远侧内金属板结构。外金属板壳体206、208包括第一外金属板结构206,该第一外金属板结构206在基本上垂直于涡轮机叶轮610的旋转轴线600的方向上(例如,在z参考方向上)面向第二外金属板结构208,使得外金属板结构206、208在轴向平面(xy参考平面)中连接并连结,该轴向平面与涡轮机叶轮610的旋转轴线600对齐(或平行)并且与其中连结内金属板结构202、204的平面正交。

参考图4至图7,内金属板结构202、204形成为包括配合地限定与蜗壳212相切的径向入口700的相应基部部分203、205。该蜗壳212是提供涡旋形排气通道的中空区域,并且该蜗壳212由与基部部分203、205整体形成的基本圆形部分213、215限定,基部部分203、205与芯部结构220一致。在这方面,基部部分203、205的内表面601、603是有轮廓的并且与舌部218一致地被构造成在至蜗壳212的入口700处将排气切向地引导到蜗壳212中。蜗壳部分213、215的内表面402、602被设计轮廓以限定蜗壳212的涡旋形中空区域的外轮廓,蜗壳212从入口700径向地移动到舌部218的相对端部而变窄,该舌部218将蜗壳212与入口700分开。

如图5至图6中最佳地所示,内金属板结构202、204中的每个包括从蜗壳部分213、215径向向外延伸的凸缘或类似特征214、216,以提供用于将内金属板结构202、204周向地围绕蜗壳部分213、215联接的区域。在所示实施例中,近侧内金属板结构204的凸缘216径向向外延伸的距离大于或等于远侧内金属板结构202的凸缘214延伸的距离,以促进将远侧内金属板结构202的凸缘214基本周向地围绕蜗壳部分213、215焊接到近侧内金属板结构204的凸缘216。在一个示例中,近侧内金属板结构204和远侧内金属板结构202各自由铁素体不锈钢材料(例如,SUS430J1L)组成,并且经由钨惰性气体(TIG)焊接而联接在一起。

如图5中最佳地所示,内金属板结构202、204的基本圆形的蜗壳部分213、215中的每个限定内部开口217、219,该内部开口217、219为基本圆形并且与涡轮机叶轮610的旋转轴线600同轴并同心地对齐,以接收中心芯部结构220。中心芯部220包括与涡轮机叶轮610的旋转轴线600同轴并同心地对齐的内部中空区域222(或孔洞或孔),该中空区域222包括基本圆形或埋头孔(counterbore)部分224,以用于接收和接合涡轮机叶轮610的鼻部611。该内部中空区域222还包括具有周边的有轮廓的部分226,该周边沿与涡轮机610的旋转轴线对齐的轴向方向(x方向)远离涡轮机610移动而增加,以限定涡轮机610的轴向出口。换句话说,有轮廓的部分226的直径沿有轮廓的部分226的长度而变化,使得第一端部处的有轮廓的部分226的直径不同于第二端部处的有轮廓的部分226的直径。芯部220的远端(或出口端)包括接收出口管256的唇部或类似特征656,如下面更详细描述的。

参考图4和图6至图7,中心芯部220包括舌部部分218,该舌部部分218限定或以其它方式将蜗壳212从至其的切向入口分开。如图4和图7中最佳地所示,中心芯部220还包括基本上连续的有轮廓的外表面228,该外表面228面向内金属板结构202、204的蜗壳部分215、217的有轮廓的内表面402、602,以限定为蜗壳212提供涡旋形排气通道的中空区域的内轮廓。在示例性实施例中,中心芯部结构220被实现为整体铸造金属结构,其被焊接或以其它方式附接到远侧内金属板结构202,例如通过TIG焊接在远侧金属板结构202中的开口217周围,如下面更详细地描述的。在一个示例中,中心芯部结构220由铸造铁素体不锈钢材料(例如SUS430)组成。

参考图2至图6,外金属板结构206、208形成为包括相应的基部部分223、225,该基部部分223、225在平面(xz参考平面)中配合地包围内金属板结构206、208的入口部分203、205,该平面与涡轮机叶轮610在其中旋转的径向平面(yz参考平面)横向或正交。外金属板结构206、208还包括弓形部分227、229,弓形部分227、229配合地径向包封或包围内金属板结构202、204的蜗壳部分213、215(例如,在yz参考平面中)。如图2至图3中最佳地所示,在示例性实施例中,外金属板结构206中的一个包括形成在其中的接收特征280,该接收特征280在外金属板结构206、208之间的界面周围构造成与外金属板结构208中的另一个重叠并配合,以促进将外金属板结构206、208彼此连结。在一个示例中,外金属板结构206、208各自由铁素体不锈钢材料(例如,SUS409L)组成,并且通过TIG焊接而联接在一起。在这方面,内金属板壳体202、204和外金属板壳体206、208可以使用不同的铁素体不锈钢材料来实现。

此外,外金属板结构206、208包括有轮廓的出口部分282、284,该出口部分282、284在轴向方向(x参考方向)上远离涡轮机叶轮610移动而变窄,以在与涡轮机叶轮610相对的轴向方向(x参考方向)上基本上包封内金属板结构202、204。如所示,外壳体206、208在平行于涡轮机叶轮旋转轴线600的方向上远离涡轮机叶轮610的由有轮廓的出口部分282、284限定的延伸部大于内壳体202、204在平行于涡轮机叶轮旋转轴线600的方向上远离涡轮机叶轮610的延伸部。同时,内壳体202、204基本上垂直于涡轮机叶轮旋转轴线600的延伸部(如由内基部部分203、205所限定的)大于外壳体206、208基本上垂直于涡轮机叶轮旋转轴线600的延伸部(如由外基部部分223、225所限定的)。

有轮廓的出口部分282、284限定基本圆形的内部开口230,该内部开口230与涡轮机叶轮610的旋转轴线同轴并同心地对齐,其中开口230还具有比由内金属板结构202、204限定的圆形内部开口217、219的直径更小的直径。也就是说,应该注意,根据实施例,由外金属板结构206、208限定的轴向出口开口230,例如,由于包装限制等,可以是离轴的或相对于涡轮机610的旋转轴线成角度。限定轴向出口开口230的外金属板结构206、208的端部241、243经由出口管256和轴环258联接到基本平面的凸缘238,以用于将涡轮机外壳组件200联接到流体导管,以用于将轴向离开涡轮机叶轮610的排气携带到下游排放装置(例如,催化转化器108),如下面更详细描述的。

与限定轴向出口开口230的有轮廓的出口部分282、284相对,外金属板结构206、208中的每个包括限定基本圆形开口608的至少一部分的唇部或类似接收特征607,该基本圆形开口608构造成接收基本圆形凸缘240,以用于将涡轮机外壳组件200安装到旋转组件650。该旋转组件通常包括涡轮机叶轮610和经由共同旋转轴654联接到涡轮机叶轮610的压缩机叶轮652。如图6中最佳地所示,在示例性实施例中,由靠近涡轮机610(或远离轴向出口)的外金属板结构206、208的轴向端部245、247限定的开口608的内周边大于或等于凸缘240的外周边,使得凸缘240的一部分接收在开口608内。因此,外金属板壳体206、208限定具有比蜗壳212的径向尺寸更大的径向尺寸的轴承开口608,同时还限定具有比轴承开口608和蜗壳212的径向尺寸更小的径向尺寸的相对出口开口230。通常,轴承凸缘240包括分布在凸缘240的周界或周边周围的多个孔404,多个孔404各自接收相应的紧固件640。该紧固件640与孔404接合,以便将凸缘240(并且因此涡轮机外壳组件200)安装、支撑或以其它方式联接到旋转组件650。然而,应该理解,凸缘240可以经由任何技术(诸如过盈配合(interference fit)、焊接等)联接到旋转组件650。

仍然参考图2至图6,外金属板结构206、208的基部部分223、225的端部233、235连结到或以其它方式联接到旁通阀组件结构232,该旁通阀组件结构232包括用于阀(例如,旁通布置结构116)的开口270,该阀可操作以允许排气选择性地旁通切向入口到蜗壳212,并且从而旁通涡轮机610。在这方面,旁通开口270沿倾斜于入口开口632的轴线的轴线延伸,如在图4、图6和图8中所示。在示例性实施例中,旁通阀组件结构232被实现为整体铸造金属材料,其包括凸缘231(或唇部),该凸缘231(或唇部)在横向于涡轮机叶轮610在其中旋转的径向平面(yz参考平面)的轴向平面(xz参考平面)中接收并外接外金属板结构206、208的基部部分223、225的端部233、235。

如图6和图8中最佳地所示,旁通阀组件结构232还包括对应的引导部分234,该对应的引导部分234具有小于或等于唇部特征231的内周边的外周边,和小于或等于组合的外金属板基部223、225的端部233、235的内周边的内周边,以用于接收并支撑外金属板基部部分223、225的端部233、235。在这方面,引导部分234可以被实现为围绕旁通阀组件结构232中的入口开口632的周界的搁板(shelf)或表面,该引导部分234包括接合外金属板基部部分223、225的端部233、235的一个或更多个特征802、804、806、808。特征802、804、806、808可以具有明显的或不同的形状,并且可以围绕引导部分234的周界间隔开,并且特征802、804、806、808可以构造成当外金属板结构206、208被插入到旁通阀组件结构232中时与外金属板结构206、208的基部部分223、225上的对应特征相配合。随后,唇部231的重叠部分围绕其周界被焊接到外金属板基部部分223、225的外表面,以将外金属板结构206、208气密地密封到旁通阀组件结构232。

参考图6,旁通阀组件结构232进一步包括容纳部分236。该容纳部分236可以包括限定在旁通阀组件结构232的入口开口632中的埋头孔(countersink)。容纳部分236通常具有小于或等于组合的外金属板基部223、225的端部233、235的内周边的外周边。容纳部分236相对于引导部分234进一步凹入到旁通阀组件结构232中,以容纳内金属板基部部分203、205进入旁通阀组件结构232中而不接触旁通阀组件结构232的延伸部。在这方面,内金属板结构202、204的基部部分203、205的端部237、239相对于唇部特征231的端部延伸进入旁通阀组件结构232(在-y参考方向上)中达到距离(d1),该距离(d1)大于外金属板基部端部233、235延伸超过唇部特征231的端部进入旁通阀组件结构232中的距离(d2),以使内金属板壳体和外金属板壳体之间的泄漏最小化。同时,在内金属板基部部分203、205的端部237、239和旁通阀组件结构232的容纳部分236之间维持空气间隙或分隔距离630,使得内金属板基部部分203、205不接触旁通阀组件结构232并且相对于旁通阀组件结构232是独立式的。

如图5至图7中最佳地所示,在示例性实施例中,能量吸收构件260、262设置在外金属板结构206、208中的每个的内表面上。在一个示例中,能量吸收构件260、262设置在相应的外金属板结构206、208和内金属板结构202、204之间。在这个示例中,能量吸收构件260、262是弓形金属板结构,其基本上符合相应外金属板结构206、208的内表面,并且在与外金属板结构206、208的重叠部分的位置处被焊接(例如,点焊接)到相应外金属板结构206、208的内表面。在这方面,借助于外金属板结构206、208的形状,远离连接外金属板结构206、208的基部部分223、225的外金属板结构206、208的上部部分可以更易受叶轮破裂的影响。因此,能量吸收构件260、262可以策略性地放置成径向地包围由内金属板结构202、204限定的蜗壳212的至少一部分,所述内金属板结构202、204与连结外金属板结构206、208的位置相邻,以提供额外的径向容纳。

在示例性实施例中,平行于涡轮机旋转轴线600的能量吸收构件260、262的轴向尺寸(或宽度)构造成与用于容纳目的的蜗壳212的部分径向地重叠,但不在轴向方向上延伸超过蜗壳212以使由能量吸收构件260、262对涡轮机外壳组件200贡献的材料和重量的量最小化。在这方面,能量吸收构件260、262和蜗壳212可以与远离涡轮机610的能量吸收构件260、262的边缘或端部共面,所述能量吸收构件260、262的边缘或端部在径向平面中与蜗壳212的远侧范围基本上对齐,如图5至图6中最佳地所示的。同时,能量吸收构件260、262的径向尺寸(或长度)也被选择成使由能量吸收构件260、262对涡轮机外壳组件200贡献的材料和重量的量最小化,同时策略性地在期望的位置处提供径向容纳。

在一个或更多个示例性实施例中,外金属板结构206、208的厚度大于内金属板结构202、204的厚度,也就是说,外金属板结构206、208可以由金属板形成,该金属板具有比用于形成内金属板结构202、204的金属板更大的厚度。在这方面,用于形成内金属板结构202、204的金属板可以被制成尽可能薄以用于热性能,其中较厚的金属板被用于外金属板结构206、208以获得实现期望的容纳性和可靠性的所得到的组合厚度。例如,在一个实施例中,内金属板结构202、204的蜗壳部分213、215的壁厚大约为1.2毫米(mm),并且外金属板结构206、208的弓形部分227、229的壁厚大约为3 mm,以提供约4.2 mm的总厚度,该总厚度对应于类似尺寸的相应铸造部件的壁厚。

在一个或更多个实施例中,选择能量吸收构件260、262的厚度,以在最易受容纳损失的外金属板结构206、208的位置处实现铸造厚度。例如,如果铸造部件厚度为4.5 mm,并且内金属板结构202、204具有大约1.2 mm的壁厚,且外金属板结构206、208具有大约3 mm的壁厚,则能量吸收构件260、262的厚度可以被选择为大约0.3 mm以实现4.5 mm的组合厚度。在仍另一个实施例中,相同类型的金属板用于外金属板结构206、208和能量吸收构件260、262,并且外金属板结构206、208和能量吸收构件260、262的厚度基本上相同,并且被选择以提供铸造部件厚度。例如,如果铸造部件厚度为4.5 mm并且内金属板结构202、204具有1.3 mm的壁厚,则于是外金属板结构206、208和能量吸收构件260、262两者都可以具有大约1.6 mm的厚度,以实现4.5 mm的组合厚度。因此,外金属板结构206、208和能量吸收构件260、262的厚度可以由内金属板结构202、204的厚度和所需的容纳量决定,这继而允许内金属板结构202、204的厚度被优化以实现期望的性能质量。

仍参考图2至图8,为了制造涡轮机外壳组件200,芯部结构220被插入到远侧内金属板结构202的开口217中,并且远侧内金属板结构202通过钨惰性气体(TIG)焊接围绕开口217周向地焊接到芯部结构220的面向与涡轮机叶轮610相对的轴向出口的外表面而连结到芯部结构220,以便将远侧金属板结构202气密地密封到芯部结构220。近侧内金属板结构204的端部(其限定用于接收涡轮机叶轮610的开口219)被插入到对应的开口中,对应的开口由凸缘240限定并通过TIG焊接围绕开口219周向地连结,以便将金属板结构204气密地密封到凸缘240。其后,内金属板结构202、204的面向内的端部通过在径向平面中围绕内金属板结构202、204之间的界面的TIG焊接而彼此连结,以便在轴向方向上将内金属板结构202、204彼此气密地密封。因此,蜗壳部分213、215在边缘214、216会合的部分处基本上周向地彼此焊接,以提供用于蜗壳212的气密密封的径向外轮廓。所得到的围绕内金属板结构202、204的焊缝或焊接接头位于径向平面(例如,yz参考平面)中,该径向平面基本上平行于涡轮机叶轮610在其中旋转的平面,并且基本上垂直于涡轮机叶轮旋转轴线600。

如由图9中区域900的详细视图所示,在示例性实施例中,芯部结构220未焊接或连结到近侧内金属板结构204,使得芯部结构220相对于近侧内金属板结构204是独立式的。特别地,在环境温度下,靠近入口的芯部结构220的舌部部分218与近侧内金属板结构204中的对应舌部特征间隔开,近侧内金属板结构204通过空气间隙902将蜗壳212的内部部分与入口分开,所述空气间隙902具有非零分隔距离,以适应内金属板结构204的热膨胀,并且从而减少在芯部结构220的舌部部分218上的应力。在这方面,可以选择空气间隙902以在环境温度下提供分隔距离,这导致在操作期间至少一些分隔距离维持在升高的排气温度下。在一些实施例中,内金属板结构204可以在操作期间接触芯部结构220的舌部部分218,但仅在处于或接近其最大的热膨胀时这么做,使得施加在芯部结构220上的任何应力被最小化。例如,在一个实施例中,舌部部分218和近侧内金属板结构204中的对应舌部特征之间的空气间隙902或分隔距离在环境温度下为约0.5毫米,使得在850°摄氏度的最大操作温度下,舌部部分218和近侧内金属板结构204中的对应舌部特征彼此接触,而不在芯部结构220或金属板结构204中的任一个上引起任何显著的应力。

在将内金属板结构202、204与芯部结构220和轴承凸缘240组装之后,将轴向出口管256插入到对应的引导特征中,该对应的引导特征形成在芯部结构220的出口部分226的远端的内表面中,并且通过TIG焊接围绕出口管256的近端连结到出口部分226的内表面,从而将轴向出口管256气密地密封到芯部结构220。出口轴环258设置在出口管256的远端上。

仍参考图2至图6,能量吸收构件260、262通过点焊接连结到相应的外金属板结构206、208的内表面。其后,与基部部分223、225相对的外金属板结构206、208的上部部分围绕组装的内金属板结构202、204通过TIG焊接与外金属板结构206、208的重叠部分一起连结在xy参考平面中,以在yz参考平面中径向地包封蜗壳部分213、215。在这方面,焊缝沿金属板结构206、208之间的重叠界面(例如,其中结构206的接收特征280与结构208的端部243重叠)从外金属板结构206、208的出口端241、243沿弓形部分227、229的半径(或直径)延伸。所得到的外金属板结构206、208之间的焊缝或焊接接头位于轴向平面中,该轴向平面基本上平行于涡轮机叶轮旋转轴线600,并且基本上垂直于或横向于涡轮机叶轮610在其中旋转的平面,如由图2至图3最佳地所示。在这方面,外金属板结构206、208之间的焊缝所在的平面基本上垂直于或以其它方式横向于内金属板结构202、204之间的焊缝所在的径向平面,并且弓形部分227、229之间的焊缝的与入口开口632相对并径向地包围蜗壳212的部分在基本上平行于涡轮机叶轮旋转轴线600的轴向方向上延伸。

此外,限定轴向出口开口230的外金属板结构206、208的远端241、243围绕出口轴环258周向地焊接,这继而支撑从径向平面(yz参考平面)中的芯部结构220延伸的出口管256的远端。在示例性实施例中,在相同的焊接处理步骤期间,执行出口管256到外金属板结构206、208的出口端241、243的焊接,和外金属板结构206、208的上部部分的焊接。

基部部分223、225的端部233、235被插入到铸造旁通阀结构232的引导部分234中。然后,外金属板结构206、208的基部部分223、225通过TIG焊接将外金属板结构206、208之间的界面从出口管256焊接到与旁通阀组件结构232的界面,从而连结在xy参考平面中。引导部分234的唇部231的周界还在基本上平行于涡轮机叶轮旋转轴线600的平面(例如,xz参考平面)中焊接到外金属板结构206、208的重叠外表面,以将外金属板结构206、208气密地密封到旁通阀结构232。因此,外金属板结构206、208和旁通阀结构232配合地径向包封内金属板结构202、204,同时外金属板结构206、208和轴承凸缘240轴向地包封内金属板结构202、204。在示例性实施例中,在相同的焊接处理步骤期间,执行外金属板结构206、208的下部部分的焊接,和外金属板基部部分223、225与旁通阀组件结构232的焊接。应该注意,借助于外金属板结构206、208之间的轴向界面,与沿径向平面周向地焊接相比(例如,与周向焊缝相比的径向或直径的焊缝),连结外金属板结构206、208所需的焊接距离或焊接量减少。

如上所述,内金属板结构202、204的基部部分237、239的入口端比外金属板基部部分223、225的端部233、235延伸到旁通阀结构232中(例如,到凹入部分236中)距离更远,以经由内基部部分237、239的端部和旁通阀结构232之间的空气间隙使在入口处的任何泄漏最小化,并且进入内金属板结构202、204和外金属板结构206、208之间的任何间隙或空间中。内基部部分237、239和旁通阀结构232之间的分隔距离适应由排气流导致的内金属板结构202、204的热膨胀。

出口轴环258被插入到排气出口凸缘238中的对应开口中,并且周向地焊接到凸缘238中的开口的内表面,以气密地密封排气通道。在一些实施例中,出口管256和出口轴环258的轴向出口端两者均同时被周向地焊接到凸缘238中的开口的内表面,以有效地将所有三个结构238、256、258焊接在一起,并密封排气通道的出口端。在示例性实施例中,排气出口凸缘238由金属板形成或者使用金属板以其它方式实现。如图2中所示,在一些实施例中,限定轴向出口开口230(其接收出口管256和轴环258)的外金属板结构206、208的出口端可以与出口凸缘238间隔开或以其它方式从其偏移。因此,出口管256和轴环258可以适应在制造或组装期间凸缘238相对于外金属板结构206、208的位置或取向的变化。这就是说,借助于将外金属板结构206、208的出口端周向地焊接到轴环258,该轴环258继而被焊接到出口管256和出口凸缘238,轴向出口排气通道从芯部结构220气密地密封到凸缘238下游的管道。在这方面,当芯部220的轴向出口部分226未焊接或密封到外金属板结构206、208时,出口管256和轴环258提供气密密封的通道。

在制造涡轮机外壳组件200之后,将组件250的涡轮机鼻部部分211插入到芯部结构220的对应部分224中,同时使用凸缘240以将凸缘240气密地密封到组件250的方式将组件250安装到或以其它方式连结到涡轮机外壳组件200。在示例性实施例中,涡轮机鼻部部分211包括外接涡轮机鼻部部分211的外表面的一个或更多个密封环,以将来自涡轮机叶轮610的轴向出口与用于设置在芯部结构220内的轴向出口的开口222气密地密封。可变几何构件(例如,导流叶片等)可以围绕涡轮机叶轮610设置在组件250内,并且构造成调节、控制或以其它方式影响从蜗壳212到涡轮机叶轮610的排气流,如在本领域中将可理解的。

借助于至少限定蜗壳212的外轮廓及至其的入口的内金属板结构202、204,由排气所遇到的金属板表面积的百分比增加,这继而相对于进入旁通阀结构232时的排气温度,减少排气出口凸缘238中开口处的排气温度的降低。此外,内金属板结构202、204相对薄,以进一步降低与通过蜗壳212的排气流相关联的热惯性。因此,可以改善下游排放装置的效力。相对较厚的外金属板结构206、208为蜗壳212提供容纳,同时也由金属板构成以降低热惯性。同时,旁通阀结构232被实现为铸造金属,以支撑经受任何外部负载的涡轮机外壳组件200的其余部件,该外部负载由连结到带阀开口270的管道、连结到排气出口凸缘238的管道、或连结到涡轮机外壳组件200的组件250引起。铸造旁通阀结构232还有助于维持开口270(例如,通过避免由于热膨胀或变形而引起的闭合),并且在可变温度和质量流量条件的范围内支撑旁通阀部件(例如,阀、用于阀的臂或致动元件,以及促进致动的衬套或其它部件)的坚固且可靠的操作,并且经受潜在变化的外部负载量。此外,芯部结构220被实现为铸造金属,以在可变温度和质量流量条件的范围内,即,通过提供不易受变形、热膨胀等影响的蜗壳212的舌部部分218和其它表面来类似地提供坚固且可靠的操作。这就是说,借助于由内金属板结构202、204提供的蜗壳部分213、215和基部入口部分203、205,蜗壳212及至其入口内的被实现为铸造金属的暴露表面区域可以减小或以其它方式最小化,以实现与涡轮机外壳组件200相关联的热惯性的对应降低。

借助于围绕内金属板结构202、204之间的径向界面的凸缘214、216,用于连结内金属板结构202、204的焊缝区域可以增加,以促进围绕蜗壳部分213、215的周向界面的更加一致且稳定的焊接,并从而可以改善焊接质量。与径向缝取向一致的改进的焊接质量可以导致为了改善容纳性目的的改进的刚度,并且还可以帮助最小化蜗壳变形。此外,用于连结外金属板结构206、208的焊接的焊缝方向使焊接长度(径向地或直径地对周向地)最小化,这对于容纳能力是有利的,容纳能力通过外金属板结构206、208的增加厚度而进一步增强。与蜗壳212径向重叠的附加能量吸收构件260、262进一步改善了容纳性,其中能量吸收构件260、262靠近外金属板结构206、208之间的接头放置,增强了径向外接蜗壳212的外金属板结构206、208的相对较平坦的部分。同时,能量吸收构件260、262的轴向和径向尺寸可以被最小化,使得它们仅在策略上有利的位置处与蜗壳212径向重叠,以减少材料成本和重量。

如上面在图1的情况下所描述的,在启动时,开口270中的阀关闭,使得排气流动通过蜗壳212并在离开轴向出口222、230到下游排放装置108之前,冲击涡轮机叶轮610。通过将排气所遇到的铸造金属表面区域限制为芯部结构220的舌部218和有轮廓的表面228以及芯部结构220的出口222,涡轮机外壳组件200相对于对应的铸造涡轮机外壳组件的有效热惯性降低。因此,到达下游排放装置108的排气相对于铸造涡轮机外壳组件具有更高的温度,并且因此,改善下游排放装置108的性能。同时,金属板也可以用于使与涡轮机外壳组件200相关联的尺寸、重量、外型等最小化,而不会由于本文所描述的构造而损害破裂容纳。

为了简洁起见,本文中可以不详细描述与涡轮机、压缩机、涡轮增压器、废气门、旁通阀、管道、催化转化器、排放控制装置以及系统的其它功能方面(以及系统的各个操作部件)有关的常规技术。另外,包括在本文中的各种附图旨在表示各种元件之间的示例性功能关系和/或物理联接。应该注意,在主题的实施例中可以存在许多替代或附加的功能关系或物理连接。

前面的描述可以指代“联接”在一起的元件或部件或特征。如本文所使用的,除非另有明确说明,“联接”是指一个元件/节点/特征直接或间接地连结到另一个元件/节点/特征(或直接或间接地与另一个元件/节点/特征连通),且不一定机械地连接。因此,尽管附图可以描绘元件的一个示例性布置结构,但是在所描绘的主题的实施例中可以存在附加的介于中间的元件、装置、特征或部件。此外,为了仅供参考的目的,某些术语也可以用于以下描述中,并且因此不旨在是限制性的。例如,术语“第一”、“第二”以及涉及结构的其它此种数字术语并不意味着序列或顺序,除非上下文明确指出。类似地,术语诸如“上部”、“下部”、“顶部”和“底部”是指所参考的附图中的方向。

前面的详细描述本质上仅是说明性的,并且不旨在限制主题的实施例或此实施例的应用和使用。如本文所使用的,词语“示例性”意味着“用作示例、实例或说明”。本文示例性描述的任何实施方式不一定被解释为比其它实施方式优选或有利。另外,不旨在受前面背景技术、发明内容或具体实施方式中提出的任何理论的约束。

虽然至少一个示例性实施例已经存在于前面的详细描述中,但是应该理解,存在大量的变型。还应该理解,一个或更多个示例性实施例仅是示例,并且不旨在以任何方式限制本主题的范围、适用性或构造。相反,前面的详细描述将为本领域技术人员提供用于实施本主题的示例性实施例的便利的路线图。应该理解,可以在不脱离如所附权利要求中阐述的主题的范围的情况下,对示例性实施例中描述的元件的功能和布置结构方面做出各种改变。因此,在没有明确的相反意图的情况下,以上描述的示例性实施例或其它限制的细节不应阅读加入权利要求中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1