内燃机的控制装置及方法与流程

文档序号:19993396发布日期:2020-02-22 02:30阅读:269来源:国知局
内燃机的控制装置及方法与流程

本发明涉及内燃机的控制装置及方法。



背景技术:

美国专利申请公开第2014/41362号公开了一种火花点火式的内燃机。该内燃机具备三元催化剂和捕集颗粒物的捕集器。三元催化剂设置于排气通路。捕集器配置于比三元催化剂靠下游处的排气通路。

在美国专利申请公开第2014/41362号的内燃机中,在因加速器操作的消除而要求转矩减小且负荷变低时,有时会停止汽缸内的燃烧。在这样的燃烧停止期间,执行停止燃料喷射阀的燃料喷射的燃料切断处理及使从燃料喷射阀喷射出的燃料保持未燃状态从汽缸内向排气通路流出的燃料导入处理中的某一方。根据美国专利申请公开第2014/41362号,在捕集器的再生时执行燃料导入处理,另一方面,在不进行捕集器的再生的情况下执行燃料切断处理。

在燃料导入处理中,从燃料喷射阀喷射出的燃料与空气一起在排气通路中流动。并且,当燃料向三元催化剂导入后,通过燃料的燃烧而三元催化剂的温度上升。当三元催化剂的温度上升后,高温的气体向捕集器流入而使捕集器的温度上升。其结果,捕集于捕集器的颗粒物燃烧。

在通过燃料导入处理的实施而燃料向三元催化剂供给并燃烧时,吸藏于三元催化剂的氧被消耗。在此,若在开始燃料导入处理之前三元催化剂的氧吸藏量少,则在燃料导入处理的执行中在三元催化剂中燃料燃烧时三元催化剂的氧吸藏量可能会不足。在该情况下,燃料可能会保持未燃状态通过三元催化剂,或者即使实施燃料导入处理,三元催化剂的温度上升也可能会不足。



技术实现要素:

为了解决上述课题,根据本发明的第一方案,提供一种内燃机的控制装置。内燃机具备喷射燃料的燃料喷射阀、在汽缸内进行火花放电的点火装置及设置于排气通路的三元催化剂。内燃机构成为,通过点火装置的火花放电来对包含从燃料喷射阀喷射出的燃料的混合气进行点火而使该混合气在汽缸内燃烧。控制装置构成为,在内燃机的曲轴正在旋转的状况下使汽缸内的燃烧停止时,选择实施使燃料喷射阀的燃料喷射停止的燃料切断处理及从燃料喷射阀喷射燃料并将该燃料保持未燃状态从汽缸内向排气通路导入的燃料导入处理中的任一方,在开始燃料导入处理之前,执行实施燃料切断处理而使三元催化剂吸藏氧的吸藏处理。

为了解决上述课题,根据本发明的第二方案,提供一种内燃机的控制方法。内燃机具备喷射燃料的燃料喷射阀、在汽缸内进行火花放电的点火装置及设置于排气通路的三元催化剂。内燃机构成为,通过点火装置的火花放电来对包含从燃料喷射阀喷射出的燃料的混合气进行点火而使该混合气在汽缸内燃烧。控制方法包括:在内燃机的曲轴正在旋转的状况下使汽缸内的燃烧停止时,选择执行使燃料喷射阀的燃料喷射停止的燃料切断处理及从燃料喷射阀喷射燃料并将该燃料保持未燃状态从汽缸内向排气通路导入的燃料导入处理中的任一方;及在开始燃料导入处理之前,执行实施燃料切断处理而使三元催化剂吸藏氧的吸藏处理。

附图说明

图1是示出具备本发明的第1实施方式中的内燃机的控制装置的混合动力车辆的构成的示意图。

图2是示出在第1实施方式中用于执行吸藏处理的处理步骤的流程图。

图3是示出三元催化剂的温度与最大氧吸藏量的关系的坐标图。

图4是用于示出第1实施方式的作用的时间图。

图5是示出在本发明的第2实施方式中用于执行点火停止延迟处理的处理步骤的流程图。

图6是用于示出第2实施方式的作用的时间图。

具体实施方式

(第1实施方式)

以下,参照图1~图4来说明内燃机的控制装置的第1实施方式。

如图1所示,混合动力车辆500(以下,简记为车辆500)具备内燃机10、动力分配统合机构40、第1电动发电机71。动力分配统合机构40连接于内燃机10的曲轴14。第1电动发电机71连接于动力分配统合机构40。动力分配统合机构40经由减速齿轮50而连结于第2电动发电机72。另外,动力分配统合机构40经由减速机构60及差速器61而连结于驱动轮62。

动力分配统合机构40是行星齿轮机构,具有外齿齿轮的太阳轮41和内齿齿轮的齿圈42。在太阳轮41与齿圈42之间配置有与太阳轮41及齿圈42双方啮合的多个小齿轮43。各小齿轮43以能够自转且能够绕着太阳轮41公转的状态支撑于齿轮架44。太阳轮41连结于第1电动发电机71。齿轮架44连结于曲轴14。齿圈42连接于齿圈轴45。齿圈轴45连结于减速齿轮50及减速机构60双方。

减速齿轮50是行星齿轮机构,具有连结有第2电动发电机72的外齿齿轮的太阳轮51和内齿齿轮的齿圈52。齿圈52连接于齿圈轴45。在太阳轮51与齿圈52之间配置有与太阳轮51及齿圈52双方啮合的多个小齿轮53。各小齿轮53以能够自转且不能绕着太阳轮51公转的状态被支撑。

第1电动发电机71经由第1变换器75而与蓄电池77进行电力的授受。第2电动发电机72经由第2变换器76而与蓄电池77进行电力的授受。

内燃机10的输出转矩当向动力分配统合机构40的齿轮架44输入后,被向太阳轮41和齿圈42分配。当通过分配给太阳轮41的输出转矩而第1电动发电机71旋转时,第1电动发电机71作为发电机发挥功能。

另一方面,在使第1电动发电机71作为电动机发挥了功能的情况下,第1电动发电机71的输出转矩向太阳轮41输入。输入到太阳轮41的第1电动发电机71的输出转矩被向齿轮架44和齿圈42分配。并且,通过第1电动发电机71的输出转矩经由齿轮架44而向曲轴14输入,曲轴14旋转。将这样通过使第1电动发电机71作为电动机发挥功能而使曲轴14旋转称作“拖动”。

分配给齿圈42的内燃机10的输出转矩、第1电动发电机71的输出转矩经由齿圈轴45、减速机构60及差速器61而向驱动轮62输入。

另外,通过在车辆500减速时使第2电动发电机72作为发电机发挥功能,在车辆500产生与第2电动发电机72的发电量相应的再生制动力。另一方面,在使第2电动发电机72作为电动机发挥了功能的情况下,第2电动发电机72的输出转矩经由减速齿轮50、齿圈轴45、减速机构60及差速器61而向驱动轮62输入。

内燃机10具有多个汽缸11。在各汽缸11内,活塞往复运动。各活塞经由连杆而连结于曲轴14。

在内燃机10的进气通路15设置有调整在进气通路15中流动的进气的流量的节气门16。另外,在内燃机10中与多个汽缸各自对应地设置有向进气口15a喷射燃料的燃料喷射阀17和通过火花放电来对燃料与进气的混合气进行点火的点火装置19。通过混合气的燃烧而在各汽缸11内产生的排气向排气通路21排出。在排气通路21设置有三元催化剂22。在比三元催化剂22靠下游侧的排气通路21设置有捕集排气中包含的颗粒物的捕集器23。

在内燃机10中,有时会在车辆500正在行驶且曲轴14正在旋转时停止汽缸11内的混合气的燃烧。以下,将这样在曲轴14正在旋转时停止汽缸11内的混合气的燃烧的期间称作“燃烧停止期间”。在燃烧停止期间,汽缸11内的各活塞同步于曲轴14的旋转而往复移动。因而,经由进气通路15而导入到汽缸11内的空气不燃烧而向排气通路21排出。

在上述的燃烧停止期间,执行停止各燃料喷射阀17的燃料喷射的燃料切断处理及从各燃料喷射阀17喷射燃料并使燃料保持未燃状态从各汽缸11内向排气通路21导入的燃料导入处理中的某一方。

当执行燃料导入处理时,从各燃料喷射阀17喷射出的燃料与空气一起在排气通路21中流动后向三元催化剂22导入。此时,在三元催化剂22的温度为活性化温度以上且足以使燃料燃烧的量的氧存在于三元催化剂22的情况下,在三元催化剂22中燃料燃烧。当在三元催化剂22中燃料燃烧时,三元催化剂22的温度上升,高温的气体向捕集器23流入。其结果,捕集器23的温度上升。并且,当在正向捕集器23供给氧的状态下捕集器23的温度成为颗粒物的着火点温度以上时,捕集于捕集器23的颗粒物燃烧。这样,捕集器23被再生。

在车辆500搭载有内燃机用控制装置100、马达用控制装置300、车辆用控制装置200。内燃机用控制装置100执行内燃机10的各种控制。马达用控制装置300执行第1电动发电机71及第2电动发电机72的各种控制。车辆用控制装置200统括地控制内燃机用控制装置100及马达用控制装置300。另外,在车辆500搭载有监视蓄电池77的蓄电量soc(stateofcharge)的蓄电池监视装置400。

蓄电池监视装置400连接于蓄电池77。蓄电池监视装置400具备中央处理装置(cpu)和存储器。对蓄电池监视装置400输入蓄电池77的电流ib、电压vb及温度tb。蓄电池监视装置400基于电流ib、电压vb及温度tb,通过cpu执行存储于存储器的程序来算出蓄电池77的蓄电量soc。

马达用控制装置300连接于第1变换器75及第2变换器76。马达用控制装置300具备中央处理装置(cpu)和存储器。马达用控制装置300通过cpu执行存储于存储器的程序来控制从蓄电池77向第1电动发电机71及第2电动发电机72供给的电力量和从第1电动发电机71及第2电动发电机72向蓄电池77供给的电力量(也就是充电量)。

内燃机用控制装置100、马达用控制装置300及蓄电池监视装置400经由通信端口而连接于车辆用控制装置200。车辆用控制装置200也具备中央处理装置(cpu)和存储器。车辆用控制装置200通过cpu执行存储于存储器的程序来执行各种控制。

从蓄电池监视装置400向车辆用控制装置200输入蓄电池77的蓄电量soc。车辆用控制装置200连接于检测驾驶员的加速器踏板的踩踏量(加速器操作量acp)的加速器踏板传感器86、检测车辆500的行驶速度即车速sp的车速传感器87、动力开关88。对车辆用控制装置200输入来自传感器和开关的输出信号。动力开关88是混合动力车辆500的系统起动用开关。当车辆驾驶员对动力开关88进行接通操作时,车辆500成为能够行驶的状态。

车辆用控制装置200基于加速器操作量acp及车速sp来运算车辆500的驱动力的要求值即车辆要求功率。而且,车辆用控制装置200基于车辆要求功率和蓄电量soc等来分别运算内燃机要求转矩、第1马达要求转矩及第2马达要求转矩。内燃机要求转矩是内燃机10的输出转矩的要求值。第1马达要求转矩是第1电动发电机71的动力运行转矩或再生转矩的要求值。第2马达要求转矩是第2电动发电机72的动力运行转矩或再生转矩的要求值。内燃机用控制装置100根据内燃机要求转矩来进行内燃机10的输出控制。马达用控制装置300通过根据第1马达要求转矩及第2马达要求转矩进行第1电动发电机71及第2电动发电机72的转矩控制来进行车辆500的行驶所需的转矩控制。

内燃机用控制装置100具备中央处理装置(以下,称作cpu)110、存储有控制用的程序和数据的存储器120。并且,通过cpu110执行存储于存储器120的程序来执行各种内燃机控制。

内燃机用控制装置100连接于检测吸入空气量ga的吸入空气量传感器即空气流量计81、检测内燃机10的冷却水的温度即冷却水温thw的水温传感器82、检测曲轴14的旋转角的曲轴角传感器85。对内燃机用控制装置100输入来自上述各种传感器的输出信号。另外,内燃机用控制装置100也连接于第1空燃比传感器83和第2空燃比传感器84。对内燃机用控制装置100也输入来自这些各传感器的输出信号。第1空燃比传感器83设置于比三元催化剂22靠上游处的排气通路21,输出与排气的氧浓度相应的信号。第2空燃比传感器84设置于三元催化剂22与捕集器23之间的排气通路21,输出与排气的氧浓度相应的信号。通过从第1空燃比传感器83输出的信号来检测比三元催化剂22靠上游侧的排气的空燃比即上游侧空燃比afu。另外,通过从第2空燃比传感器84输出的信号来检测比三元催化剂22靠下游侧的排气的空燃比即下游侧空燃比afd。内燃机用控制装置100也连接于温度传感器89。对内燃机用控制装置100也输入来自温度传感器89的输出信号。温度传感器89设置于三元催化剂22与捕集器23之间的排气通路21,检测通过三元催化剂22后的排气的温度即催化剂流出气体温度the。

内燃机用控制装置100基于曲轴角传感器85的输出信号scr来运算内燃机转速ne。另外,内燃机用控制装置100基于内燃机转速ne及吸入空气量ga来运算内燃机负荷率kl。内燃机负荷率kl是当前的汽缸流入空气量相对于在当前的内燃机转速ne下使节气门16全开而使内燃机10稳态运转时的汽缸流入空气量的比率。汽缸流入空气量是在进气行程中向各汽缸11流入的空气的量。

内燃机用控制装置100基于进气的充气效率、内燃机转速ne等各种内燃机运转状态及催化剂流出气体温度the来算出三元催化剂22的温度即催化剂温度tsc和捕集器23的温度即捕集器温度tf。另外,内燃机用控制装置100基于内燃机转速ne、内燃机负荷率kl及捕集器温度tf等算出pm堆积量ps。pm堆积量ps是堆积于捕集器23的颗粒物的堆积量。

内燃机用控制装置100判定汽缸11内的混合气的燃烧停止条件是否成立。例如在内燃机要求转矩比“0”大时,内燃机用控制装置100判定为燃烧停止条件不成立,在汽缸11内使混合气燃烧。在汽缸11内使混合气燃烧的情况下,内燃机用控制装置100以使上游侧空燃比afu成为目标空燃比aft的方式算出燃料喷射量的要求值qpr。在汽缸11内使混合气燃烧的情况下的目标空燃比aft例如被设定为理论空燃比或理论空燃比附近的值。并且,内燃机用控制装置100基于算出的要求值qpr来控制燃料喷射阀17的驱动。另外,内燃机用控制装置100以在汽缸11内的活塞到达压缩上止点附近的定时下实施点火装置19的火花放电的方式控制混合气的点火正时。通过这样的燃料喷射控制及点火正时控制来实施汽缸11内的混合气的燃烧。

另一方面,在内燃机要求转矩为“0”以下时,内燃机用控制装置100判定为燃烧停止条件成立。在判定为燃烧停止条件成立的情况下,内燃机用控制装置100在使汽缸内的混合气的燃烧停止时选择执行燃料切断处理及燃料导入处理中的任一方,因此判定燃料导入处理的执行条件是否成立。例如在以下的条件(a)及条件(b)均成立的情况下,内燃机用控制装置100判定为燃料导入处理的执行条件成立。

(条件a):三元催化剂22的温度即催化剂温度tsc为规定温度以上。该条件根据以下的理由而设定。即,即使将未燃的燃料向三元催化剂22导入,当三元催化剂22的温度低时,也有可能无法使燃料燃烧。于是,作为是否能够使导入到三元催化剂22的未燃的燃料燃烧的判断基准,预先设定有上述规定温度。作为规定温度,设定有三元催化剂22的活性化温度或比活性化温度稍高的温度。

(条件b):捕集器23的pm堆积量ps为规定量以上。该条件根据以下的理由而设定。即,捕集于捕集器23的颗粒物的堆积量越多,则捕集器23的堵塞越加深。于是,作为堵塞是否加深至需要捕集器23的再生的程度的判断基准,预先设定有上述规定量。

并且,在判定为燃料导入处理的执行条件不成立的情况下,内燃机用控制装置100通过使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止来执行上述的燃料切断处理。

另一方面,在判定为燃料导入处理的执行条件成立的情况下,内燃机用控制装置100执行上述的燃料导入处理。在执行燃料导入处理的情况下,内燃机用控制装置100作为燃料导入处理用的燃料喷射量的要求值qpd而设定比在汽缸11内使混合气燃烧的情况下设定的燃料喷射量的要求值qpr少且比“0”多的量。并且,内燃机用控制装置100基于该设定的要求值qpd来控制燃料喷射阀17的驱动。因此,在基于要求值qpd从燃料喷射阀17喷射出的燃料导入到汽缸11内的情况下,汽缸11内的空燃比与在汽缸11内使混合气燃烧时的空燃比相比成为稀侧的值。并且,内燃机用控制装置100在燃料导入处理的执行中使点火装置19的火花放电停止,并且对车辆用控制装置200要求拖动的执行。当被要求了拖动的执行时,车辆用控制装置200对马达用控制装置300要求第1电动发电机71的驱动。并且,马达用控制装置300为了进行拖动而控制第1电动发电机71的驱动。当通过拖动而曲轴14旋转时,在各汽缸11中进行进排气。这样,在燃料导入处理的执行中,在曲轴14正在旋转的状态下从燃料喷射阀17喷射燃料,并且点火装置19的火花放电处于停止。因而,从燃料喷射阀17喷射出的燃料不在汽缸11内燃烧而与空气一起向排气通路21排出。

内燃机用控制装置100在开始燃料导入处理之前,执行使三元催化剂22吸藏氧直到三元催化剂22的氧吸藏量成为最大氧吸藏量为止的吸藏处理。最大氧吸藏量是指在三元催化剂22中能够吸藏的氧量的最大值。

图2示出从开始吸藏处理到结束吸藏处理为止的处理的流程。图2所示的一系列处理当燃料导入处理的执行条件成立时开始。cpu110通过执行存储于内燃机用控制装置100的存储器120的程序来执行图2所示的一系列处理。以下,利用开头标注了“s”的数字来表现步骤编号。

当吸藏处理开始后,cpu110首先通过使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止来开始燃料切断处理。另外,cpu110要求拖动的执行而使拖动开始。即,cpu110在曲轴14正在旋转的状况下开始燃料切断处理(s100)。

接着,在s100中,cpu110取得开始燃料切断处理的时间点下的三元催化剂22的催化剂温度tsc。并且,cpu110基于取得的催化剂温度tsc来设定判定值α(s110)。判定值α是以下的值。

即,在s100中开始燃料切断处理以后,伴随于对由空气流量计81检测到的吸入空气量ga进行累计而得到的值即累计空气量sga变多,三元催化剂22的氧吸藏量增加。并且,当累计空气量sga达到某值时,三元催化剂22的氧吸藏量达到最大氧吸藏量。在第1实施方式中,当在s100中开始燃料切断处理时,cpu110开始累计空气量sga的算出。

并且,在累计空气量sga成为了规定的判定值α以上时,cpu110判定为三元催化剂22的氧吸藏量达到了最大氧吸藏量。也就是说,直到三元催化剂22的氧吸藏量达到最大氧吸藏量为止所需的累计空气量sga作为上述判定值α而预先求出。在此,将三元催化剂22吸藏的氧量的初始值设想为“0”,从氧吸藏量“0”的状态达到最大氧吸藏量为止所需的累计空气量sga被设定为判定值α。也可以取代此而将三元催化剂22吸藏的氧量的初始值设定为“0”以外的值。

如图3所示,三元催化剂22的最大氧吸藏量根据三元催化剂22的温度而变化。具体而言,当三元催化剂22的温度上升时,最大氧吸藏量也增加。在三元催化剂22的温度达到了预定的温度以后,伴随于三元催化剂22的温度上升而最大氧吸藏量减少。cpu110参照预先设定的映射,以使判定值α跟随与三元催化剂22的温度相应的最大氧吸藏量的变化的方式,基于三元催化剂22的催化剂温度tsc来可变设定判定值α。

接着,cpu110为了判定三元催化剂22的氧吸藏量是否达到了最大氧吸藏量而执行s120的处理。在s120中,cpu110判定是否当前的累计空气量sga为上述判定值α以上或当前的下游侧空燃比afd比理论空燃比稀。在s120中判定下游侧空燃比afd是否比理论空燃比稀的理由如下。

即,当实施三元催化剂22的氧吸藏量未达到最大氧吸藏量的状态下的燃料切断处理时,三元催化剂22会从流入到三元催化剂22的气体夺取氧并吸藏,因此通过三元催化剂22后的气体中不再包含氧。因而,在三元催化剂22中氧吸藏量增大的过程中,由第2空燃比传感器84检测的下游侧空燃比afd成为理论空燃比附近的值。当三元催化剂22的氧吸藏量达到最大氧吸藏量时,三元催化剂22中的氧的吸藏停止,因此流入到三元催化剂22的气体以包含氧的状态开始通过三元催化剂22。因而,在三元催化剂22的氧吸藏量达到了最大氧吸藏量的状态下,由第2空燃比传感器84检测的下游侧空燃比afd比理论空燃比稀。在像这样第2空燃比传感器84的检测值显示稀的情况下,能够判断为三元催化剂22的氧吸藏量达到了最大氧吸藏量。于是,在第1实施方式中,在s100的处理中开始的燃料切断处理的实施中下游侧空燃比afd变得比理论空燃比稀时,cpu110也判定为三元催化剂22的氧吸藏量达到了最大氧吸藏量。在此,在下游侧空燃比afd成为了比理论空燃比稀预定值的值时,cpu110判定为下游侧空燃比afd比理论空燃比稀。除此之外,在下游侧空燃比afd在一定时间内保持为比理论空燃比稀的值的情况下,cpu110也可以判定为下游侧空燃比afd比理论空燃比稀。

顺便一提,在下游侧空燃比afd的值中反映三元催化剂22的实际的氧吸藏状态。因而,相比于累计空气量sga与判定值α的比较判定,基于下游侧空燃比afd的判定能够高精度地进行三元催化剂22的氧吸藏量是否达到了最大氧吸藏量的判定。不过,在内燃机的冷启动时等,直到第2空燃比传感器84成为能够输出为止所需的时间变长,因此开始基于下游侧空燃比afd的判定要花费某种程度的时间。相对于此,累计空气量sga与判定值α的比较判定在内燃机的冷启动时等也能够迅速地进行。根据这样的理由,在第1实施方式中,为了判定三元催化剂22的氧吸藏量是否达到了最大氧吸藏量,并用基于下游侧空燃比afd的判定和累计空气量sga与判定值α的比较判定。

并且,cpu110直到判定为当前的累计空气量sga为上述判定值α以上为止或者直到判定为当前的下游侧空燃比afd比理论空燃比稀为止,反复执行s120的处理。

在s120中cpu110作出了肯定判定的情况下(s120:是),也就是说,在判定为当前的累计空气量sga为上述判定值α以上的情况或判定为当前的下游侧空燃比afd比理论空燃比稀的情况下,cpu110中止燃料切断处理并开始燃料导入处理(s130)。然后,cpu110结束本次的吸藏处理。顺便一提,当通过s130的处理而开始的燃料导入处理结束时,cpu110结束累计空气量sga的算出并将其值重置为“0”。

图4示出执行吸藏处理的情况下的燃料导入处理的开始定时。当在时刻t1燃料导入处理的执行条件成立时,使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止并开始燃料切断处理,并且也开始拖动。当燃料切断处理开始后,三元催化剂22的氧吸藏量增大。并且,当累计空气量sga逐渐增大并达到判定值α时,判定为三元催化剂22的氧吸藏量达到了最大氧吸藏量。在图4所示的例子的情况下,在时刻t2,三元催化剂22的氧吸藏量达到了最大氧吸藏量。因而,在时刻t2,下游侧空燃比afd从理论空燃比附近的值向比理论空燃比稀的状态变化。并且,在时刻t2,继续火花放电的停止及拖动,另一方面,开始从在时刻t2以前停止喷射的燃料喷射阀17喷射与要求值qpd相当的量的燃料的燃料喷射。由此,燃料切断处理中止而燃料导入处理开始。

以上,根据第1实施方式,能够得到以下的作用效果。

(1)通过在开始燃料导入处理之前执行吸藏处理,在曲轴14正在旋转的状况下实施燃料切断处理。由此,对三元催化剂22供给空气而三元催化剂22的氧吸藏量增加。在开始燃料导入处理之前实施的燃料切断处理,实施至三元催化剂22的氧吸藏量达到最大氧吸藏量为止。因此,在三元催化剂22的氧吸藏量达到了最大氧吸藏量的状态下开始燃料导入处理,因此在燃料导入处理的执行中三元催化剂22的氧吸藏量难以不足。

(2)在从通过燃料切断处理的实施而使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止起的吸入空气量的累计值即累计空气量sga成为了判定值α以上时,判定为三元催化剂的氧吸藏量达到了最大氧吸藏量。因而,在吸藏处理中,能够实施燃料切断处理直到三元催化剂22的氧吸藏量达到最大氧吸藏量为止。

(3)为了判定三元催化剂的氧吸藏量是否达到了最大氧吸藏量而与累计空气量sga进行比较的判定值α,基于三元催化剂22的温度即催化剂温度tsc而可变设定。因而,即使在三元催化剂22的温度不同的情况下,在吸藏处理中,也能够合适地判定三元催化剂22的氧吸藏量是否达到了最大氧吸藏量。

(4)在燃料切断处理的实施中下游侧空燃比afd变得比理论空燃比稀时,判定为三元催化剂22的氧吸藏量达到了最大氧吸藏量。由此,在吸藏处理中,能够实施燃料切断处理直到三元催化剂22的氧吸藏量达到最大氧吸藏量为止。

(第2实施方式)

接着,关于内燃机的控制装置的第2实施方式,参照图5及图6来进行说明。

内燃机10具备向进气口15a喷射燃料的燃料喷射阀17。从燃料喷射阀17喷射出的燃料的一部分向进气口15a的壁面附着。当在进气口15a附着有燃料的状态下通过实施燃料切断处理而使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止时,附着于进气口15a的燃料吸入到汽缸11内后,不在汽缸11内燃烧而向排气通路21排出。当附着于进气口15a的燃料这样向排气通路21排出时,在燃料导入处理的执行时,从燃料喷射阀17喷射出的燃料和附着于进气口15a的燃料双方向三元催化剂22供给。因而,会对三元催化剂22供给超过从燃料喷射阀17喷射出的燃料量的量的燃料。当像这样向三元催化剂22供给过剩的量的燃料时,一部分燃料可能会保持未燃状态通过三元催化剂22。

于是,在第2实施方式中,在吸藏处理中开始燃料切断处理时,执行在从使燃料喷射阀17的燃料喷射停止起经过了预定的延迟期间后使点火装置19的火花放电停止的点火停止延迟处理。在第2实施方式中,为了执行点火停止延迟处理,取代图2所示的s100的处理而执行图5所示的s200~s220的各处理。在该情况下也是,cpu110通过执行存储于内燃机用控制装置100的存储器120的程序来执行由s200~s220的各处理构成的点火停止延迟处理。

当开始图5所示的第2实施方式的吸藏处理后,cpu110首先使燃料喷射阀17的燃料喷射停止并且要求拖动的执行而使拖动开始(s200)。接着,cpu110判定从使燃料喷射阀17的燃料喷射停止起是否经过了预定的延迟期间(s210)。该延迟期间作为使吸入到汽缸11内的进气口15a的附着燃料在汽缸11内燃烧所需的期间而预先求出。在此,内燃机10的循环(吸入行程、压缩行程、膨胀行程及排气行程)实施多次的期间被设定为延迟期间。

并且,cpu110直到判定为从使燃料喷射阀17的燃料喷射停止起经过了预定的延迟期间为止,反复执行s210的处理。在s210中cpu110作出了肯定判定的情况下(s210:是),也就是说,在判定为从使燃料喷射阀17的燃料喷射停止起经过了预定的延迟期间的情况下,cpu110通过停止点火装置19的火花放电来结束点火停止延迟处理(s220)。然后,cpu110执行图2所示的s110以后的处理。在第2实施方式中,通过执行s220的处理而成为在图2所示的s100的处理中开始了燃料切断处理的状态,也就是开始了使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止的燃料切断处理的状态。因此,在第2实施方式中,从执行s220的处理的时间点起开始累计空气量sga的算出。

图6示出点火停止延迟处理的作用。

当在时刻t1燃料导入处理的执行条件成立后,首先开始停止燃料喷射阀17的燃料喷射的处理。另外,在时刻t1开始拖动。然后,当从燃料喷射阀17的燃料喷射停止起经过了延迟期间时(时刻t2),开始停止点火装置19的火花放电的处理。由此,开始使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止的燃料切断处理。然后,当在时刻t2以后累计空气量sga逐渐增大而达到判定值α时,判定为三元催化剂22的氧吸藏量达到了最大氧吸藏量(时刻t3)。并且,在时刻t3,继续火花放电的停止及拖动,另一方面,开始从在时刻t2以前停止喷射的燃料喷射阀17喷射与要求值qpd相当的量的燃料的燃料喷射。由此,燃料切断处理中止而燃料导入处理开始。

以上,根据第2实施方式,除了上述(1)~(4)的作用效果之外,还能够得到以下的作用效果。

(5)在吸藏处理中开始燃料切断处理时,执行在从使燃料喷射阀17的燃料喷射停止起经过了预定的延迟期间后使点火装置19的火花放电停止的点火停止延迟处理。由此,直到从使燃料喷射阀17的燃料喷射停止起经过延迟期间为止,持续实施点火装置19的火花放电,因此,在该延迟期间中,吸入到汽缸11内的进气口15a的附着燃料在汽缸11内燃烧。由此,附着于进气口15a的燃料难以向排气通路21排出,难以向三元催化剂22供给过剩的量的燃料。

上述各实施方式也可以如以下这样变更。各实施方式及以下的变更例能够在技术上不矛盾的范围内互相组合而实施。

在图2所示的s120的处理中,为了判定三元催化剂22的氧吸藏量是否达到了最大氧吸藏量而判定是否累计空气量sga为判定值α以上或下游侧空燃比afd比理论空燃比稀。除此之外,也可以为了判定三元催化剂22的氧吸藏量是否达到了最大氧吸藏量而在s120的处理中仅执行判定累计空气量sga是否为判定值α以上的处理及判定下游侧空燃比afd是否比理论空燃比稀的处理中的任一方。

虽然基于催化剂温度tsc来可变设定判定值α,但也可以使判定值α为固定值。

利用输出与排气的氧浓度相应的信号的第2空燃比传感器84来检测下游侧空燃比afd。除此之外,也可以使用能够仅检测空燃比是比理论空燃比浓还是比理论空燃比稀的氧传感器来检测下游侧空燃比afd。

在吸藏处理中,与燃料切断处理的执行一并地也实施了拖动。除此之外,在成为了在内燃机10的燃烧停止的状态下混合动力车辆正在进行惰性行驶时通过来自驱动轮62的动力传递而曲轴14旋转那样的驱动系统的情况下,也可以不必并用拖动,在吸藏处理中,也可以在通过来自驱动轮62的动力传递而曲轴14正在旋转的状况下实施燃料切断处理。即使在该情况下也是,由于通过曲轴14的旋转而进行内燃机10的各汽缸11中的吸排气从而向三元催化剂22供给空气,所以能够先于燃料导入处理的执行而使三元催化剂22的氧吸藏量增加。

在吸藏处理中,直到三元催化剂22的氧吸藏量达到最大氧吸藏量为止实施了燃料切断处理,但也可以在达到最大氧吸藏量前中止燃料切断处理并开始燃料导入处理。若至少在开始燃料导入处理之前在曲轴14正在旋转的状态下实施燃料切断处理,则会向三元催化剂22供给空气而该三元催化剂22的氧吸藏量增加,因此在三元催化剂22的氧吸藏量增加后的状态下开始燃料导入处理。因此,能够抑制在燃料导入处理的执行中三元催化剂22的氧吸藏量不足。

在燃料导入处理的执行中,停止了点火装置19的火花放电。除此之外,在燃料导入处理的执行中,也可以在汽缸11内混合气不燃烧的正时使点火装置19进行火花放电。例如,即使在汽缸11内的活塞位于下止点附近时进行火花放电,在进行了火花放电的汽缸11内混合气也不燃烧。因此,即使在燃料导入处理的执行中实施火花放电,也能够使从燃料喷射阀17喷射出的燃料保持未燃状态从汽缸11内向排气通路21导入。

在第1实施方式中,通过燃料喷射阀17向进气口15a内的燃料喷射而实施了燃料导入处理。除此之外,在具备向汽缸11内喷射燃料的缸内喷射式的燃料喷射阀的内燃机中,也可以通过向汽缸11内的燃料喷射来进行燃料导入处理。

在第1实施方式的吸藏处理中,在执行燃料切断处理的情况下使燃料喷射阀17的燃料喷射及点火装置19的火花放电均停止,但也可以仅停止燃料喷射阀17的燃料喷射。即使在该情况下也是,由于通过燃料切断处理的执行而向三元催化剂22供给空气,所以能够使三元催化剂22的氧吸藏量增加。

混合动力车辆的系统只要能够通过基于马达的驱动来控制曲轴14的转速即可,也可以是与图1所示的系统不同的别的系统。

也可以将内燃机的控制装置具体化为以搭载于不具备内燃机以外的其他动力源的车辆的内燃机为控制对象的装置。即使在搭载于这样的车辆的内燃机中,在曲轴14正在通过惯性而旋转的状况下,有时也会停止汽缸11内的混合气的燃烧,因此,在混合气的燃料停止条件及燃料导入处理的执行条件均成立的情况下,通过执行燃料导入处理,能够提高三元催化剂22的温度。

内燃机用控制装置100不限于具备cpu110和存储器120并执行软件处理。例如,也可以具备对在上述各实施方式中执行的软件处理的至少一部分进行处理的专用的硬件电路(例如asic等)。即,内燃机用控制装置100是以下的(a)~(c)的任一构成即可。(a)具备按照程序来执行上述处理的全部的处理装置和存储程序的存储器等程序保存装置。(b)具备按照程序来执行上述处理的一部分的处理装置及程序保存装置和执行剩余的处理的专用的硬件电路。(c)具备执行上述处理的全部的专用的硬件电路。在此,具备处理装置及程序保存装置的软件处理电路、专用的硬件电路也可以是多个。即,上述处理由具备1个或多个软件处理电路及1个或多个专用的硬件电路的至少一方的处理电路执行即可。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1