发色聚合物点的制作方法

文档序号:15133025发布日期:2018-08-10 18:51阅读:274来源:国知局

本发明要求2010年10月18日提交的美国临时申请第61/394259号的权益,该临时申请通过参考全文结合于此。

关于联邦资助研究开发所涉及发明权利的声明

本发明在美国国家卫生署(National Institutes of Health)授予的准许号为R21CA147831和R01NS062725的政府资助下完成。政府享有本发明的某些权利。

技术背景

在理解生物系统方面的进步建立在应用荧光显微镜术、流式细胞测量术、全能生物化验和生物传感器的基础之上。这些实验手段广泛使用有机染料分子作为探针。但是这些常规染料的固有限制因素,例如低的吸收性和差的光稳定性,在高灵敏度成像技术和高通量化验的进一步发展中造成很大的困难。所以,在开发更明亮且对光更稳定的荧光纳米颗粒方面已经吸引了很多关注。例如,无机半导体量子点(Q点)正在受到积极开发并可商购于生命技术公司(Life Technologies)[英杰公司(Invitrogen)]。(Bruchez,M.;Moronne,M.;Gin,P.;Weiss,S.;Alivisatos,A.P,Science1998,281,2013-2016.Michalet,X.;Pinaud,F.F.;Bentolila,L.A.;Tsay,J.M.;Doose,S.;Li,J.J.;Sundaresan,G.;Wu,A.M.;Gambhir,S.S.;Weiss,S.;Science2005,307,538-544)。一种可选的荧光纳米颗粒是染料掺杂的胶乳球,相较于单独的荧光分子,由于前者的每个颗粒具有多个染料分子并且由于保护性胶乳基质,其表现出改进的明亮度和光稳定性。(Wang,L.;Wang,K.M.;Santra,S.;Zhao,X.J.;Hilliard,L.R.;Smith,J.E.;Wu,J.R.;Tan,W.H.;Anal.Chem.2006,78,646-654)。

与Q点和染料加载的胶乳珠粒相比,荧光半导体聚合物点在荧光明亮度和光稳定性方面表现出明显的改善。(Wu,C.;Szymanski,C.;Cain,Z.;McNeill,J.J.Am.Chem.Soc.2007,129,12904-12905.Wu,C.;Bull B.;Szymanski,C.;Christensen,K.;McNeill,J.ACS Nano2008,2,2415-2423)。可以论证,在当前的所有纳米颗粒中,荧光聚合物点具有最高的荧光明亮度/体积比,其原因在于半导体聚合物分子的许多有利特性,包括其高吸收横截面、高辐射率、高有效发色团密度和最小的聚集引发的荧光猝灭水平,导致荧光量子产率可超过70%,甚至对于纯固体膜也能达到该水平。使用荧光聚合物点作为荧光探针还能带来其他有用的益处,例如不含可能溶出到溶液中对活生物或生物细胞产生毒性的重金属离子。

但是,纳米颗粒开发中的一个重要瓶颈问题是受控的化学官能化。其中存在两组难题。第一组难题仅仅是设计官能团并将其引入偶联聚合物或半导体聚合物的侧链和主链中,而不对聚合物塌折(collapse)成纳米颗粒形式(以及稳定性和性能)产生负面影响,同时对颗粒表面上的官能团进行定向以供生物偶联(bioconjugation),这是细胞标记方向的大多数应用需要的。

之前对于在发色聚合物点上引入官能团的尝试包括用亲水性官能团以高密度对聚合物的侧链进行官能化(例如,该聚合物的一半单体单元具有至少一个用官能团进行官能化的侧链)。虽然已有人声称能将以这种方式进行官能化的发色聚合物形成纳米颗粒,但是得到的纳米颗粒倾向于聚集并随时间降解,因此事实上不稳定(Moon等,Angewandte Chemie.2007,46,8223-8225)。事实上,官能化程度较高的发色聚合物由于官能团或侧链的亲水性质而更象偶联的聚合电解质,这些纳米颗粒事实上是更象聚合电解质分子的聚合物松散聚集体(Moon等,Chem.Communications2011,47,8370-8372)。形成松散聚集体时不涉及太多的聚合物链折叠,其松散结构不同于由疏水性聚合物塌折形成的紧凑发色聚合物点。因此,这些纳米颗粒是不稳定的,对于荧光标记只能给出较差的性能,其聚集行为受到聚合物浓度、离子强度和温度的影响(Moon等,Chem.Communications2011,47,8370-8372)。此外,将官能化程度较高的发色聚合物形成纳米颗粒时需要使用严苛的条件(例如高的酸浓度),这一事实得到关于聚合电解质构形的公认知识的支持:聚合电解质链上的电荷会互相排斥(通过亲水性部分的库仑斥力和/或溶剂化而造成),导致该链采取更为膨胀的类似于刚性棒的构形。若溶液包含大量加入的盐或酸,则电荷受到遮蔽,从而使聚合电解质链互相缔合形成松散聚集体。所以,由更象偶联聚合电解质的聚合物生成的发色聚合物点通常很难形成(需要严苛的条件如酸),而且一旦形成,松散聚集体就会随时间变得不稳定并给出较差的性能,其聚集性质受到许多因素如聚合物浓度、离子强度和温度的影响(Moon等,Chem.Communications2011,47,8370-8372),其聚集性质限制了这些颗粒的保存期限并使其生物应用方向的性能劣化。更象偶联聚合电解质的聚合物在有机溶剂中还具有较差的溶解性,因此很难利用沉淀方法将其制成纳米颗粒。关于发色聚合物的塌折以及稳定性和性能,除了上述仅仅考虑亲水性官能团的密度之外,还有两个额外的考虑因素。第一个考虑因素是,存在高密度的亲水性官能团或亲水性侧链或亲水性部分会对塌折和所形成的纳米颗粒的稳定性造成负面影响。第二个考虑因素更为微妙,其涉及亲水性官能团的分布。对于相同数量的亲水性官能团,在考虑塌折以及发色聚合物点的稳定性和性能时,较好的做法是将这些官能团集中并局限于少量单体,而不是将这些官能团均一或更均匀地分布在单体中。本发明指出了这些设计考虑因素在形成稳定且紧凑的发色聚合物点中的重要性。

关于受控的化学官能化的另一组挑战是开发具有预定数量官能团的发色聚合物点。由于纳米颗粒表面上存在多个反应性位点,所以要控制化学官能团的数量和几何分布是极端困难的。纳米颗粒多价态会导致表面蛋白质的交联,从而激活信号通路并急剧降低受体结合能力。(Howarth,M.;Liu,W.;Puthenveetill,S.;Zheng,Y.;Marshalll,L.;Schmidt,M.;Wittrup,K.;Bawendi,M.;Ting,A.;Nat.Methods,2008,5,397)。因此,仍然需要开发具有预定(如单价或二价)数量官能团、从而能进一步以规定的(如一对一)化学计量比偶联至生物分子的荧光聚合物点。具有预定数量(如单价或二价)官能团的发色聚合物点为基于荧光的广泛应用中的高荧光纳米颗粒生物偶联体带来了独特的性质。

发明概述

在一个方面中,本发明通过使用在侧链上具有低密度亲水性官能团和部分的发色聚合物,使得亲水性官能团和部分的存在不会干扰链塌折,形成给出优良性能的紧凑且稳定的纳米颗粒,从而提供了一种能克服以上限制条件的途径。在一些实施方式中,能完全避免侧链的官能化,能将亲水性官能团仅仅引入到聚合物主链的一个或多个端部基团。在另一些实施方式中,可使用不影响塌折和发色聚合物点稳定性的疏水性官能团,然后可将纳米颗粒表面上的疏水性官能团转化(即后官能化)成亲水性官能团,供生物偶联或将疏水性官能团直接连接到生物分子。后一途径能使用疏水性且可点击的(clickable)(即落在点击化学框架之内的化学反应)官能团特别有效地进行,包括但并不限于炔、应变炔(strained alkyne)、叠氮化物、二烯、链烯、环辛炔和膦基团。虽然不受限制,但是本发明部分基于在形成能给出极佳性能的紧凑且稳定的发色聚合物点时发现的链塌折条件以及上述设计考虑因素。例如,本发明提供了包含一种或多种官能团的发色聚合物的组合物,所述官能团能避免形成其聚合电解质形式并利用该聚合电解质形式生成供连接生物分子的发色聚合物点。重要的是应注意,有时候聚合物官能化(如侧链的官能化)的受控程度对所形成发色聚合物点的稳定性、内部结构、荧光明亮度、非特异性标记的影响比聚合物点尺寸的单独影响更为重要。本发明还提供了能用少量官能团和亲水性部分实现发色聚合物生成的各种方法,所述官能团和亲水性部分不会对其形成具有优良性能特性的稳定发色聚合物点产生负面影响。

除了描述形成包含具有良好受控密度的官能团从而具有优良稳定性、紧凑结构、高荧光明亮度和最小化的非特异性标记的发色聚合物点的组合物和方法以外,本发明还包括形成具有受控且预定(如单价或二价)数量官能团的此类发色聚合物点的组合物和方法。

本发明的一个方面涉及官能化的发色聚合物点,其中的亲水性官能团以足够低的密度存在于聚合物侧链上,从而不会对纳米颗粒的形成以及稳定性和性能产生负面影响。在一些实施方式中,可从两方面描述纳米颗粒的稳定性:一个方面是,该纳米颗粒对于聚集(即,形成大颗粒)是稳定的;另一个方面是,该纳米颗粒对于断裂(即,通过分解产生小分子/颗粒)是稳定的。本发明部分基于关于低密度官能化(如涉及亲水性基团)在形成紧凑且对聚集或断裂稳定的发色聚合物点中的重要性的发现。例如,在聚合物侧链上以足够低的密度提供亲水性官能团,从而获得恰当的纳米颗粒折叠和稳定性。在一些实施方式中,可使用疏水性官能团(例如用于点击化学的那些疏水性官能团,包括但并不限于炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团)来避免对稳定发色聚合物点的形成造成负面影响。在一些实施方式中,可将疏水性官能团转化(如后官能化)成亲水性官能团或直接连接到生物相关分子。这些发色聚合物点可通过多种方法形成,例如通过利用沉淀形成,不过也可利用其他方法(如基于乳液的方法)形成。

本发明的一个方面涉及官能化的发色聚合物点,其中的官能团仅存在于主链的端部基团上而非存在于聚合物的侧链上。有利的是,仅在聚合物端部存在官能团不会对纳米颗粒的形成以及稳定性和性能产生负面影响。优选的是,这些发色聚合物点可利用沉淀形成,不过也可利用其他方法(例如基于乳液的方法)形成。

本发明的一个方面涉及官能化的发色聚合物点,其中的官能团以足够低的密度存在于主链的端部基团上也存在于聚合物的侧链上,从而不会对纳米颗粒的形成以及稳定性和性能产生负面影响。在一些实施方式中,这些发色聚合物点可利用沉淀形成,不过也可利用其他方法(例如基于乳液的方法)形成。

本发明的一个方面涉及用预定数量的连接在纳米颗粒表面的官能团合理地官能化的发色聚合物点。在一种实施方式中,合理官能化的发色聚合物点具有单独一个连接到纳米颗粒表面的基团。在另一些实施方式中,合理官能化的发色聚合物点具有2、3、4、5、6、7、8、9、10或更多个连接到纳米颗粒表面的官能团。

本发明的一个方面涉及单价发色聚合物点。单价发色聚合物点包括只承载一个官能团的发色聚合物点(图1A示出一种示例性示意图)。

在另一个方面中提供了发色聚合物点的生物偶联体。生物偶联体可通过生物分子连接到发色聚合物点的官能团而形成。这种连接可以是直接或间接的,如图1B中示出的示例性示意图。在一种实施方式中,提供了合理官能化的发色纳米颗粒的生物偶联体。例如,纳米颗粒在颗粒表面上具有1、2、3、4、5、6、7、8、9、10或更多个官能团。在一种优选的实施方式中,纳米颗粒是单价发色纳米颗粒。在第二种优选的实施方式中,纳米颗粒是二价发色纳米颗粒。

本发明的一个方面涉及二价发色聚合物点。二价发色聚合物点包括仅承载两个官能团的发色聚合物点,这两个官能团可以是不同类型或相同类型。

在另一个方面中,提供了二价聚合物点的生物偶联体。在一种实施方式中,通过两个生物分子连接到发色聚合物点的官能团而形成生物偶联体,即纳米颗粒的每个官能团连接一个生物分子。这种连接可以是直接或间接的。连接到两个官能团的这两个生物分子可以是不同类型(例如针对两个不同的抗原决定部位的两个抗体)或相同类型。

在另一个方面中,本发明提供了单链发色纳米颗粒。在一些实施方式中,用预定数量的位于颗粒表面上的官能团对单链发色纳米颗粒进行合理官能化。在一种优选的实施方式中,单链发色纳米颗粒是单价的。在另一种优选的实施方式中,单链发色纳米颗粒是二价的。在另一种实施方式中,将单链发色纳米颗粒偶联到一个或多个生物分子。

在另一种实施方式中揭示了制备单价发色聚合物点的方法。在一种实施方式中,所述方法包括将官能化的发色点连接到经过设计的表面,之后溶剂洗涤或钝化,然后从表面解离。在一种实施方式中,所述方法提供了单链单价发色纳米颗粒。在另一种实施方式中,所述方法能生成多链单价发色纳米颗粒。

附图简要描述

根据本发明的一种实施方式,图1(A)显示单价发色点的示意图,(B)显示单价发色聚合物点的生物分子偶联体的示意图。

根据本发明的一些实施方式,图2(A)显示单价单分子发色点的示意图,(B)显示二价单分子发色点的示意图,(C)显示三价单分子发色点的示意图。

根据本发明的一种实施方式,图3显示两种典型发色聚合物的化学结构:具有羧基官能团的聚芴(PDHF-COOH)和不具有官能团的聚芴-苯并噻二唑(PFBT)。

根据本发明的一些实施方式,图4显示经由经过设计的颗粒表面制备单价发色聚合物点的示意图。方案A显示制备单分子聚合物点的方法。方案B显示将官能化的发色聚合物点改性成单价聚合物点的方法。

根据本发明的一种实施方式,图5(A)显示将掺混的多价PFBT/PDHF-COOH聚合物点转化成单价PDHF点时的吸收光谱变化,(B)显示将掺混的多价PFBT/PDHF-COOH聚合物点转化成单价PDHF点时的荧光光谱变化。

根据本发明的一种实施方式,图6(A)显示将多价PDHF-COOH聚合物点改性成单价点时的发射光谱位移,(B)显示单价PDHF-COOH点相对于多价PDHF-COOH点的荧光量子产率增加。

根据本发明的一些实施方式,图7显示官能化的发色聚合物点的一些例子,其中的官能化程度受控,使得亲水性官能团的存在不会对聚合物点的形成以及所形成聚合物点的稳定性和性能产生负面影响。

根据本发明的一些实施方式,图8显示发色聚合物的低密度侧链官能化以及用于特异性细胞靶定的聚合物点生物偶联的示意图。

根据本发明的实施方式,图9A-I显示具有不同密度侧链官能团的发色聚合物点的TEM图和动态光散射(DLS)数据:(A)PFBT-C2点的TEM;(B)PFBT-C14点的TEM;(C)PFBT-C50点的TEM;(D)PFBT-C2点的DLS;(E)PFBT-C14点的DLS;(F)PFBT-C50点的DLS;(G)TPP掺杂的PFBT-C2点的DLS;(H)TPP掺杂的PFBT-C14点的DLS;(I)TPP掺杂的PFBT-C50点的DLS。

根据本发明的一些实施方式,图10A显示具有不同密度侧链官能团的PFBT点的吸收和荧光光谱,10B显示从具有不同密度羧酸基团的PFBT聚合物制备的P点的粒度、ζ电势和光物理性质。

根据本发明的一些实施方式,图11A-F显示(A)PFBT-C2、(B)PFBT-C14和(C)PFBT-C50P点的典型单颗粒荧光图,这些图在相同的激发和采集条件下获得。底部的图片分别显示单颗粒荧光明亮度的强度分布柱状图:(D)PFBT-C2,(E)PFBT-C14,和(F)PFBT-C50P点。

图12A-F显示具有不同官能化密度的染料掺杂PFBT点的分光光度数据。左图显示PFBT-C2(实线曲线)、PFBT-C14(虚线曲线)和PFBT-C50(点状曲线)纳米颗粒水溶液在离心过滤之前(A)和之后(B)的吸收光谱,以及PFBT-C2、PFBT-C14和PFBT-C50水溶液的滤液(C)的吸收光谱。右图显示PFBT-C2(实线曲线)、PFBT-C14(虚线曲线)和PFBT-C50(点状曲线)纳米颗粒水溶液在离心过滤之前(D)和之后(E)的荧光光谱,以及PFBT-C2、PFBT-C14和PFBT-C50水溶液的滤液(F)的荧光光谱。插入图显示PFBT-C2、PFBT-C14和PFBT-C50水溶液的滤液在450纳米激发波长下得到的荧光光谱。

图13A-D显示使用空白样品(A)、PFBT-C2P点(B)、PFBT-C14P点(D)、和PFBT-C50P点(D)经由非特异性结合而标记的癌细胞的流式细胞测量强度分布。

图14A-C显示根据本发明的实施方式用P点-链霉亲和素探针标记的SK-BR-3乳癌细胞的荧光图。图14(A)显示用PFBT-C2-SA探针进行的阳性标记(positivelabeling),(B)显示在与(A)相同的条件下进行的阴性标记(negative labeling),但生物偶联步骤中不存在EDC催化剂。图14(C)显示用红光发射PFTBT/PFBT-C2-SA探针进行的阳性标记。从左栏到右栏的图为如下所述:来自核染剂Hoechst34580的蓝色荧光;来自P点-SA探针的绿色或红色荧光图;诺马斯基(Nomarski)(DIC)图,以及组合的DIC和荧光图。比例尺:20微米。

图15A和B显示根据本发明的一种实施方式用PFBT-C14A探针标记的MCF-7人乳癌细胞中新合成蛋白质的荧光图。图15(A)显示用PFBT-C14A探针进行的阳性标记,图15(B)显示在相同条件下进行的阴性标记,但不存在Cu(I)催化剂。从左到右的图为如下所述:来自核染剂Hoechst34580的蓝色荧光;来自PFBT-C14A探针的绿色荧光图;诺马斯基(DIC),以及组合的DIC和荧光图。比例尺:20微米。

图16显示根据本发明一种实施方式的PFBT-C2聚合物的IR光谱。

图17显示根据本发明一种实施方式用2.3%的二(3-(丙酸叔丁酯))芴单体官能化的PFBT聚合物的1HNMR。

图18显示根据本发明一种实施方式用14%的二(3-(丙酸叔丁酯))芴单体官能化的PFBT聚合物的1HNMR。

图19显示根据本发明一种实施方式用50%的二(3-(丙酸叔丁酯))芴单体官能化的PFBT聚合物的1HNMR。

图20A-E显示根据本发明一种实施方式经由经过设计的颗粒表面制备单价发色聚合物点的示意图。在这种方案中,经由点击化学将聚合物点连接到氧化硅表面,然后在钝化或溶剂洗涤之后将其从氧化硅珠粒解离。图20F显示从步骤E得到的纳米颗粒的TEM图。

图21显示根据本发明一种实施方式用疏水性官能团官能化的发色聚合物点的化学结构、荧光光谱、粒度分布(DLS)和ζ电势测量结果。用适合于生物偶联的炔基团对PPV衍生物进行官能化。疏水性官能团可位于封端单元中,也可位于侧链中。在一些实施方式中,由于炔基团没有对聚合物点的稳定性和性能造成负面影响,所以炔基团的官能化密度可以例如在0-100%之间变化。

发明详述

本发明的一些实施方式涉及新颖种类的荧光探针,称为官能化发色聚合物点或具有受控数量官能团的发色聚合物点,还涉及其用于多种应用的生物分子偶联体,所述应用包括但并不限于流式细胞测量术、荧光激活筛选、荧光免疫检验、免疫组织化学、荧光倍增、单分子成像、单颗粒示踪、蛋白质折叠、蛋白质旋转动力学、DNA和基因分析、蛋白质分析、代谢物分析、脂类分析、FRET基传感器、高通量筛选、细胞成像、体内成像、生物正交标记、点击反应、基于荧光的生物化验如免疫化验和酶基化验,以及生物化验和测量中的多种荧光技术。

虽然并不限于任何具体理论或概念,但是本发明至少部分地以由发色聚合物形成纳米颗粒在很大程度上通过分子内和/或分子间聚合物相互作用驱动的概念为基础。例如,聚合物点可通过分子内和/或分子间疏水性相互作用而形成,所述相互作用能使单独一个聚合物分子或若干个聚合物分子形成紧凑的聚合物点。在一些情况中,聚合物上的亲水性基团例如位于侧链上的亲水性基团会干扰纳米颗粒的稳定性、光物理性能和细胞靶定。例如,官能团沿着聚合物的密度和/或定位会对聚合物点的形成、稳定性和性能造成负面影响。如本文进一步描述的,本发明提供进行了官能化的聚合物点的实施方式,从而提供最优化的纳米颗粒堆积和内部结构、高荧光明亮度以及聚合物点在生物应用中低的非特异性结合。此外,本发明提供能生物偶联聚合物点同时还能保持纳米颗粒稳定性和性能的组合物和方法。这些方面例如涉及官能团在发色聚合物中的位置和/或密度,其取决于官能团的亲水性/疏水性。

本发明的其他优点和特性将部分地在以下描述中列出,通过以下描述,部分优点和特性是显而易见的,或可通过实施本发明而了解。

定义

如本文所用,术语“发色纳米颗粒”或“发色聚合物点”是指包含一种或多种已经塌折形成稳定的亚微米尺寸颗粒的聚合物(如发色聚合物)的结构。“聚合物点”和“P点”可互换使用,表示“发色纳米颗粒”或“发色聚合物点”。本文提供的发色聚合物点可通过塌折聚合物领域中已知的任何方法来形成,包括但并不限于依赖于沉淀的方法、依赖于形成乳液(如小乳液或微乳液)的方法以及依赖于凝结的方法。在一种优选的实施方式中,发色纳米颗粒通过纳米沉淀而形成。

如本文所用,“聚合物”是由至少2个通常通过共价化学键连接的重复结构单元组成的分子。重复结构单元可以是一种单体,则得到的聚合物是均聚物。在一些实施方式中,聚合物可包括两种不同种类的单体或三种不同种类的单体或更多种单体。本领域技术人员能领会,不同种类的单体可以各种方式沿着聚合物链分布。例如,三种不同种类的单体可沿着聚合物随机分布。同样可领会,可以不同方式表示单体沿着聚合物的分布。图3、7和8显示一些描述聚合物的示例性方式。沿着聚合物长度的重复结构单元(如单体)的数量可用“n”表示。在一些实施方式中,n的范围可以是例如从至少2、从至少100、从至少500、从至少1000、从至少5000或从至少10000或从至少100000或更高。在一些实施方式中,n的范围可以是2-10000、20-10000、20-500、50-300、100-1000或500-5000。

聚合物一般具有包括主链的延伸分子结构,主链可任选地包含侧基。本文提供的聚合物可包括但并不限于直链聚合物和支化聚合物,支化聚合物例如有星形聚合物、梳形聚合物、刷形聚合物、梯形聚合物和枝形聚合物。如本文进一步描述的,聚合物可包括本领域中一般众所周知的半导体聚合物。在一些实施方式中,本发明的聚合物(如半导体聚合物)包括沿着聚合物主链不存在三键的聚合物,即,本发明的一些聚合物是主链中包含单键和/或双键的聚合物。在一些实施方式中,沿着聚合物主链的单体仅仅通过单键或双键(如碳键)连接。聚合物的结构特性(如刚性)会影响聚合物是否能折叠形成紧凑的纳米颗粒。例如,沿着主链包含三键重复单元的聚合物可能比沿着主链包含单键和/或双键重复单元的聚合物更硬。在一些情况中,这可能在纳米颗粒中形成复杂的堆积行为和相态,导致发射光谱加宽。(Wu,C.;Bull B.;Szymanski,C.;Christensen,K.;McNeill,J.ACS Nano2008,2,2415-2423)。

如本文所用,术语“发色聚合物”是这样一种聚合物,其至少一部分包含发色单元。术语“发色团”采用其在本领域中的普通含义。发色团从紫外到近红外区域中吸收特定波长的光,可以是发射性的,或可以不是发射性的。

本发明中的“发色单元”包括但并不限于具有离域π电子的结构单元、小的有机染料分子单元和/或金属络合物单元。发色聚合物的例子可包括包含具有离域π电子的结构单元的聚合物,如半导体聚合物、包含小的有机染料分子单元的聚合物、包含金属络合物单元的聚合物以及包含其任意组合的单元的聚合物。

如本文所用,术语“官能团”是指能例如通过任何稳定的物理或化学缔合而连接到发色聚合物、从而使发色聚合物点的表面可用于偶联的任何化学单元。本文中的官能团还表示反应性官能团。

如本文所用,术语“亲水性部分”是指能提高聚合物亲水性的化学单元。在一些实施方式中,亲水性部分可包括亲水性官能团。在一些实施方式中,亲水性部分可包括非反应性的亲水性部分,其不同于亲水性官能团。例如,非反应性的亲水性部分可包括非离子性、非反应性的亲水性部分,例如水溶性聚合物(如聚乙二醇(PEG))。非反应性的亲水性部分还可包括离子性、非反应性的亲水性部分,例如正离子性部分、负离子性部分和两性离子部分,或其组合。

如本文所用,术语“亲水性官能团”是指本性为亲水性的官能团,或者是指连接到亲水性侧链或亲水性部分的疏水性官能团,这种连接使得该疏水性官能团的亲水性更大,并促进该疏水性官能团在发色聚合物点颗粒表面上的排列,而非嵌埋在发色聚合物点的疏水性核内。能通过连接到亲水性侧链或部分而提高亲水性的疏水性官能团的例子包括但并不限于连接到亲水性侧链如PEG(聚乙二醇)或任何其他亲水性侧链的炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团(用于点击化学)。如本文所述,连接到亲水性侧链或亲水性部分的疏水性官能团是在颗粒形成之前连接到该聚合物的,即预官能化的。在一些实施方式中,连接到亲水性侧链或亲水性部分的疏水性官能团可适用于生物偶联。

在一些实施方式中,官能团可包括本性为亲水性并连接到聚合物(如连接在侧链上)的亲水性官能团。在一些实施方式中,亲水性官能团可包括羧酸或其盐、氨基、巯基、叠氮基、醛、酯、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、

氰酸盐/酯、琥珀酰亚氨基酯、其取代衍生物。在某些实施方式中,亲水性官能团可包括羧酸或其盐、氨基、巯基、叠氮基、醛、酯、羟基、羰基、硫酸盐/酯、磷酸盐/酯、氰酸盐/酯、琥珀酰亚氨基酯及其取代衍生物。在一些实施方式中,亲水性官能团可适用于生物偶联。在一些实施方式中,亲水性官能团可适用于生物偶联并且还能在水溶液中稳定(例如该基团不水解)。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。一些适用于生物偶联的亲水性官能团包括羧酸或其盐、氨基、巯基、叠氮基、醛、酯、羟基、羰基、磷酸盐/酯、氰酸盐/酯、琥珀酰亚氨基酯及其取代衍生物。在一些实施方式中,适用于偶联的亲水性官能团可包括羧酸或其盐、氨基基团、巯基、琥珀酰亚氨基酯和羟基。表1中提供了亲水性官能团对的非限制性列表。

表1.用于偶联化学的示例性亲水性官能团对

在一些实施方式中,官能团可包括连接到疏水性聚合物(例如连接到疏水性侧链上)的疏水性官能团。在一些实施方式中,疏水性官能团一般可包括但并不限于适用于偶联的炔、链烯和取代的烷基衍生物。本发明提供了包含疏水性官能团、用于形成紧凑的纳米颗粒(例如预官能化)的聚合物。形成之后,可以对一些疏水性官能团进行化学改性,以形成用于生物偶联(例如后官能化)的亲水性官能团。在一些实施方式中,连接到疏水性聚合物的疏水性官能团可适用于生物偶联。例如,疏水性官能团可包括但并不限于用于点击化学的那些疏水性官能团,例如炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团。这些疏水性官能团可例如用于将聚合物点共价结合到生物相关分子(如抗体)的生物偶联反应。

可以多种方式将官能团连接到发色聚合物点。例如,可以在形成颗粒之前对聚合物进行化学改性以包含官能团,在本文中称为“预官能化”。预官能化包括这样一些实施方式,其中的单体在形成聚合物之前就包含官能团,并且对已经形成的聚合物进行反应,从而沿着单体主链包含官能团。或者,可以在形成颗粒之后对发色聚合物进行改性以连接官能团,例如连接到聚合物点的表面上,在本文中称为“后官能化”。本领域技术人员将领会,可按各种顺序进行预官能化和后官能化来形成官能化的聚合物。例如,可以用官能团如疏水性官能团对聚合物进行预官能化。将疏水性预官能化的聚合物凝结成纳米颗粒,然后用官能团如适用于生物偶联的亲水性官能团进行后官能化。或者,预官能化和后官能化步骤可以都包括用亲水性基团或疏水性基团进行官能化。

如本文所述,一些官能团可能“适合于生物偶联”,表示共价键合于生物分子(例如抗体、蛋白质、核酸、链霉亲和素或其他生物相关分子)的官能团。本领域技术人员可以在例如《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本)中找到这些官能团,该文献的全部内容通过参考结合于此,以用于所有目的。在一些实施方式中,适合于生物偶联的官能团可包括能在各种条件下(例如在极性或非极性溶剂中)偶联于生物分子的官能团。在一些实施方式中,适合于生物偶联的官能团可包括能在水溶液中偶联于生物分子的官能团。在一些实施方式中,适合于生物偶联的官能团可包括能在其中的生物分子保持其生物活性(例如对于抗体的单克隆结合特异性)的水溶液中偶联于生物分子的官能团。在一些实施方式中,适合于生物偶联的官能团可包括共价键合于生物分子的官能团。例如,将官能团连接到生物分子的典型共价键可包括,例如,羧基官能团与生物分子上的胺反应形成酰胺键,巯基官能团与生物分子上的巯基基团反应形成半胱氨酸键,或氨基官能团与生物分子上的羧基基团反应形成酰胺键。在一些实施方式中,生物偶联的特异性反应可包括表1中的官能团对。

如本文所用,术语“合理官能化”是指通过连接预定数量的反应性官能团来对发色聚合物或纳米颗粒进行改性。例如,可以对聚合物进行化学改性,从而在颗粒形成之前包含官能团(预官能化)。或者,可以在形成之后对发色聚合物点进行改性,以连接官能团,例如连接到聚合物点的表面上(后官能化)。在一种实施方式中,多种合理官能化的纳米颗粒各自具有连接到其表面的单独一个官能团。在另一些实施方式中,多种官能化的纳米颗粒各自恰好具有连接到其表面的两个官能团。在另一些实施方式中,多种官能化的纳米颗粒各自恰好具有连接到其表面的3、4、5、6、7、8、9、10或更多个官能团。发色聚合物和/或纳米颗粒的合理官能化可通过各种方式实现。例如,在一种实施方式中,将预定数量的反应性官能团连接到发色聚合物,然后塌折形成纳米颗粒。在第二种实施方式中,可通过一些方法对预先形成的发色纳米颗粒进行处理,从而形成具有预定数量的官能团的发色颗粒,其中所述预先形成的发色纳米颗粒表面上的反应性官能团的数量没有预先确定。本文提供的这些方法的例子有溶剂洗涤或表面钝化,从而对纳米颗粒进行合理官能化。

可以向聚合物中加入非离子性且非反应性的亲水性部分以实现某些特性,例如降低生物应用中的非特异性吸附。本领域中众所周知有许多聚合物例如聚乙二醇(PEG)能降低非特异性吸收性。可以在颗粒形成之前将非离子性的亲水性部分连接到发色聚合物(预官能化)。或者,可以在形成纳米颗粒之后将非离子性的亲水性部分连接到发色聚合物点,例如连接到聚合物点的表面上(后官能化)。在一些实施方式中,可同时经由预官能化和后官能化连接非离子性的亲水性部分。对于预官能化,发色聚合物中的亲水性部分(例如PEG基团)的密度会影响聚合物点的形成、稳定性、内部结构和荧光明亮度。如本文进一步描述的,PEG基团的密度应足够低,从而不至于对聚合物点的稳定性和性能造成负面影响。对于后官能化,发色聚合物点表面上的PEG基团的密度可以比较高,因为纳米颗粒已经形成,而且PEG基团不会对聚合物点的形成、稳定性、内部结构和荧光明亮度造成负面影响,但会减少非特异性相互作用。

可以将离子性和非反应性的亲水性部分连接到发色聚合物,以实现所得聚合物点的某些性质,例如通过带高电荷的物质增大表面ζ电势和/或通过两性离子物质产生两性离子表面。在一些实施方式中,可经由预官能化和/或后官能化连接非离子性的亲水性部分。对于预官能化,发色聚合物中离子性的亲水性部分的密度会影响聚合物点的形成、稳定性、内部结构和荧光明亮度。因此,离子性部分的密度应足够低,从而不至于对聚合物点的稳定性和性能造成负面影响。对于后官能化,发色聚合物点表面上的离子性部分的密度可以比较高,因为纳米颗粒已经形成,离子性部分不会对聚合物点的形成、稳定性、内部结构和荧光明亮度造成负面影响,但能提供某些性质例如高的表面ζ电势和/或两性离子表面。

在一些实施方式中,可经由连接部分将反应性官能团连接到纳米颗粒表面。本领域众所周知有多种连接部分,本领域技术人员可以在例如《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本)中找到,该文献的全部内容通过参考结合于此,以用于所有目的。在一些实施方式中,连接部分可包括水溶性聚合物。在一些实施方式中,发色聚合物点还可包含具有非反应性化学基团的聚合物。在一些实施方式中,非反应性化学基团还可包括例如水溶性聚合物。用于本发明的合适水溶性聚合物可包括但并不限于聚乙二醇。

如本文所用,连接到聚合物(例如在聚合物的一个或多个侧链或端部)的官能团和部分的“密度”是指具有与之连接的官能团或部分的单体的数量,用聚合物单体单元的百分比表示。例如,若特定聚合物中半数单体单元具有与之连接的官能团,则该官能团的密度为50%。在一些实施方式中,可以将发色聚合物点中的聚合物(例如半导体聚合物)设计成包含一定密度范围的官能团或部分。在一些实施方式中,聚合物(例如半导体聚合物)上的疏水性官能团的密度可小于约100%,小于约90%,小于约80%,小于约70%,小于约60%,小于约50%,小于约40%,小于约30%,小于约20%,或小于约10%。在预官能化的情况中,发色聚合物中亲水性官能团和部分的密度会影响聚合物点的形成、稳定性、内部结构和荧光明亮度。因此,发色聚合物上亲水性官能团和部分的密度应足够低,从而不至于对聚合物点的稳定性和性能造成负面影响。在一些实施方式中,聚合物(例如半导体聚合物)上亲水性官能团和部分的密度可小于约50%,小于约40%,小于约30%,小于约20%,小于约10%,或小于约5%。在一些涉及后官能化的实施方式中,可以将亲水性官能团和部分连接到发色点的表面,其中的官能化密度可以比较高(例如大于约50%),因为纳米颗粒已经形成,亲水性部分不会对聚合物点的形成、稳定性、内部结构和荧光明亮度造成负面影响,但可提供一些性质,例如通过PEG基团减少非特异性相互作用,和/或通过带高电荷的物质产生高的表面ζ电势,和/或通过两性离子部分产生两性离子表面。在一些实施方式中,聚合物可以按上述百分比同时包含疏水性官能团和亲水性官能团。在一些实施方式中,本文所述的聚合物将包含至少50%的疏水性官能团。本领域技术人员将领会,侧链官能团的位置可沿着聚合物长度随机分布。例如,若聚合物长度n为100个单体,则被官能团(例如羧基基团)取代的侧链可随机地沿着聚合物长度定位。一些官能团可顺着聚合物位于紧邻的单体上或相隔更远,例如沿着一个方向隔一个或两个单体。在一些实施方式中,所述官能团是如本文进一步描述的适合于生物偶联的官能团。可采用各种光谱技术例如核磁共振(NMR)测定密度。

发色聚合物点

在一种实施方式中,本发明提供了官能化的发色聚合物点,其中以足够低的密度在聚合物的侧链中引入了亲水性官能团,该官能团不会对聚合物链塌折成纳米颗粒形式造成负面影响,和/或不会对所形成的发色聚合物点的稳定性和性能造成负面影响,和/或不会使紧凑的内部结构发生不利的松散,和/或不会使荧光明亮度发生不利的降低,和/或不会使非特异性标记发生不利的增加。如本文所提供的,官能团的亲水性程度会影响使得聚合物点具有所需特性的足够低的密度水平。在一些实施方式中,侧链上的官能团密度小于约50%。在一些实施方式中,侧链上的官能团密度小于约40%。在一些实施方式中,侧链上的官能团密度小于约30%。在一些实施方式中,侧链上的官能团密度小于约25%。在另一种实施方式中,侧链上的官能团密度小于约20%。在另一种实施方式中,侧链上的官能团密度小于约15%。在另一种实施方式中,侧链上的官能团密度小于约10%。在另一种实施方式中,侧链上的官能团密度小于约5%。在一些实施方式中,侧链上的官能团密度小于约25%,或小于约24%、23%、22%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%或更低。在一些示例性实施方式中,在纳米颗粒形成之后(后官能化),可通过表面改性使得发色点表面上的官能团密度增大,由于纳米颗粒已经形成,亲水性部分不会对聚合物点的形成、稳定性、内部结构和荧光明亮度造成负面影响。此外,亲水性部分可提供一些性质,例如通过PEG基团减少非特异性相互作用,和/或通过带高电荷的物质产生高的表面ζ电势,和/或通过两性离子部分产生两性离子表面。

在另一种实施方式中,本发明提供了官能化的发色聚合物点,其中将亲水性官能团仅仅引入到聚合物主链的端部基团中,该官能团不会对聚合物链塌折成纳米颗粒形式造成负面影响,和/或不会对所形成的发色聚合物点的稳定性造成负面影响,和/或不会使紧凑的内部结构发生不利的松散,和/或不会使荧光明亮度发生不利的降低,和/或不会使非特异性标记发生不利的增加。在另一种实施方式中,将亲水性官能团引入到聚合物主链的端部基团和聚合物的侧链中,但引入的密度足够低,该官能团不会对聚合物链塌折成纳米颗粒形式造成负面影响,或不会对所形成的发色聚合物点的稳定性造成负面影响,或不会使紧凑的内部结构发生不利的松散,或不会使荧光明亮度发生不利的降低,或不会使非特异性标记发生不利的增加。官能团的亲水性程度会影响使得聚合物点具有所需特性的足够低的密度水平。在一些示例性实施方式中,在纳米颗粒形成之后(后官能化),可通过表面改性使得发色点表面上的亲水性部分的密度增加,由于纳米颗粒已经形成,亲水性部分不会对聚合物点的形成、稳定性、内部结构和荧光明亮度造成负面影响,但能提供一些性质,例如通过PEG基团减少非特异性相互作用,和/或通过带高电荷的物质产生高的表面ζ电势,和/或通过两性离子部分产生两性离子表面。

在一些实施方式中,本发明提供了官能化的发色聚合物点,其包含疏水性官能团。所述疏水性官能团包括但并不限于用于点击化学的那些官能团,例如炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团。疏水性官能团的密度可以在0%到100%的范围内变化。在一些实施方式中,疏水性官能团的密度可约为100%,小于约100%,小于约90%,小于约80%,小于约70%,小于约60%,小于约50%,小于约40%,小于约30%,小于约20%,小于约10%,小于约5%,小于约1%,或更低。在一些实施方式中,用疏水性官能团进行官能化的密度不会对聚合物链塌折成纳米颗粒形式造成负面影响,和/或不会对所形成的发色聚合物点的稳定性造成负面影响,和/或不会使紧凑的内部结构发生不利的松散,和/或不会使荧光明亮度发生不利的降低,和/或不会使非特异性标记发生不利的增加。在一些实施方式中,可将疏水性官能团直接连接到本文进一步描述的生物相关分子(例如抗体),或者可将疏水性官能团转化成亲水性官能团,该亲水性官能团能连接到生物相关分子,或者将该亲水性基团转化成其他亲水性部分,用于在形成发色聚合物点之后获得一些性质。

在另一种实施方式中,官能化的发色聚合物点可包含疏水性发色聚合物,其与另外一种或多种具有亲水性官能团的发色聚合物物理混合或化学交联。疏水性发色聚合物可以不含亲水性官能团,但可以具有疏水性官能团(例如用于点击化学的那些疏水性官能团,包括但并不限于炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团)。在一些实施方式中,可通过一种或多种包含亲水性官能团的发色聚合物对发色聚合物点的表面进行官能化,将所述亲水性官能团引入到聚合物主链的端部基团或聚合物的侧链中。在这些实施方式中,官能化的发色聚合物中的官能化密度可以在0%到100%的范围内变化,但是向疏水性聚合物中掺混官能化的发色聚合物的比例应足够低,从而使得官能化不会对聚合物链塌折成纳米颗粒形式造成负面影响,和/或不会对所形成的发色聚合物点的稳定性造成负面影响,和/或不会使紧凑的内部结构发生不利的松散,和/或不会使荧光明亮度发生不利的降低,和/或不会使非特异性标记发生不利的增加。

在一些实施方式中,官能化的发色聚合物点包含一种或多种官能化的发色聚合物,这些聚合物在颗粒形成之前互相化学交联,所述发色聚合物点还包含用于生物偶联的表面官能团。在这种实施方式中,可将官能团引入到聚合物主链的端部基团或聚合物的侧链中。官能化的发色聚合物中的官能化密度可以在0%到100%的范围内变化,从而形成具有化学交联结构的发色聚合物点,其中的化学交联即使在高密度官能化条件下也能帮助聚合物链塌折形成纳米颗粒,形成紧凑的内部结构,使得所形成的发色聚合物点能保持优良的稳定性以及荧光明亮度。

在一个实施方式中,本发明还提供了单价发色聚合物点,其包含发色聚合物点和仅仅一个官能团。所述发色聚合物点包含至少一个发色聚合物。本文所用术语“单价”表示只有一个官能团连接到发色聚合物点。该官能团可通过任何稳定的物理缔合或化学键合连接到发色聚合物点,并在发色聚合物点的表面上提供仅仅一个反应性位点用于生物偶联。

在另一种实施方式中,本发明提供了二价发色聚合物点,其包含发色聚合物点和仅仅两个官能团。所述发色聚合物点包含至少一个发色聚合物。本文所用术语“二价”表示只有两个官能团连接到每个发色聚合物点。所述官能团可通过任何稳定的物理缔合或化学键合连接到发色聚合物点,在发色聚合物点的表面上提供仅仅两个反应性位点用于生物偶联。这两个反应性位点可具有不同的反应性(例如经由两种不同的官能团)或相同的反应性。

在一些实施方式中,发色聚合物点可包含至少一种半导体聚合物。在一些实施方式中,发色聚合物点可包含具有离域π电子的发光半导体聚合物。术语“半导体聚合物”是本领域中了解的。典型的发光半导体聚合物包括但并不限于芴聚合物,亚苯基亚乙烯基聚合物,亚苯基聚合物,苯并噻唑聚合物,噻吩聚合物,咔唑芴聚合物,硼-二吡咯亚甲基聚合物和相关共聚物。在一些实施方式中,本发明的半导体聚合物包括沿着聚合物主链不存在三键的聚合物。在一些实施方式中,发色聚合物点可包含单分子的半导体聚合物。在一些实施方式中,发色聚合物点可包含若干分子的半导体聚合物。所述若干分子可以例如为相同种类的半导体聚合物,或者为不同种类聚合物的掺混物(例如半导体聚合物和/或非半导体聚合物)。表2中提供了一些半导体聚合物及其缩写的列表。

表2.半导体聚合物的非限制性例子

在一些实施方式中,发色聚合物点包含携带以下单元的聚合物:有机染料小分子、金属络合物、光致变色染料及其任意组合,例如光惰性聚合物,例如与小的有机染料、金属络合物、光致变色染料及其任意组合共价连接或接枝的聚苯乙烯。这些染料或金属络合物可具有传感功能,例如氧传感能力、离子传感能力、葡萄糖传感能力、神经传递素传感能力、药物传感能力、代谢物传感能力、蛋白质传感能力、信号分子传感能力、毒素传感能力、DNA和RNA传感能力等。

在一些实施方式中,发色聚合物点包含与有机染料小分子、金属络合物、光致变色染料及其任意组合共价连接作为发射单元的半导体聚合物。这些发射单元能调节发色聚合物点的发射颜色,提高发色聚合物点的量子产率,并改善发色聚合物点的光稳定性。在一种优选的实施方式中,小的有机染料或金属络合物可具有传感功能,从而为发色聚合物点增加额外的功能,例如氧传感能力、离子传感能力、葡萄糖传感能力、神经传递素传感能力、药物传感能力、代谢物传感能力、蛋白质传感能力、信号分子传感能力、毒素传感能力、DNA和RNA传感能力等。

在一些实施方式中,发色聚合物点还可包含与其他发色聚合物物理混合或化学交联的半导体聚合物,所述其他发色聚合物是例如与小的有机染料、金属络合物、光致变色染料及其任意组合共价连接或接枝的光惰性聚合物,从而使发色聚合物点具有额外的功能,例如氧传感能力、离子传感能力、葡萄糖传感能力、神经传递素传感能力、药物传感能力、代谢物传感能力、蛋白质传感能力、信号分子传感能力、毒素传感能力、DNA和RNA传感能力等。

在一些实施方式中,发色聚合物点还可包含与其他组分物理混合或化学交联的半导体聚合物,所述其他组分包括例如荧光染料、无机发光材料、磁性材料、金属材料,从而调节发射颜色、改善量子产率和光稳定性,并提供额外的功能例如磁性功能、等离子体共振功能等。

形成稳定的聚合物点的官能化的发色聚合物

本发明的一种实施方式提供了形成稳定纳米颗粒的官能化的发色聚合物。本文所用术语“稳定”表示发色聚合物点在适当水溶液中长时间储存时,不会发生聚集和/或明显尺寸变化(通过电子显微镜、原子力显微镜或动态光散射测定)。聚合物点发生聚集或明显尺寸变化可通过例如包含超过一个聚合物点的聚集体的数量增加来表征。聚集体可采用成像技术(例如电子显微镜或原子力显微镜)通过肉眼目视检测,和/或通过动态光散射测得尺寸增大来检测。在一些实施方式中,聚集可通过以下性质表征:与发色聚合物点的原始测量值相比,测得的颗粒直径至少增大约10%,至少增大约25%,至少增大约50%,至少增大约100%,至少增大约500%,或至少增大约1000%。例如,可在第1天测得发色聚合物点的中值直径为15纳米,在4个月之后测得中值直径为30纳米,从而显示测得的颗粒直径增大100%(即,表现出聚集)。在一些实施方式中,发色聚合物点在适当水溶液中储存时可保持稳定至少约1个月,优选至少约2个月,更优选至少约4个月。在一些实施方式中,稳定的发色纳米颗粒能在至少约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、30、36、42、48或更多个月的时间内不聚集或尺寸基本不变化。在一种实施方式中,如本文提供的官能化的发色纳米颗粒在适当水溶液中在至少约4个月内保持稳定。在另一种实施方式中,如本文提供的官能化的发色纳米颗粒在适当水溶液中在至少约6个月内保持稳定。在另一种实施方式中,如本文提供的官能化的发色纳米颗粒在适当水溶液中在至少约1年内保持稳定。

在一些实施方式中,术语“稳定”表示发色聚合物点能抵制聚合物点中的聚合物分子或掺杂剂的解离。例如,发色聚合物点可包含若干聚合物分子,所述聚合物分子在浸出到溶液中之前可以在聚合物点中保留一段时间。聚合物分子从聚合物点发生浸出可通过例如聚合物点的光物理性质降低来表征。在一些实施方式中,发色聚合物点的稳定性降低可通过在对应于聚合物点发射的波长处的发射强度随时间降低来表征。在一些实施方式中,聚合物点的劣化可通过在对应于聚合物发射的特定波长处的发射强度随时间增大而检测。除了测定聚合物发射以外,还可对聚合物点进行设计,以结合在纳米颗粒形成过程中存在于溶液中的荧光染料。随着聚合物点的劣化,染料会浸出,可随时间进行检测。

如本文进一步提供的,本发明的聚合物点除了显示高稳定性以外,还提供了其他出乎意料的性质。例如,对沿着聚合物的官能化的量进行调节的能力使得能对各种光物理性质(例如吸光度、发射明亮度和/或发射颜色)进行调节。在一些实施方式中,聚合物点提供了出乎意料的明亮度。值得注意的是,在一些情况中,没有因为颗粒形成而增加荧光猝灭。此外,若聚合物点表面上的官能团数量少且离散,则P点对生物相关分子和/或细胞的非特异性吸收降低。可以理解,具有高的明亮度和特异性结合能力的聚合物点为扩大用于研究化学和生物体系的成像和检测技术领域提供了重要视角。

在一些实施方式中,由官能半导体聚合物制成的发色聚合物点可具有适合于生物偶联的官能团。在一些实施方式中,应小心控制亲水性官能团的密度,因为适合于生物偶联的许多官能团是水溶性的,最终导致聚合物更象是水溶性的半导体聚合物(即,变得更象半导体聚合电解质),妨碍了半导体聚合物塌折或凝结成稳定的纳米颗粒。例如,Moon等(Moon等,Angewandte Chemie.2007,46,8223-8225)报告了可通过采用严格的酸条件迫使具有高密度水溶性官能侧链的半导体聚合物形成小颗粒。但是,这些通过采用严苛条件制成的颗粒倾向于聚集,并且不稳定,这可从其实验数据清楚看出(Moon等,Angewandte Chemie.2007,46,8223-8225)。出于官能团或侧链的亲水性的原因,重度官能化的发色聚合物可表征为更象偶联的聚合电解质的聚合物,这些纳米颗粒事实上是更象聚合电解质分子的松散聚合物聚集体(Moon等,Chem.Communications2011,47,8370-8372)。松散聚集体在不涉及太多聚合物链折叠的情况下形成,其松散结构不同于如本文所述通过疏水性聚合物的塌折形成的紧凑的发色聚合物点。因此,Moon等的纳米颗粒是胶状不稳定的,其聚集行为受到聚合物浓度、离子强度和温度的影响(Moon等,Chem.Communications2011,47,8370-8372)。还不清楚Moon等的颗粒是否能与生物分子偶联,因为大量水溶性官能团会轻易地导致交联和聚集。关于小心设计半导体聚合物,使半导体聚合物中具有受控密度的亲水性官能团,从而形成具有所需的供偶联到生物分子的亲水性官能团的稳定发色聚合物纳米颗粒,迄今尚无报告。相比之下,本发明描述了一个发现,即应小心控制亲水性官能团密度,因为亲水性官能团会使紧凑的内部结构发生不利的松散,会使每个颗粒的荧光明亮度发生降低,并会使生物标记中的非特异性吸附增加。

作为一种控制亲水性官能团密度的方式,可仅仅使用封端官能团来合成直链或支化的半导体聚合物分子。所得聚合物具有受控的官能团。例如,包含官能团的化学单元可用作聚合物合成中的聚合引发剂和生长催化剂,在这种方式中,每个聚合物分子最终通过仅仅一个官能团进行封端(图2A)。这种方法还有利于合成具有受控分子量和窄分子量分布的聚合物。而且,通过普通的合成途径,每个直链聚合物分子具有两个封端官能团(图2B),每个三分支的支化聚合物具有三个封端官能团等(图2C)。这种情况中亲水性官能团的密度足够低,从而不至于对聚合物链塌折成性能优良的稳定纳米颗粒造成负面影响。在这种方法中,优选每个纳米颗粒只有一个聚合物分子。但是需要时,纳米颗粒中可具有多个聚合物分子。

在一些实施方式中,当在聚合物合成过程中将一部分具有侧链亲水性官能团的单体结合到聚合物主链中时,可保持亲水性官能团的足够低的密度,从而使所得聚合物具有控制良好的并且密度足够低的侧链官能团(图7)。可采用一些方法来控制并确保低的官能化程度。一种方法包括只对端部基团进行官能化,包括对一部分端部基团进行官能化或对全部端部基团进行官能化。另一种方法包括在侧链上使用少量的官能团。例如,如图7中最后方案所示,对x进行调节,直到官能团的存在量不会对聚合物点的形成和所形成聚合物点的稳定性造成负面影响为止。在一些实施方式中,x可取决于具体的发色聚合物及其主链和侧链的性质。控制官能化程度以形成稳定的发色聚合物点的另一些方法可以基于对包含官能团的单体相对于不含官能团的单体的比例进行调节。另一些方法可以以附图中所示方案或标题中所述方案的任意组合为基础。

如本文所提供的,本发明的一些实施方式可包括具有仅仅一部分侧链亲水性官能团的半导体聚合物。本发明的聚合物不同于水溶性半导体聚合物(半导体聚合电解质),后者中几乎每个单体重复单元都具有侧链亲水性官能团或亲水性部分。本发明的发色聚合物点可包含具有仅仅一部分侧链亲水性官能团的半导体聚合物,其一方面可轻易地制成具有疏水性核的小纳米颗粒,另一方面可提供亲水性官能团用于生物偶联。相比之下,Moon等揭示的颗粒没有提供设计控制,例如当每个重复单元(例如单体)都具有侧链亲水性官能团或部分时,在纳米颗粒制备和生物偶联中会出问题和造成麻烦。更重要的是,使用这些具有亲水性部分的重度官能化的半导体聚合物形成的纳米颗粒经常不具有优良的稳定性。而且,用亲水性部分重度官能化的发色聚合物(例如,每个单体具有一个侧链亲水性官能团)还经常无法利用沉淀法塌折形成紧凑的纳米颗粒形式。例如实施例8说明了这种区别。与Moon等的松散颗粒结构相比,松散聚集体的每个颗粒的吸收横截面相比于由例如本文所述的疏水性聚合物形成的紧凑聚合物点有所降低。这种降低可归因于例如Moon等的松散聚集体颗粒中具有较少的发色团。此外,Moon等的重度官能化的聚合物表现出比本文所述具有低官能化密度的聚合物更低的荧光量子产率。小吸收横截面和低量子产率的组合因素会使每个颗粒的荧光明亮度明显降低(实施例7)。而且,与本文所述的由具有低官能化密度的发色聚合物形成的点相比,由重度官能化的聚合物形成的发色聚合物点还在生物应用中产生明显的非特异性标记(实施例9)。

在一种实施方式中,发色聚合物点可通过沉淀形成。这种技术涉及将稀释的发色聚合物溶液(例如溶解在有机溶剂中的发色聚合物)快速加入(例如通过声波处理或剧烈搅动辅助)到过量体积的非溶剂(但能与该有机溶剂混溶)例如水或另一种生理相关水溶液中。例如,在本文所述的一些过程中,可首先将发色聚合物溶解在具有优良溶解性的有机溶剂(优良溶剂)例如THF(四氢呋喃)中,之后将溶解在THF中的聚合物加到过量体积的水或缓冲溶液中,所述水或缓冲溶液对于疏水性发色聚合物是不良溶剂,但能与所述优良溶剂(THF)混溶。对所得混合物进行声波处理或剧烈搅拌,以帮助形成发色聚合物点,然后除去有机溶剂,留下分散良好的发色纳米颗粒。在采用这种过程时,发色聚合物应具有足够的疏水性以溶解到有机溶剂(如THF)中。在侧链上引入高密度的亲水性官能团,用于偶联到生物分子或高密度的亲水性侧链(例如Moon等所述),将使所得聚合物在有机溶剂(如THF)中不溶解或溶解不良,这与聚合电解质的性质类似或相同。

通过理解对于稳定链塌折形成稳定发色聚合物点很重要的那些要求和参数,本发明描述了具有受控且低程度的亲水性官能团的官能化发色聚合物的组合物,从而能形成稳定的官能化发色聚合物点,优选利用沉淀法形成。但是,形成发色聚合物点的另一些方法也是可行的,包括但并不限于基于乳液(例如小乳液或微乳液)或沉淀或凝结的各种方法。还可采用其他具有疏水性官能团的聚合物,其中的疏水性官能团不会影响发色聚合物的塌折和聚合物点的稳定性。然后可以将纳米颗粒表面上的疏水性官能团转化成亲水性官能团(例如通过后官能化)以用于生物偶联,或者将疏水性官能团直接连接到生物分子上。后一途径利用疏水性和可点击的(即属于点击化学范围内的化学反应)官能团特别有效,这样的官能团包括但并不限于炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团。

单价发色聚合物点

本发明的一种实施方式提供了单价发色聚合物点。单价发色聚合物点包含只有一个官能团的发色聚合物点。本文所用术语“单价”表示只有一个官能团连接到发色聚合物点的表面。

图1A显示了具有一个官能团R的单价发色聚合物点的示意图。所述官能团可以是任何基团,例如羧酸或其盐、氨基、巯基、叠氮基、炔、应变炔、叠氮化物、膦、环辛炔、醛、酯、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、琥珀酰亚氨基酯、其取代衍生物。一般来说,可使用能生物偶联的任何其他官能团。本领域技术人员可找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。在一种具体的实施方式中,官能团可以是包含生物素、叶酸、叶酸盐/酯、鬼笔环肽或肽、蛋白质、核酸、碳水化合物、脂类等的任何结构,该结构能直接或间接地结合到生物实体。

官能化的发色点的生物偶联体

在一些实施方式中,本发明提供了包含上述官能化的发色聚合物点和生物分子的生物偶联体,其中的生物分子直接或通过官能团间接地连接到聚合物点。生物偶联体还可包含上述官能化的发色聚合物点,其与诸如病毒、细菌、细胞、生物或合成囊泡之类的生物颗粒如脂质体缔合。官能化的发色聚合物点可包含一个或多个由具有一个或两个封端官能团或低密度侧链官能团的发色聚合物形成的官能团。

在一些实施方式中,本发明提供了包含上述单价发色聚合物点和生物分子的生物偶联体,其中的生物分子直接或通过官能团间接地连接到聚合物点。生物偶联体还包含上述单价发色聚合物点,其与诸如病毒、细菌、细胞、生物或合成囊泡之类的生物颗粒如脂质体缔合。图1B显示了通过官能团R与生物分子缔合的单价发色聚合物点的示意图。使用术语“生物分子”描述合成或天然形成的蛋白质、糖蛋白、肽、氨基酸、代谢物、药物、毒素、核酸、核苷、碳水化合物、糖、脂类、脂肪酸等。有利的是,经由共价键将生物分子连接到单价发色聚合物的官能团。例如,若聚合物点的官能团是羧基基团,则可通过将羧基基团与蛋白质分子的胺基团交联而将蛋白质生物分子直接连接到聚合物点。

本文所用术语“交联剂”用于描述能在类似或不类似分子的基团之间形成化学键从而将这些分子共价键合到一起的化合物或部分。常见交联剂的例子是本领域中已知的。参见例如《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。通过使用“连接剂”分子,例如抗生素蛋白、链霉亲和素、中和亲和素(neutravidin)、生物素或类似分子,能将生物分子间接连接到单价发色聚合物点。

单分子聚合物点:单价、二价或多价

本文所述的官能团能以多种方式包含在发色聚合物中。例如,官能团可连接(例如共价键合)到发色聚合物的主链、侧链或其端部单元之一。如本文进一步描述的,单价聚合物点可包含单独一个聚合物分子,该聚合物分子只包含一个官能团,例如位于所述单独一个直链聚合物分子的两个端部单元之一。二价聚合物点可包含单独一个聚合物分子,该聚合物分子包含两个官能团,例如各自位于所述单独一个直链聚合物分子的两个端部单元。三价聚合物点可包含单独一个聚合物分子,该聚合物分子包含三个官能团,例如官能团只连接到三分支支化聚合物的三个端部单元。类似地,可使用支化聚合物制备其他多价聚合物点,例如其具有连接到四分支、五分支、六分支和具有更多分支的支化聚合物的端部单元的官能团。

在一些实施方式中,包含具有至少一个位于端部单元的官能团的单独一个聚合物分子的聚合物点可带来一些益处。例如,可以在聚合物合成中对仅仅一个官能团与发色聚合物端部单元的连接进行良好的控制。例如,包含官能团的化学单元可以在聚合物合成中用作聚合引发剂和生长催化剂,通过这种方式使得每个聚合物分子只在端部包含一个官能团。还可以在聚合物合成中对将官能团仅仅连接到直链发色聚合物的两个端部单元进行良好的控制。例如,包含官能团的化学单元可以用作封端剂以终止聚合物合成中的聚合物生长,从而使每个直链聚合物分子只在两个端部单元中包含两个官能团。类似地,可以在聚合物合成中对用于多价聚合物点的官能团连接进行良好的控制,例如,可以只将官能团增加到三分支支化聚合物的三个端部单元。

在一些实施方式中,可以将向聚合物端部单元增加官能团的情况与其中的官能团沿着主链随机定位的聚合物相比。例如,通过侧链官能化或主链官能化得到的聚合物中的官能团数量可能难以制得具有精确数量的官能团的聚合物。相反,聚合物上的官能团数量通常遵循一定的分布。在一些情况中,端部单元中的官能团在其他方面与侧链相比也是有利的。相较于侧链和主链官能化,端部单元的官能化不会对聚合物塌折形成聚合物点产生如此大的影响。而且,端部官能团更容易接触到用于生物偶联的水性环境,而侧链官能团会嵌入聚合物点中,所以不能用于生物偶联。

在一种实施方式中,发色聚合物点只含一个连接有一个官能团(如R)的发色聚合物分子(如图2A中所示)。这种发色聚合物点是单价单分子点,其可提供独特的性质,例如单分散的尺寸和均匀的荧光明亮度。官能团可共价连接到发色聚合物的主链、侧链或端部单元之一。所述官能团可以是例如以下的任意基团:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯及其取代衍生物。一般来说,可使用适合于生物偶联的任何其他官能团。本领域技术人员可以找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。可通过许多途径合成包含一个官能团的发色聚合物。例如,包含官能团的化学单元可以在聚合物合成中用作聚合引发剂和生长催化剂,在这种方式中,每个聚合物分子都只用一个官能团进行最终封端(图2A)。这种方法还有利于合成具有受控分子量和窄分子量分布的聚合物。可通过实施例1中的溶剂混合方法或本领域中的任何其他方法来制备单价单分子聚合物点。

在一些实施方式中,发色聚合物点可包含一个具有两个官能团(如R1和R2)的聚合物分子。这种发色聚合物点是二价单分子点,其可提供独特的性质,例如单分散的尺寸、均匀的荧光明亮度和与两个不同的生物分子的偶联。这两个官能团可共价连接到该发色聚合物的主链、侧链和/或端部单元。在一种优选的实施方式中,发色聚合物点包含一个具有两个封端官能团的直链聚合物分子。图2B中显示了具有两个封端官能团的直链聚合物分子的示意图,图3中显示了具有两个封端羧基基团的具体发色聚合物PDHF-COOH的化学结构。这种发色聚合物点是二价单分子点,其适合于某些应用例如用于形成极化的荧光生物偶联体,或者将点组装到一维结构中。两个官能团R1和R2可以是相同的,或者是不同的。所述官能团可以是例如以下的任意基团:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其任意组合。一般说来,可使用能进行生物偶联的任何其他官能团。本领域技术人员可找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。可通过如实施例1中所示的溶剂混合方法或本领域中已知的任何其他方法来制备二价单分子聚合物点。在一种具体的实施方式中,可以如图4和实施例2中所示通过本发明提供的方法将二价单分子发色聚合物点改性成单价点。

在另一种实施方式中,发色聚合物点包含一个具有三个亲水性官能团(如R1、R2和R3)的聚合物分子。这种发色聚合物点是三价单分子点,其可提供独特的性质,例如单分散的尺寸和均匀的荧光明亮度。所述三个官能团可共价连接到发色聚合物的主链、侧链和/或端部单元。在一种优选的实施方式中,发色聚合物点包含三分支支化聚合物的单分子,其中每个分支包含一个官能团(示意图如图2C中所示)。这三个官能团(如R1、R2和R3)可以是相同或不同的。所述官能团可以是例如以下的任何基团:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其任意组合。一般说来,可使用能进行生物偶联的任何其他官能团。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。这种单分子点是三价的,但具有控制良好的官能团(通过主链分支数量确定),适合于诸如极化的荧光生物偶联体或定向纳米颗粒组装之类的某些应用。可通过如实施例1中所示的溶剂混合方法或本领域已知的任何其他方法来制备三价单分子聚合物点。在一种具体的实施方式中,可通过本发明如图4中所示提供的方法将三价单分子发色聚合物点改性成单价点。

在一些实施方式中,发色聚合物点可包含一个具有四个官能团或五个官能团或六个官能团或更多个官能团的聚合物分子。这种发色聚合物点是多价单分子点,其能提供独特的性质,例如单分散的尺寸、均匀的荧光明亮度或生物偶联能力。所述官能团可共价连接到发色聚合物的主链、侧链和/或端部单元。在一种优选的实施方式中,发色聚合物点包含四分支支化聚合物、五分支支化聚合物、六分支支化聚合物等的单分子,其中每个分支都包含一个官能团。所述官能团可以是例如以下的任意基团:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其任意组合。一般来说,可使用适合于进行生物偶联的任何其他官能团。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。所述官能团可以是相同或不同的。这种单分子点是多价的,但具有控制良好的官能团(通过主链分支数量预先限定),适合于诸如极化的荧光生物偶联体或定向纳米颗粒组装或生物偶联之类的某些应用。可通过如实施例1中所示的溶剂混合方法或本领域中已知的任何其他方法来制备多价单分子聚合物点。在一种具体的实施方式中,可通过本发明如图4中所示提供的方法将多价单分子发色聚合物点改性成单价点。

官能化的多分子发色聚合物点:多价到单价

在一些实施方式中,发色聚合物点可包括官能化的多分子发色聚合物点,其可改性形成单价点。可利用具有官能团的发色聚合物分子(如图3中的PDHF-COOH)来制备官能化的发色点。官能团可共价连接到发色聚合物的主链、侧链和/或端部单元。或者,可通过官能化试剂对发色聚合物点进行官能化。官能化试剂和方法是已知的,例如参见美国临时专利申请序列第61/259611号,该文献的全部内容通过参考结合于此,以用于所有目的。所述官能团可以是例如以下的任意基团:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其任意组合。一般来说,可使用适合于进行生物偶联的任何其他官能团。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。可通过本发明如图4中所示提供的方法将这些官能化的发色聚合物点改性成单价发色聚合物点。

用于制备发色聚合物点的方法:单价、二价或多价聚合物点

如本文提供的,可采用多种方法制备发色聚合物点。例如,本文描述的方法涉及沉淀聚合物以形成聚合物点。可以领会,许多形成聚合物点的方法还可包括例如基于乳液的技术。类似地,本领域技术人员将领会,本文描述了利用官能团(例如疏水性官能团、亲水性官能团或其组合)通过预官能化和后官能化对聚合物点进行官能化的方法。

在一个方面中,本发明提供了一种用于制备在其表面上具有预定数量的反应性官能团的合理官能化的单链发色纳米颗粒的方法,该方法包括以下步骤:(a)使与一种或多种反应性官能团偶联的半导体聚合物的均匀群落(population)在水性环境中塌折,从而形成包含许多反应性官能团的发色纳米颗粒;(b)通过在纳米颗粒上的反应性官能团与固体相之间形成共价键,从而在单独一个位点将该纳米颗粒连接到固体相;(c)在有机溶剂中洗涤纳米颗粒,从而使得纳米颗粒的结构破裂并只保留偶联到固体表面的聚合物;(d)将连接的聚合物洗涤回到水性环境中,从而使该聚合物塌折形成单链发色纳米颗粒;和(e)使固体相和反应性官能团之间的键断裂,从而从固体相释放单链发色纳米颗粒。在一些实施方式中,使键断裂的步骤使得在纳米颗粒表面上保留了反应性官能团。在一些实施方式中,使键断裂的步骤对反应性官能团进行了改性,在纳米颗粒表面上形成不同的反应性官能团。

在另一个方面中,本发明提供了一种用于制备在其表面上具有单独一个反应性官能团的单价发色纳米颗粒的方法,该方法包括以下步骤:(a)使与一种或多种反应性官能团偶联的半导体聚合物在水性环境中塌折,从而形成包含许多反应性官能团的发色纳米颗粒;(b)通过在纳米颗粒上的反应性官能团与固体相之间形成共价键,从而在单独一个位点将该纳米颗粒连接到固体相;(c)对纳米颗粒进行处理,从而从该纳米颗粒的表面除去全部未键合的反应性官能团;和(d)使固体相和反应性官能团之间的键断裂,从而从固体相释放发色纳米颗粒。在一些实施方式中,使键断裂的步骤使得在纳米颗粒表面上保留了反应性官能团。在一些实施方式中,使键断裂的步骤对反应性官能团进行了改性,在纳米颗粒表面上形成不同的反应性官能团。

在一种示例性的实施方式中,可通过采用如实施例1中所示的溶剂混合方法来制备单分子发色聚合物点,其中的聚合物前体溶液是足够释的。对于单聚合物分子,可通过例如低的聚合物浓度来促进塌折形成单聚合物点,其中的聚合物分布于溶液空间中,使得仅仅发生分子内的塌折,而不是与另一个聚合物分子发生分子间塌折。用于单聚合物点形成的稀溶液可以是小于约1000ppm,小于约500ppm,小于约100ppm,小于约50ppm,小于约20ppm,小于约10ppm,小于约5ppm,小于约1ppm,或更低。本发明方法第一步骤的一个例子是合成具有例如以下官能团的发色聚合物分子:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其组合。一般来说,可采用能进行生物偶联的任何其他官能团。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。可以通过共价键合到发色聚合物的主链、侧链或端部单元来形成官能团。在第二步骤中,使用官能化的发色聚合物作为前体,从而通过采用如实施例1中所示的溶剂混合方法来制备单分子点。在一种实施方式中,单分子点可以是单价的(例如只有一个官能团可用于进行生物偶联),这时每个聚合物前体分子只有一个官能团。在另一些实施方式中,单分子点可以是二价或多价的,这时每个聚合物前体分子具有两个或更多个官能团,这些官能团可用于某些应用。

在一些实施方式中,可以对任何官能化的多分子发色聚合物点进行改性,从而形成可以是单价、二价或多价的单分子聚合物点。所述改性是指从点上除去一些聚合物分子,但只留下一个可能只有一个官能团、两个或更多个官能团的分子。在一种实施方式中,可使用经过设计的表面来促进改性。所述经过设计的表面可具有例如以下一些官能团:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其组合。一般来说,可使用适合于生物偶联的任何其他官能团。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。所述表面可以是平坦表面,例如盖玻片,或者来自任何颗粒的弯曲表面。所述表面可以是氧化硅、金属、半导体、硅和不同聚合物表面。上述官能化的多分子发色聚合物点仅仅通过一个发色聚合物分子经由任何稳定的物理或化学缔合连接到表面。可以除去发色聚合物点中的全部游离分子(除了与表面缔合的一个分子以外),例如通过用有机溶剂洗涤表面来除去,从而只保留与表面缔合的分子。然后可通过任何物理或化学方法从表面释放单分子发色点。所得单分子点可以是单价、二价或多价的,取决于原聚合物分子中的官能团数量。这种用于制备单分子点的方法如图4中的方案A所示。在一些实施方式中,可通过点击化学将聚合物点连接到表面。表面上或聚合物中的官能团包括但并不限于用于点击化学的那些官能团,例如炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团。图20显示了一种这样的例子,其中通过炔-叠氮化物点击反应将PFBT-炔点连接到氧化硅珠粒。在溶剂洗涤之后,可以使PFBT点断裂,从而形成单链点。一种将官能化的发色聚合物点改性成单价单分子点的实验例子如实施例2中所示。

从官能化的多价发色聚合物点制备单价发色聚合物点的方法

在一些实施方式中,可通过将任意官能化的多价发色聚合物点改性成单价点来制备单价发色聚合物点。原官能化多价聚合物点可包含一个或多个发色聚合物分子。原官能化聚合物点还可包含与例如以下的其他组分物理混合或化学交联的发色聚合物:荧光染料、无机发光材料、磁性材料、金属材料,其可具有额外的功能,例如磁性功能、等离子体共振功能等。

这种实施方式包括两步骤方法:第一步骤是制备具有例如以下官能团的官能化的发色聚合物点:羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其组合。一般来说,可使用能进行生物偶联的任意其他官能团。本领域技术人员能找到这些官能团,例如参见《生物偶联技术(Bioconjugate Techniques)》(学院出版社(Academic Press),纽约(New York),1996或之后版本),该文献的全部内容通过参考结合于此,以用于所有目的。可通过例如任何稳定的物理或化学缔合将任意有机分子连接到发色聚合物点来对发色聚合物点进行官能化。通过物理缔合或化学键合将官能化分子连接到发色聚合物点,并在发色聚合物点上提供表面官能团。优选的官能化分子是一种聚合物,其可以是发色或不发色的。用于制备官能化的多价点的方法是已知的,例如参见美国临时专利申请序列第61/259611号,该文献的全部内容通过参考结合于此,以用于所有目的。

第二步骤是将官能化的多价发色聚合物点改性成单价聚合物点。所述改性是指对大部分官能团进行钝化或去除,而只留下一个活性官能团。在一种实施方式中,可使用经过设计的表面来促进改性。所述经过设计的表面可具有某些官能团,例如羧酸或其盐、氨基、巯基、叠氮基、炔、膦、环辛炔、醛、羟基、羰基、硫酸盐/酯、磺酸盐/酯、磷酸盐/酯、氰酸盐/酯、酯、琥珀酰亚氨基酯、其取代衍生物及其组合。所述表面可以是平坦表面,例如盖玻片,或是来自任何颗粒的弯曲表面。所述表面可以是氧化硅、金属、半导体、硅和不同聚合物表面。所述经过设计的表面可以是平坦表面,例如盖玻片,或是来自任何颗粒的弯曲表面。在一些实施方式中,可通过点击化学将聚合物点连接到表面。表面上或聚合物分子中的官能团包括但并不限于用于点击化学的那些官能团,例如炔、应变炔、叠氮化物、二烯、链烯、环辛炔和膦基团。图20显示了一个这样的方案,其中通过炔-叠氮化物点击反应将PFBT-炔点连接到氧化硅珠粒。可以在表面钝化之后将PFBT点断裂,从而形成单价点。上述原官能化多价发色点只通过一个官能团经由任何稳定的物理或化学缔合连接到表面。可以对发色点上的全部游离官能团(除了已经连接到表面上的一个官能团以外)进行钝化或去除。然后可通过任何物理或化学方法从表面上释放发色点,改性的发色点只有一个官能团,该官能团可以是原官能团或是不同的官能团。这种用于将官能化的发色聚合物点改性成单价聚合物点的方法如图4中的方案B所示。

如美国临时专利申请序列第61/259611号中所述,在一种实施方式中,官能化的纳米颗粒可包含基于聚苯乙烯的梳形聚合物。基于聚苯乙烯的梳形聚合物的非限制性例子包括,聚苯乙烯接枝丙烯酸、聚苯乙烯接枝羧基官能化的环氧乙烷、聚苯乙烯接枝胺官能化的环氧乙烷、聚苯乙烯接枝硫醇官能化的环氧乙烷、聚苯乙烯接枝琥珀酰亚氨基酯官能化的环氧乙烷、聚苯乙烯接枝叠氮化物官能化的环氧乙烷、聚苯乙烯接枝炔官能化的环氧乙烷、聚苯乙烯接枝环辛炔官能化的环氧乙烷、聚苯乙烯接枝酯官能化的环氧乙烷、膦、聚苯乙烯接枝丁基醇等。

在另一种实施方式中,官能化的纳米颗粒可包含基于聚(甲基丙烯酸甲酯)的梳形聚合物。基于聚(甲基丙烯酸甲酯)的梳形聚合物的非限制性例子包括,聚(甲基丙烯酸甲酯)接枝丙烯酸、聚(甲基丙烯酸甲酯)接枝羧基官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝胺官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝硫醇官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝琥珀酰亚氨基酯官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝叠氮化物官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝炔官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝环辛炔官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝酯官能化的环氧乙烷、聚(甲基丙烯酸甲酯)接枝膦官能化的环氧乙烷等。

在另一种实施方式中,官能化的纳米颗粒可包含具有羧基、胺、硫醇、酯、琥珀酰亚氨基酯、叠氮化物、炔、环辛炔或膦基团的梳形聚合物。

类似地,在一种实施方式中,官能化的纳米颗粒可包含在端部单体单元上用例如以下官能团官能化的聚合物:羧基、胺、硫醇、酯、琥珀酰亚氨基酯、叠氮化物、炔、环辛炔、膦或类似官能团。可使用的聚合物的例子包括但并不限于,聚(甲基)丙烯酸酯聚合物、聚丙烯酰胺聚合物、聚异丁烯、聚二烯、聚亚苯基、聚乙烯、聚(乙二醇)、聚丙交酯、聚苯乙烯、聚硅氧烷、聚(乙烯基吡啶)、聚(乙烯基吡咯烷酮)、聚氨酯、其嵌段共聚物、其无规或交替共聚物等。

在一些实施方式中,官能化的纳米颗粒可包含具有一个或多个官能化的单体单元的共聚物,例如两性聚合物。如本文所述,在设计包含两性聚合物的发色纳米颗粒时,应当小心地确保亲水性官能团不会对聚合物链塌折成纳米颗粒形式造成负面影响,或者不会对所形成的发色聚合物点的稳定性造成负面影响。这可通过例如调节两性官能化聚合物相对于发色聚合物的百分比来实现。

在一些实施方式中,官能化的纳米颗粒包含两性共聚物,例如(1)基于聚((甲基)丙烯酸)的共聚物,例如:聚(丙烯酸-b-丙烯酰胺)、聚(丙烯酸-b-甲基丙烯酸甲酯)、聚(丙烯酸-b-N-异丙基丙烯酰胺)、聚(丙烯酸正丁酯-b-丙烯酸)、聚(丙烯酸钠-b-甲基丙烯酸甲酯)、聚(甲基丙烯酸-b-甲基丙烯酸新戊酯)、聚(甲基丙烯酸甲酯-b-丙烯酸)、聚(甲基丙烯酸甲酯-b-甲基丙烯酸)、聚(甲基丙烯酸甲酯-b-N,N-二甲基丙烯酰胺)、聚(甲基丙烯酸甲酯-b-丙烯酸钠)、聚(甲基丙烯酸甲酯-b-甲基丙烯酸钠)、聚(甲基丙烯酸新戊酯-b-甲基丙烯酸)、聚(甲基丙烯酸叔丁酯-b-环氧乙烷)、聚(2-丙烯酰氨基-2-甲基丙磺酸-b-丙烯酸);(2)基于聚二烯的共聚物,例如:聚(丁二烯(1,2加成)-b-环氧乙烷)、聚(丁二烯(1,2加成)-b-甲基丙烯酸、聚(丁二烯(1,4加成)-b-丙烯酸)、聚(丁二烯(1,4加成)-b-环氧乙烷、聚(丁二烯(1,4加成)-b-丙烯酸钠)、聚(丁二烯(1,4加成)-b-N-甲基4-乙烯基吡啶鎓碘化物)、聚(异戊二烯-b-环氧乙烷)、聚(异戊二烯-b-环氧乙烷)和聚(异戊二烯-b-N-甲基2-乙烯基吡啶鎓碘化物);(3)基于聚(环氧乙烷)的共聚物,例如:聚(环氧乙烷-b-丙烯酸)、聚(环氧乙烷-b-丙烯酰胺)、聚(环氧乙烷-b-环氧丁烷)、聚(环氧乙烷-b-ε-己内酯)、聚(环氧乙烷-b-丙交酯)、聚(环氧乙烷-b-丙交酯)、聚(环氧乙烷-b-甲基丙烯酸)、聚(环氧乙烷-b-丙烯酸甲酯)、聚(环氧乙烷-b-N-异丙基丙烯酰胺)、聚(环氧乙烷-b-甲基丙烯酸甲酯)、聚(环氧乙烷-b-甲基丙烯酸硝基苄酯)、聚(环氧乙烷-b-甲基丙烯酸N,N-二甲基氨基乙酯)、聚(环氧乙烷-b-环氧丙烷)、聚(环氧乙烷-b-丙烯酸叔丁酯)、聚(环氧乙烷-b-甲基丙烯酸叔丁酯)、聚(环氧乙烷-b-甲基丙烯酸四氢呋喃酯)、聚(环氧乙烷-b-2-乙基噁唑啉)、聚(环氧乙烷-b-甲基丙烯酸2-羟乙酯)、聚(环氧乙烷-b-2-甲基噁唑啉);(4)基于聚异丁烯的共聚物,例如:聚(异丁烯-b-丙烯酸)、聚(异丁烯-b-环氧乙烷)、聚(异丁烯-b-甲基丙烯酸);(5)基于聚苯乙烯的共聚物,例如:聚(苯乙烯-b-丙烯酰胺)、聚(苯乙烯-b-丙烯酸)、聚(苯乙烯-b-丙烯酸铯)、聚(苯乙烯-b-环氧乙烷)、能在嵌段连接处断裂的聚(苯乙烯-b-环氧乙烷)酸、聚(苯乙烯-b-甲基丙烯酸)、聚(4-苯乙烯磺酸-b-环氧乙烷)、聚(苯乙烯磺酸-b-甲基丁烯)、聚(苯乙烯-b-N,N-二甲基丙烯酰胺)、聚(苯乙烯-b-N-异丙基丙烯酰胺)、聚(苯乙烯-b-N-甲基2-乙烯基吡啶鎓碘化物)、聚(苯乙烯-b-N-甲基-4-乙烯基吡啶鎓碘化物)、聚(苯乙烯-b-丙基丙烯酸)、聚(苯乙烯-b-丙烯酸钠)、聚(苯乙烯-b-甲基丙烯酸钠)、聚(对-氯甲基苯乙烯-b-丙烯酰胺)、聚(苯乙烯-共聚-对-氯甲基苯乙烯-b-丙烯酰胺)、聚(苯乙烯-共聚-对-氯甲基苯乙烯-b-丙烯酸)、聚(苯乙烯-b-甲基丁烯-共聚-异戊二烯磺酸盐);(6)基于聚硅氧烷的共聚物,例如:聚(二甲基硅氧烷-b-丙烯酸)、聚(二甲基硅氧烷-b-环氧乙烷)、聚(二甲基硅氧烷-b-甲基丙烯酸);(7)基于聚(二茂铁基二甲基硅烷)的共聚物,例如:聚(二茂铁基二甲基硅烷-b-环氧乙烷);(8)基于聚(2-乙烯基萘)的共聚物,例如:聚(2-乙烯基萘-b-丙烯酸);(9)基于聚(乙烯基吡啶和N-甲基乙烯基吡啶鎓碘化物)的共聚物,例如:聚(2-乙烯基吡啶-b-环氧乙烷)、聚(2-乙烯基吡啶-b-甲基丙烯酸)、聚(N-甲基2-乙烯基吡啶鎓碘化物-b-环氧乙烷)、聚(N-甲基4-乙烯基吡啶鎓碘化物-b-甲基丙烯酸甲酯)、聚(4-乙烯基吡啶-b-环氧乙烷)PEO端部官能OH;(10)基于聚(乙烯基吡咯烷酮)的共聚物,例如:聚(乙烯基吡咯烷酮-b-D/L-丙交酯);等等。

使用发色聚合物点的方法

本发明还提供了使用本文所述的聚合物点的方法。例如,本发明提供了使用本文的聚合物点基于荧光的检测方法。在一些实施方式中,具有低密度官能化的聚合物能提供优越的光物理性质,例如用于基于荧光的检测方法的高明亮度。在一些实施方式中,具有低密度官能化的聚合物能提供优越的特异性细胞靶定能力,例如最小的非特异性吸附或者最小的与靶细胞或细胞结构或固定生物分子的相互作用。在一些实施方式中,基于荧光的检测方法可包括对从包含具有许多单体单元的半导体聚合物的发色纳米颗粒发射的光进行检测,其中该纳米颗粒中存在的小于50%的单体单元用亲水性部分改性,并且其中至少一个单体单元用适合于偶联的亲水性官能团改性。如本文所述,亲水性官能团可适合于生物偶联,在一些情况中其在水溶液中是稳定的。聚合物的官能化密度可以在如本文所述的范围内。例如,发色纳米颗粒可包含一些聚合物,其中小于45%、小于40%、小于35%或小于30%的单体单元经过改性。在一些实施方式中,小于25%的单体单元经过改性。一些实施方式包括一种发色纳米颗粒,其中小于20%、小于15%、小于10%、小于5%或小于1%的单体单元经过改性。所述亲水性官能团可包括羧酸或其盐、氨基、巯基、醛、酯、羟基、羰基、磷酸盐/酯、氰酸盐/酯、琥珀酰亚氨基酯及其取代衍生物。

实施例

包括以下实施例以进一步描述本发明,不应用于限制本发明的范围。

例如,说明了一种制备单价发色聚合物点的方法,该方法包括将官能化的发色点连接到经过设计的表面的步骤,之后进行溶剂洗涤或钝化,然后从该表面断裂。

实施例1:制备官能化的发色聚合物点的方法

本实施例提供了一种获得官能化的发色聚合物点的方法,该聚合物点随后进行表征,并改性形成单价发色聚合物点。图3显示了两种典型的发色聚合物的化学结构:用羧基官能团封端的聚芴(PDHF-COOH),以及用于制备官能化的发色聚合物点的不含官能团的聚芴-苯并噻二唑(PFBT)。如下所述制备水溶液中的官能化的发色聚合物点。首先,通过搅拌在惰性气氛下将发色聚合物例如PDHF-COOH溶解在四氢呋喃(THF)中,制得浓度为0.1毫克/毫升的储备溶液。将5毫升溶液混合物快速加到10毫升去离子水中,同时对该混合物进行超声处理。通过氮汽提除去THF,通过在90℃加热板上连续氮汽提到8毫升来浓缩溶液,随后通过0.2微米过滤器过滤。所得纳米颗粒分散体能保持清澈并稳定几个月,没有聚集的迹象。

实施例2:从多价聚合物点制备单价单分子发色聚合物点的方法

将根据本发明以上方法制备的多价发色聚合物点改性成单价发色聚合物点。图4中的方案A显示了经由经过设计的颗粒表面制备单价单分子发色聚合物点的示意图。在本实施例中使用氧化硅胶体珠粒来提供胺官能化的表面。但也可使用任意其他珠粒,例如聚合物珠粒、金属珠粒或无机珠粒。通过常规的方法制备约200纳米的氧化硅胶体颗粒。将100微升乙酸加到100毫克氧化硅颗粒在5毫升MilliQ水中的溶液中,并进行磁力搅拌。然后向该溶液中加入10微升氨基丙基三甲氧基硅烷(APTMS)和100微升甲氧基(聚乙烯氧基)丙基三甲氧基硅烷(PEG-硅烷)的混合物,反应持续5小时,然后用水彻底洗涤以除去过量前体。所得氧化硅珠粒用高密度的PEG基团和低密度的胺基团官能化,可通过碳二亚胺例如EDC催化向其连接PDHF-COOH聚合物点。在一种典型的反应中,将20微升EDC(5毫克/毫升,在MilliQ水中)加入PDHF-COOH聚合物点(40微克/毫升)和胺官能化的氧化硅颗粒(10毫克/毫升)在pH为7.5的20mM HEPES缓冲液中的混合物中。反应在室温下持续4小时,每个多价PDHF-COOH聚合物点都只通过一个共价键与氧化硅珠粒缔合,原因在于氧化硅颗粒上的低密度胺基团。然后在有机溶剂如THF中彻底洗涤氧化硅-聚合物点复合物,从而使得只有与氧化硅颗粒共价连接的PDHF-COOH单分子保留在表面上。将具有PDHF-COOH单分子的氧化硅颗粒再分散到包含1%牛血清白蛋白(BSA)的20mM HEPES缓冲液中,然后向该溶液中加入100nMNaOH,使得单价聚合物点从氧化硅颗粒断裂。

实施例3:单价发色聚合物点的形成的光学表征

通过研究掺混的聚合物点的光谱性质和颗粒内能量传递,对根据本发明方法制备的单价发色聚合物点的形成进行评价。使用带1厘米石英比色皿的DU720分光光度仪记录紫外-可见吸收光谱。使用带1厘米石英比色皿的Fluorolog-3荧光仪记录荧光光谱。首先,根据实施例1中的方法制备包含相同重量浓度的蓝光发射PDHF-COOH和黄光发射PFBT聚合物(化学结构如图3中所示)的掺混的发色聚合物点。所得PFBT/PDHF-COOH颗粒在表面上具有多个羧基基团,其可用于与胺官能化的氧化硅珠粒偶联。掺混的聚合物点在吸收光谱中显示出来自PDHF(380纳米)和PFBT(460纳米)的吸收峰(图5A),但只有来自PFBT的黄光发射,原因在于从PDHF到PFBT分子的高效颗粒内能量传递(图5B)。然后根据实施例2中的方法从掺混的聚合物点制备单价聚合物点。从图5A中可见,缺少PFBT吸收表明溶剂洗涤有效地从聚合物点除去了未偶联的PFBT分子,因此只有那些共价键合于氧化硅表面的PDHF-COOH分子得以保留,从而形成单价聚合物点。作为额外的证明,该单价点表现出来自PDHF-COOH的特征发射(图5B)。

实施例4:单价发色聚合物点的光学性质

通过紫外-可见和荧光测量来评价根据本发明方法制备的单价发色聚合物点的光学性质。使用带1厘米石英比色皿的DU720分光光度仪记录紫外-可见吸收光谱。使用带1厘米石英比色皿的Fluorolog-3荧光仪记录荧光光谱。与包含多个PDHF-COOH分子的发色聚合物点相比,单价PDHF-COOH聚合物点表现出类似的吸收,但后者发生发射光谱的蓝移(图6A)。这与光物理图一致:多分子聚合物点中存在的低能量物质、缺陷和聚集体导致了荧光的红移。如图6B中可见,单价PDHF-COOH点的荧光蓝移伴随着荧光量子产率的增大,这也与缺少聚集体且缺陷数量减少一致。

实施例5:具有变化密度的侧链官能化的PFBT聚合物的合成

本文提供的实施例显示,在一些情况中,侧链官能团的密度会显著影响发色聚合物点在生物应用中的内部颗粒结构、胶体稳定性、荧光明亮度和非特异性标记。本实施例描述了在侧链以50%到2.3%的摩尔分数用羧酸基团官能化的一系列PFBT聚合物的合成(图8)。如图所示,n是如本文所述聚合物中存在的重复结构单元的数量。聚合物中不同单体的比例可以用x、y和z描述,它们相加为1。如本实施例所提供的,z对应于提供官能团的单体单元。这种单体的比例可以变化,从而提供如本文进一步所述具有变化的官能化密度的聚合物(例如小于约50%,小于约25%,或小于约5%)。

选择PFBT聚合物是因为其高明亮度和吸收峰,便于进行荧光显微测量和激光激发。通过以下方式合成羧酸酯官能化的PFBT:将9,9-二辛基芴-2,7-二硼酸二(1,3-丙二醇)酯、4,7-二溴苯并[c][1,2,5]噻二唑和2,7-二溴-9,9-二(3-(丙酸叔丁酯))芴共聚,然后使用三氟乙酸除去保护性叔丁基基团。聚合物中存在的-COOH可通过红外光谱进一步确认(图16)。通过改变合成步骤中单体的进料比可以调节聚合物链中羧酸基团的摩尔分数,可进一步用1HNMR数据验证(将处理之前的C8H17烷基链和叔丁基基团中的质子积分与TFA进行比较)。在这项工作中,对用2.3%、14%和50%(之后分别缩写成PFBT-C2、PFBT-C14和PFBT-C50)的羧酸基团官能化的聚合物进行研究。类似地,还合成了用受控摩尔分数的-NH2进行了胺-官能化的PFBT聚合物。凝胶渗透色谱(GPC)分析显示,所有聚合物的分子量都在12-20千克/摩尔的范围内。

本实施例中的单体合成如下所述。将2,7-二溴芴(15毫摩尔,4.86克)、3-溴丙酸叔丁酯(33毫摩尔,6.86克)、氢氧化钠溶液(40%,35毫升)、Bu4NBr(1.5毫摩尔,0.48克)、甲苯(70毫升)的混合物在85℃搅拌过夜。分离有机相,用水洗涤并在MgSO4上干燥。蒸发溶剂之后,通过柱色谱(DCM)纯化残余物。获得的产物为白色固体。产率:4.81克,83%。1HNMR(500MHz,CDCl3):δ=7.47-7.54(m,6H),2.30(t,4H),1.47(t,4H),1.33(s,18H).13CNMR(500MHz,CDCl3):172.71,150.47,139.60,131.56,126.99,122.57,121.93,80.97,54.58,34.92,30.36,28.52。

通过铃木(Suzuki)偶联以不同的单体进料比例将单体2,7-二溴-9,9-二(3-(丙酸叔丁酯))芴(A)、4,7-二溴苯并[c][1,2,5]噻二唑(B)、9,9-二辛基芴-2,7-二硼酸二(1,3-丙二醇)酯(C)共聚,从而合成本实施例中的聚合物。此处以PFBT-C2为例:在100毫升烧瓶中,将单体A(0.06毫摩尔,34.8毫克)、B(0.94毫摩尔,276.2毫克)、C(1毫摩尔,558.4毫克)溶解在甲苯(20毫升)中,加入Bu4NBr(0.04毫摩尔,12.5毫克)和Na2CO3(2M,12毫升)。将混合物脱气,并在加入Pd(PPh3)4(0.035毫摩尔,40毫克)之前和之后充入N2(重复4次)。将反应物在90℃搅拌40小时,并加入溶解在THF(1毫升)中的苯基硼酸(100毫克)。2小时之后,加入溴苯(1毫升),并进一步搅拌3小时。将混合物倒入甲醇(200毫升)中。过滤沉淀,用甲醇、水和丙酮洗涤以除去单体、小的低聚物和无机盐。将粗产物溶解在DCM(15毫升)中,通过0.2微米膜过滤,并在甲醇(150毫升)中再沉淀。然后将粉末在丙酮(200毫升)中搅拌过夜,并通过过滤收集,真空干燥。产率:413毫克(72%)。1HNMR(500MHz,CDCl3):δ=7.90-8.20(m,8H),2.00-2.30(宽,4H),1.32(s,0.86H),1.08-1.26(m,20H),0.96(宽,4H),0.81(t,d=6Hz,6H)。通过TFA在室温下除去保护性叔丁酯基团。将三氟乙酸(3毫升)加到聚合物(200毫克)在DCM(60毫升)中的溶液中,并搅拌过夜。将有机层用水(100×3)洗涤,然后与NaOH溶液(10%,30毫升)搅拌10分钟。用乙酸对混合物进行酸化。用水洗涤DCM相,并浓缩到10毫升,在甲醇(100毫升)中沉淀。通过过滤收集最终粉末,用丙酮洗涤,并真空干燥。

实施例6:对具有变化密度的侧链官能化的PFBT点进行制备和表征

通过再沉淀方法从以上合成的三种聚合物(分别为PFBT-C2、PFBT-C14和PFBT-C50)制备发色聚合物点。通过在超声条件下将2毫升(100ppm)PFBT-C2聚合物的THF储备溶液注射到10毫升水中来制备PFBT-C2点。通过在超声条件下将2毫升(100ppm)PFBT-C14聚合物的THF储备溶液注射到10毫升水中来制备PFBT-C14P点。通过在超声条件下将400微升(500ppm)PFBT-C50聚合物的THF储备溶液注射到10毫升水中来制备PFBT-C50。通过调节起始浓度,将这三种聚合物的粒度控制在21纳米,用于对它们的性质进行可靠的比较。通过透射电子显微镜(TEM)和动态光散射(DLS)来研究粒度。代表性的TEM和DLS数据如图9中所示。动态光散射(DLS)测量结果显示,PFBT-C2、PFBT-C14和PFBT-C50P点具有相同的21纳米的平均粒度。

在Bruker AV500光谱仪上记录1HNMR和13CNMR谱。在Bruker vector33傅立叶变换红外分光光谱仪上(使用KBr压片)在400-4000厘米-1范围内记录红外光谱。通过动态光散射(Malvern Zetasizer NanoS)对体相溶液中的P点的粒度和ζ电势进行表征。对于TEM测量,将一滴P点分散体置于碳涂覆的铜网格上。将水蒸发之后,用透射电子显微镜(FEI Tecnai F20)对纳米颗粒进行成像。使用带1厘米石英比色皿的DU720扫描分光光度仪(美国加利福尼亚州的贝克曼库尔特公司(Beckman Coulter,Inc.,CA USA))记录紫外-可见吸收光谱。使用商用的Fluorolog-3荧光仪(美国新泽西州的霍力巴-乔宾伊冯公司(HORIBA Jobin Yvon,NJ USA))获得荧光光谱。使用配备有CCD积分球的滨松(Hamamatsu)光子多通道分析仪C10027测量荧光量子产率。对于单个颗粒荧光明亮度的测量,将荧光样品稀释在Milli-Q水中,在干净的玻璃盖玻片(之前用(3-氨基丙基)三甲氧基硅烷(APTMS)官能化)上干燥,在下述定制的广视野落射式荧光显微镜上进行成像。将来自蓝宝石激光器(美国加利福尼亚州圣克拉拉市的相干公司(Coherent,Santa Clara,CA USA))的488纳米激光束引导到采用实验室搭建的操纵光学设备的倒置式显微镜(尼康TE2000U,美国纽约州的麦尔维尔市(Nikon TE2000U,Melville,NY,USA))中。在物镜之前的梁架(nosepiece)处测量激光激发功率。用于照明和光收集的物镜是具有100倍放大和0.5-1.3数值孔径的尼康CFI Plan Fluor 100XS Oil(带光圈)物镜(美国纽约州麦尔维尔市的尼康公司)。通过500纳米长通滤波器(HQ500LP;美国佛蒙特州洛金哈姆市的克罗玛公司(Chroma,Rockingham,VI,USA))过滤荧光信号,并在EMCCD照相机(光测量公司,Cascade:512B,美国亚利桑那州图森市(Photometrics,Tucson,AZ USA))上进行成像。根据衰减因子回算P点颗粒的荧光强度。对于指定颗粒,通过在荧光点上对CCD信号进行积分来估计每个框架发射的荧光强度。

实施例7:具有变化的侧链官能化密度的PFBT点的荧光明亮度

通过吸收光谱和荧光光谱来研究具有不同摩尔分数的侧链羧酸基团的P点的光学性质。如图10A中所示,三种P点在其吸收光谱中表现出不同的吸收峰和强度,原因在于单体官能化和用于聚合物合成的单体进料比的差异。而且,聚合物侧链中的官能化密度表现出对所得P点的荧光光谱的明显影响。与PFBT-C2和PFBT-C14点进行比较,PFBT-C50点表现出高度的红移和加宽的荧光光谱。这种性质与在偶联的聚合电解质中观察到的情况一致,后者具有相同的PFBT主链并表现出类似的红移和发射光谱的加宽,原因在于其侧链中高密度的离子性部分。由高密度官能化导致的另一个负面影响是荧光量子产率减小(图10B)。测得PFBT-C50点的量子产率约为0.17,比PFBT-C2点(约0.30)和PFBT-C14点(约0.23)低得多。而且,这种趋势类似于偶联的聚合电解质中的常见情况,在偶联的聚合电解质中,与疏水性部分相比,侧链离子性部分通常导致发射猝灭。由于高密度的官能化会产生诸如发射峰变宽和量子产率减小之类的缺点,所以低密度的官能化对于生物应用中的探针性能而言是优选的。

荧光明亮度定义为吸收横截面和荧光量子产率的乘积。可根据吸收光谱估计每个颗粒的吸收横截面。假设三种P点中每种P点具有相同的发色团堆积密度(即,每个颗粒的PFBT分子数量),则估计其吸收横截面约在10-13厘米2的量级(图10B)。进一步考虑量子产率,算得PFBT-C2点和PFBT-C14点的每个颗粒的荧光明亮度分别比PFBT-C50点高4.1和2.7倍。为了研究单个颗粒的明亮度,使用单颗粒荧光显微镜进行单颗粒的明亮度测量。

图11显示了三种P点在相同的激发和收集条件下的单颗粒荧光图象。强度柱状图通过几千个颗粒的统计分析获得,如图11底部图片中所示。如图11中所示,测得PFBT-C2点和PFBT-C14点的每个颗粒明亮度分别比PFBT-C50点高5.5和4.9倍。由体相光谱算得PFBT-C2点相对于PFBT-C50点的强度比(4.1倍)比由单颗粒成像测得的强度比(5.5倍)低,表明与每个颗粒中PFBT分子的实际数量相比,在PFBT-C50点中算得的每个颗粒的明亮度存在高估。类似地,算得的PFBT-C14点相对于PFBT-C50点的强度比(2.7倍)也比由单颗粒成像测得的实际比(4.9倍)低。这些矛盾之处表明,PFBT-C50点中的实际发色团堆积密度低于PFBT-C2点和PFBT-C14点中的情况。

实施例8:具有变化的侧链官能化密度的PFBT点的稳定性和内部结构

在一些实施方式中,可通过两个方面来描述纳米颗粒的稳定性:一个方面是纳米颗粒对于聚集(即形成大颗粒)是否稳定;另一个方面是纳米颗粒对于解离(即通过分解产生小分子/颗粒)是否稳定。涉及聚集的一个方面是聚合物点的ζ电势。通过ζ电势测量来分析所得P点的表面电荷。测得PFBT-C2、PFBT-C14和PFBT-C50P点的ζ电势分别为-50.2、-54.4和-57.5毫伏(图10)。纳米颗粒稳定性还强烈依赖于纳米颗粒是否容易随时间而解离或分解。因为P点的形成主要由疏水性相互作用驱动,所以亲水性侧链会显著干扰聚合物链的不同部分之间或聚合物链之间的缔合强度,从而影响纳米颗粒稳定性和性能。例如,由具有重度官能化的亲水性侧链的聚合物制备纳米颗粒时,会形成松散的聚集体而非稳定且紧凑的颗粒,其聚集性质受到许多因素的影响,例如聚合物浓度、离子强度和温度。

本实施例研究了由PFBT-C2、PFBT-C14和PFBT-C50这三种聚合物制备的聚合物点的稳定性和内部结构。使用染料掺杂和浸出方法来研究聚合物点的不同内部结构。通过共沉淀方法制备三种染料掺杂聚合物点的样品,全部染料掺杂P点具有类似的直径为18纳米的粒度。选择四苯基卟啉(TPP)染料作为受体来研究PFBT-C2、PFBT-C14和PFBT-C50P点的内部结构。在聚合物基质(host)和TPP染料掺杂剂之间存在高效的福斯特共振能量传递(FRET),因此FRET效率是这三种聚合物点的内部结构的反映。在这种方法中,以5重量%的掺杂浓度将TPP染料掺杂到基质聚合物点中。通过离心过滤分离保留的聚合物点,而包含TPP染料的滤液从聚合物点浸出。在发生明显浸出时,应该在离心过滤之前和之后观察到聚合物点的分光光谱变化。在离心过滤之前(图12A)和之后(图12B)对TPP掺杂的P点溶液的吸收和荧光光谱进行测定。对于TPP掺杂的PFBT-C50点,在离心过滤之后观察到因为材料损失而发生吸光度明显降低。如图12C中进一步示出,来自PFBT-C50点的滤液包含显著量的TPP染料以及大部分PFBT-C50分子。定量分析显示,有约10%的PFBT和50%的TPP分子从PFBT-C50点浸出,但是从PFBT-C2点没有PFBT浸出而且只有6%的TPP浸出。这表明PFBT-C50点部分解离(或分解),因为高密度的亲水性侧链会使聚合物分子在水溶液中发生溶剂化。相比之下,在PFBT-C2和PFBT-C14点中,由于侧链亲水性官能团密度降低,PFBT解离和TPP浸出显著减小,表明与具有较高密度的亲水性官能团的PFBT-C14和PFBT-C50点相比,PFBT-C2点中通过疏水性相互作用进行的缔合较强。

荧光光谱进一步确认了三种染料掺杂的PFBT点中不同的内部结构。为了方便地比较荧光光谱的区别,根据TPP发射子的发射峰对所有荧光光谱进行归一化。图12D和12E显示,TPP受体相对于PFBT供体的荧光峰强度比随着羧酸基团密度的降低而增大,这表明FRET在PFBT-C2点中比在PFBT-C14和PFBT-C50点中更为高效。这种较高的FRET效率表示了供体和受体之间的短距离,因此表示了PFBT-C2点中比PFBT-C14和PFBT-C50点中更为紧凑的内部结构。图12D至12E显示,在PFBT-C14和PFBT-C50点中,PFBT供体相对于TPP受体的比例在离心过滤之后增大,表明有一些TPP受体从聚合物点浸出。图12F显示了滤液的荧光变化,进一步确认聚合物点中的TPP浸出和PFBT解离强烈依赖于亲水性官能团的侧链官能化密度。图12F中的发射显示,PFBT分子从PFBT-C50点显著浸出,而PFBT-C2点几乎没有发生浸出。从整体上说,染料浸出和P点解离随着聚合物侧链中亲水性官能团密度的增大而增加,原因在于具有低密度官能化的聚合物能形成稳定且紧凑的聚合物点,而具有高密度官能化的聚合物倾向于生成不稳定且松散的颗粒。因此,亲水性官能团的低密度官能化对于用于进一步生物应用的P点技术的开发很重要。

实施例9:具有变化的侧链官能化密度的PFBT点的非特异性细胞标记

使用聚合物点进行荧光标记时,其非特异性结合性质很重要。在本实施例中,进行流式细胞测量来评价PFBT-C2、PFBT-C14和PFBT-C50点的非特异性标记。

对于流式细胞测量实验,从美国菌种保藏中心(American Type Culture Collection)(ATCC,美国弗吉尼亚州马纳萨斯市(Manassas,VA USA))订购乳腺癌细胞系MCF-7。细胞在以下条件培养:37℃,5%CO2,在Eagles最低基础培养基中,补充有10%胎牛血清(FBS)、50U/毫升盘尼西林和50微克/毫升链霉素。在实验之前预培养细胞直到达到汇合(confluence)。通过用培养基简单冲洗然后在37℃用5毫升胰岛素-EDTA溶液(0.25w/v%胰岛素,0.53mM EDTA)温育5-15分钟,从培养瓶获取细胞。完全分开之后,对细胞进行冲洗、离心,并再悬浮于1X PBS缓冲液中。使用血球计通过显微镜确定细胞浓度。通过用4%(v/v)仲甲醛溶液冲洗然后用标记缓冲液(1X PBS,2mM EDTA,1%BSA)进行两个洗涤步骤,对细胞进行固定。对于用P点进行非特异性细胞标记,用对应的P点(直径21纳米,在来自英杰公司的BlockAidTM封闭液中为25nM)在旋转振荡器上在暗处在室温下对100微升标记缓冲液中的一百万个细胞进行温育30分钟,然后使用标记缓冲液进行两个洗涤步骤。然后将细胞悬浮在1毫升标记缓冲液中进行流式细胞测量。在BD FACS Canto流式细胞测量仪(美国加利福尼亚州圣乔斯市的BD生物科学公司(BD Biosciences,San Jose,CA,USA))上进行流式细胞测量。使用488纳米激光激发,通过配备有520纳米长通滤波器和530/30纳米带通滤波器的FITC通道收集发射光。使用FACSDival软件分析数据。

图13显示了流式细胞测量结果:13a显示了未用聚合物点进行温育的细胞,13b、13c和13d显示了分别用PFBT-C2、PFBT-C15和PFBT-C50点进行温育的细胞。用PFBT-C2点进行温育的细胞的荧光强度与未标记细胞的情况相当,表明PFBT-C2点几乎没有非特异性标记。PFBT-C14显示比PFBT-C2点略高的强度,而PFBT-C50P点表现出显著的非特异性标记,比PFBT-C2和PFBT-C14P点高至少5倍。这些结果强烈表明,与具有低密度官能团的P点相比,具有高密度官能团的P点在生物应用中产生强烈的非特异性标记。这也与其结构一致,因为具有松散结构的PFBT-C50点具有高的表面积,导致其与紧凑的PFBT-C2和PFBT-C14点相比能产生强烈的非特异性相互作用。

实施例10:使用PFBT-C2点的生物偶联和特异性细胞标记

要评价羧酸酯官能化的P点在生物成像中的应用情况,通过进行与链霉亲和素(SA)的生物偶联来对细胞表面受体进行特异性靶定。由于具有低密度官能团的聚合物点在稳定性、荧光明亮度、内部结构和非特异性方面表现出明显改善的性质,所以选择PFBT-C2点作为验证生物偶联和特异性细胞标记的例子。根据1HNMR数据和分子量(Mn=13千克/摩尔,Mw/Mn=1.4),PFBT-C2聚合物链的每个分子大致具有一个官能单体,其为羧酸酯官能化的9,9-二(3-丙酸)芴(具有两个-COOH基团)。如此低密度的官能团足以有效地进行生物偶联和特异性细胞标记。

普遍使用链霉亲和素的原因在于其与生物素的显著结合亲和性。由于PFBT-C2P点表现出最好的明亮度、最低的羧酸酯基团密度以及与细胞表面最小的非特异性吸附性,此处使用PFBT-C2P点来研究与生物分子的偶联。在包含0.1重量%聚乙二醇(PEG,MW3350)的HEPES缓冲液(20mM,pH=7.4)中将PFBT-C2P点与链霉亲和素混合。通过1-乙基-3-[3-二甲基氨基丙基]碳二亚胺氯化氢(EDC)催化在P点上的羧基和链霉亲和素的胺基团之间形成肽键。但是,由于P点的固有疏水性,生物分子倾向于非特异性地吸附在颗粒表面上。甚至当存在PEG时,与链霉亲和素物理混合的官能化的P点仍能结合到生物素化(biotinylated)的细胞表面,而不含链霉亲和素的P点不会表现出结合。观察到的另一个问题是,官能化的P点粘在尺寸排阻凝胶上,使随后的纯化变得麻烦。

要克服这些非特异性吸附,在与链霉亲和素进行2小时生物偶联之后,引入Triton X-100和牛血清蛋白(BSA)来减少吸附并封闭颗粒表面。这个步骤能成功地克服P点上的非特异性吸附。还通过尺寸排阻柱平稳地过滤该混合物,从而除去游离的链霉亲和素、添加剂和小分子。使用最后的与链霉亲和素偶联的P点来标记特异性的细胞标靶,Her2,抗乳腺癌药的标靶,用于癌症治疗的赫赛汀(Heceptin)。用原发性抗Her2抗体、生物素化的山羊抗鼠IgG继发性抗体和PFBT-C2-SA对SKBR3乳腺癌细胞进行连续温育。如图14A中所示,PFBT-C2-SA探针,细胞表面上的有效标记的Her2受体。在两个对照实验中,不含催化剂EDC或链霉亲和素,没有检测到细胞表面上有荧光(图14B),证实链霉亲和素与P点的生物偶联是共价的,通过生物素-链霉亲和素相互作用的细胞标记是特异性的。进行了另一个对照实验,其中使用原发性抗体和不含生物素抗鼠IgG的PFBT-C2-SA探针对细胞进行温育。结果还显示,在细胞表面上没有观察到荧光,表明了PFBT-C2-SA的高度特异性的结合。信号的缺失还表明在这种生物素-链霉亲和素标记体系中不存在非特异性结合。P点-SA保持了长期的胶体稳定性。由于P点和生物分子之间的稳定共价偶联,P点-SA的标记效率在不同浓度以及诸如离心、超声处理和凝胶过滤之类的纯化过程之后保持不变。

除了聚合物本身的官能化纳米颗粒的形成之外,PFBT-C2聚合物还能与疏水性聚合物掺混,从而对许多不同种类聚合物的P点进行官能化。大部分可商购的荧光疏水性聚合物没有官能团。本策略利用大量的现有半导体聚合物,其可产生庞大的官能化纳米颗粒标签的颜色库。此外,掺混P点中的能量传递导致在深红或近红外区域中的高度红移发射,这是体内应用中很吸引人的特性。我们使用PFBT-C2来官能化基于芴-二噻吩基苯并噻二唑的聚合物(PFTBT),其在深红区域中表现出明亮的固态荧光。通过PFBT-C2和PFTBT聚合物(重量比为3:2)的共缩合来制备发射明亮红光的P点。由于PFBT-C2的发射带与PFTBT的吸收良好重叠,所以在这些掺混的P点中能实现从PFBT-C2到PFTBT的有效能量传递。而且,在基于FRET的激发和发射之间的峰分离(170纳米)远大于PFBT-C2的情况(80纳米),有利于减小激发所产生的背景噪声。

由于羧酸酯基团的摩尔分数非常低,所以PFBT-C2具有很高的疏水性,能与PFTBT聚合物良好混合形成掺混的颗粒。在几个月之后,最终P点的有效能量传递和光学性质没有发生改变。由于羧酸酯基团在聚合物链中随机存在,所以它们也倾向于位于P点的颗粒表面上。由于PFTBT聚合物没有官能团,所以在PFBT-C2/PFTBT的掺混P点中,每个颗粒的羧酸酯基团比纯PFBT-C2点中少40%。进行了类似的生物偶联,结果显示如此低密度的官能团足以有效地进行生物偶联和特异性细胞标记。最终的红色掺杂P点-SA探针以及原发性抗Her2抗体和生物素化的山羊抗鼠IgG继发性抗体也能有效地标记SKBR3细胞表面上的Her2受体(图14C),而对照样品没有显示标记。

实施例11:用于生物正交标记的聚合物侧链的官能改性

本实施例显示,羧酸酯官能化的聚合物能提供一种有用的平台(scaffold),能用官能小分子对其进行灵活改性,从而用于各种应用中。本实施例能通过使羧酸酯侧链与炔丙基胺反应来获得可点击的炔官能化的PFBT聚合物。也可使用其他的含胺分子来获得不同的官能团。这些含炔探针特别适合于基于点击化学的生物正交标记,这是一种以非常低的背景进行细胞标记的有效途径。通过使用N,N′-二环己基碳二亚胺(DCC)作为催化剂,在THF中使PFBT-C14和炔丙基胺之间发生反应,从而制备炔官能化的PFBT聚合物(PFBT-C14A)。通过1HNMR谱中的微弱信号能确认存在低密度的-NH和-C≡CH。在这项工作中,通过对C8H17烷基链和-C≡CH基团的质子积分进行比较,可估算出一个聚合物链中的炔基团数量约为1.5。通过再沉淀方法使用PFBT-C14A作为聚合物前体来制备炔官能化的P点,所得P点能直接应用于细胞标靶的生物正交标记。用N-叠氮基乙酰基半乳糖胺(GalNAz)将MCF-7细胞温育3天,从而用叠氮基基团来富集O连接的醣蛋白。经过GalNAz处理的细胞经由点击反应带有炔P点标签,对于用炔P点主动标记的细胞,观察到明亮的细胞-表面标记(图15)。在对照实验中使用PFBT-C14(不含炔),没有检测到细胞表面的标记(图15B)。这证明通过在P点表面上的炔基团和细胞表面上的醣蛋白中的叠氮化物基团之间的铜(I)催化的环加成实现了标记。

虽然已经着重通过优选实施方式对本发明进行了描述,但对本领域技术人员显而易见的是,可以在不背离本发明范围或精神的情况下对本发明进行各种修改和变化。通过考虑本文揭示的发明的具体情况和实施情况,本发明其他的实施方式对于本领域技术人员而言是显而易见的。这些具体情况和实施情况仅仅是示例性的,本发明的真实范围和精神通过以下权利要求来限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1