具有优化几何结构以降低辐射效应引起的偏移的MEMS设备的制作方法

文档序号:21485543发布日期:2020-07-14 17:11阅读:226来源:国知局
具有优化几何结构以降低辐射效应引起的偏移的MEMS设备的制作方法

本公开涉及mems设备。特别地,本公开涉及mems(微机电系统)惯性传感器(诸如加速度计或陀螺仪)。



背景技术:

如已知的,上述类型的mems设备的使用在愈加宽广的技术领域中日益增多,这是由于它们能够供给准确的信号、它们的成本低、以及它们的通用性高。

特别地,上述类型的惯性传感器在消费者应用以及在汽车领域中逐渐被使用,例如用于室内导航和作为自主驾驶的辅助,即,上述类型的惯性传感器逐渐被用在如下应用中:其中重要的是具有高的精度,并且当环境和/或内部参数变化时,也提供尽可能稳定的输出。特别地,在这些应用中,期望设备的输出信号在温度方面稳定,这既关于在集成该设备的整个裸片之上以均匀的方式操作的外部效应,又关于在裸片内以不同的方式操作的内部效应。考虑到外部效应,许多mems设备具有用于补偿由于外部温度引起的信号变化的布置。关于内部效应,如下文所讨论的,该问题直到最近才被认识和处理。

通常,在上述类型的mems设备内的非均匀的温度分布具有各种理由。第一个理由与在复杂装置中的电子设备的高集成密度有关;其他理由可能与偶然情况有关。

例如,图1示出示例情况,其中印刷电路板1承载两个惯性类型的mems设备2、和处理设备(cpu)3或专用集成电路(asic),该两个惯性类型的mems设备2中的一个被布置在印刷电路板1的上方,一个被布置在印刷电路板1的下方。在一些应用中,印刷电路板1可以在印刷电路板1的仅一侧上或两侧上,以未示出的方式,承载仅一个mems设备或多个mems设备或其他集成的设备,它们被布置在彼此旁边,还在片平面前面或后面延伸的平面中。在这种情况下,在印刷电路板1的所考虑的mems设备一侧上或在相对表面上的短距离处的小距离和大量的能量耗散设备,可能会产生在水平或垂直方向上(参考片平面)可变的温度轮廓。

不均匀的温度分布的其他原因与操作考虑有关。实际上,在某些情况下,例如在打开设备时,快速的温度变化可能会导致裸片内的分布不均匀,如图2所示。此处,传感器5包含mems设备6,mems设备6由印刷电路板7承载,并且转而,mems设备6承载集成设备8(诸如asic(专用集成电路))。在这种情况下,至少在某些操作条件下,由于集成设备7在其操作期间发热,因此在垂直方向上存在非恒定的温度轮廓。在这种情况下,mems设备6可能会具有可变的温度轮廓,并且精确地说,从mems设备6的顶面上的高值减小到mems设备6的底面上的更低值。

已经证明,在z轴方向上可移动的传感器中的沿z轴(平面外方向)的温度梯度,会导致表示沿z轴移动的输出信号的偏移的静态偏差,然而表示沿其他轴(x轴和y轴)移动的输出信号不受此现象的影响。图3和图4是具有“跷跷板”结构的惯性传感器的示意图,其中表示出这种情况。

详细地,图3和图4示出了由可移动质量块11形成的mems加速度计10,可移动质量块11具有顶表面11a和底表面11b,并且悬挂在基板12之上。可移动质量块11大致由平台或板形成,该平台或板具有在静止时与笛卡尔参考系xyz的平面xy平行的平面内的主延伸。可移动质量块11可以例如具有(在俯视图中)大体地矩形形状,并且由柱13承载,柱13从基板12延伸、平行于笛卡尔参考系xyz的z轴。柱13经由铰链和弹簧(未示出)被耦合至可移动质量块11,从而允许可移动质量块11绕旋转轴o进行旋转,旋转轴o平行于y轴、延伸穿过可移动质量块11。

特别地,在这些设备中,旋转轴o是偏心的并且与可移动质量块11的形心(未示出)间隔开,并且旋转轴o将可移动质量块11划分为被布置在相对于旋转轴o的相对侧的第一半质量块14a和第二半质量块14b。第一半质量块14a和第二半质量块14b具有不同的尺寸,并且因此对应的形心(未示出)位于距旋转轴o的不同的距离处。在示出的示例中,第一半质量块14a具有比第二半质量块14b更小的尺寸。

第一电极16a和第二电极16b被布置在第一半质量块14a和第二半质量块14b的下方(面向可移动质量块11的底表面11b)。详细地,第一电极16a和第二电极16b分别面向第一半质量块14a和第二半质量块14b,并且分别与第一半质量块14a和第二半质量块14b形成第一电容性元件17a和第二电容性元件17b,第一电容性元件17a和第二电容性元件17b分别具有电容c1和c2。

图3示出了没有(内部或外部)力作用在可移动质量块11上的理想情况。在这种情况下,如上所述,可移动质量块11处于静止位置,并且其主延伸平面平行于平面xy。在这种情况下,第一半质量块14a和第二半质量块14b被布置在距相应的电极16a、16b的相同距离处,并且电容性元件17a、17b具有电容c10=c20。连接到电容性元件17a、17b的处理电路(未示出)能够将电容c1和c2之间的差值转换为电压输出信号。在没有加速度的情况下,该电路的输出为零。

在图4中,热源21被布置在可移动质量块11上方,面向顶表面11a,并且冷源22被布置在可移动质量块11的下方,面向底表面11b。

源21和源22在平行于z轴的方向上生成在可移动质量块11内的温度梯度。在这种情况下,即使没有施加外部力,但是可移动质量块11转动(此处在顺时针方向上,箭头25)。因此,电容性元件17a、17b具有不同的电容(也就是,c2>c1),并且输出信号变为非零。

可移动质量块11随内部温度梯度的旋转是由辐射效应引起的。这些效应于1873年由williamcrookes发现并被利用在crookes辐射计(也称为“光风车”)中,这些效应与气体分子以不同的方式作用在被以不同的温度加热的相对表面上所施加的作用有关。特别地,根据爱因斯坦辐射理论,辐射力取决于气体分子的平均自由程λ,所考虑的主体(mems设备10)被浸入该气体中;转而,平均自由程取决于气体密度和分子截面。而且,辐射力取决于温度梯度的值和方向,并且对于具有腔的板形结构,辐射力遵循定律:

其中:

f2p是作用在结构上的力;

p0是标准压力(1巴);

pc是腔中的压力;

λ是在压力pc处的气体分子的平均自由程;

λ0是在压力p0处的气体分子的平均自由程;

t0是标准温度(25℃);

l是腔的周长;以及

是整个结构的温度轮廓。

假设温度变化仅取决于空间,并且由于板形结构的小的厚度,得到:

其中,th是结构热面的温度,th是结构冷面的温度,以及tp是结构的厚度。

因此,方程(1)变为:

作用在mems设备的可移动质量块(具有平坦形状)上的辐射力的问题至今尚未得到很好的处理。在j.classen等人的论文“advancedsurfacemicromachiningprocess–afirststeptowards3dmems”,mems2017,lasvegas,nv,usa,january22-26,2017,ieee,978-1-5090-5078-9/17以及c.nagel等人的论文“radiometriceffectsinmemsaccelerometers”,ieee,978-1-5090-1012-7/17中描述了解决方案,这些论文描述了具有对称结构的加速度计(在图5至图7中被示出),该加速度计被配置为检测作用在z方向上(可移动平台的平面外)的力。

详细的,上述论文中描述的加速度计(图5至图7中指定为30)具有矩形形状的可移动质量块31,该可移动质量块31在中间位置铰接到柱33,特别是在图6的俯视图中可以看出,其中,旋转轴被指定为o1,并且平行于矩形的短边延伸,该旋转轴与短边等距。可移动质量块31由半导体材料的平台形成,该平台包括两个具有多个贯穿孔34的半质量块32a、32b。特别地,如图6中可以看出的,在与笛卡尔参考系xyz的平面xy平行的平面中,贯穿孔34具有相同的面积,并且贯穿孔34呈现相对于旋转轴o1对称的布置。

如可以注意到的,特别地,在图7的横截面中,每个半质量块32a、32b分别包括:邻接于旋转轴o1的第一部分35a、35b,以及被布置在距旋转轴o1更远处的第二部分36a、36b,第二部分36a、36b作为相应的第一部分35a、35b的延长部分。

第一部分35a、35b彼此相同,并且特别地在平行于平面xy的平面中具有相同的面积(如图6中可以被注意到的),并且沿z轴具有相同的厚度(如图7中可以被注意到的,图7示出了平行于笛卡尔参考系xyz的平面xy的横截面图)。第二部分36a、36b具有相同的面积,但沿z轴的厚度不同:第一半质量块32a的第二部分36a(在图5至图7的左侧)的厚度小于第二半质量块32b的第二部分36b(在图5至图7的右侧)的厚度。特别地,在所示的示例中,第一半质量块32a的第二部分36a具有与第一部分35a、35b相同的厚度,并且第二半质量块32b的第二部分36b具有更大的厚度。

基板44、顶部电极40a、40b(由可移动质量块31承载)和底部电极41a、42b(由基板44承载)以及盖43一起完成了加速度计30的结构。

图7示出了在可移动质量块31内存在温度梯度的情况下,随着热空气分子从下向上移动(如箭头46表示的,在顶部较热的区域中以深灰色,以及在底部较冷的区域中以浅灰色),作用在半质量块32a和32b上的力。

在这种情况下,假设两个半质量块32a、32b的部分35a、35b、36a(从而以及36b)的厚度大于气体分子的平均自由程λ,第一和第二辐射力f1、f2(图7)作用在第一半质量块32a和第二半质量块32b上,并且由于两个半质量块32a、32b的厚度不同,第一和第二辐射力彼此不同。由于两个半质量块32a、32b具有被布置在距旋转轴o1相同距离处的形心,并且从而具有力f1、f2的相同施加臂,因此可以证明:作用于半质量块32a、32b上的力矩之间的比率与相应的厚度的比率成反比,且从而不同于1。

因此,在所考虑的示例中(其中可移动质量块31的顶表面的温度高于底表面上的温度),不同的力矩作用在两个半质量块32a、32b上,并引起可移动质量块31在顺时针方向上旋转。

因此,同样采用这种已知的结构,辐射效应产生了不可忽视的扭转力矩,这导致了加速度计的输出信号中的偏移偏差。



技术实现要素:

本公开的一个或多个实施例涉及mems设备,其具有用于降低由辐射效应引起的偏移的优化几何结构。在一个实施例中,本公开涉及具有所谓的“跷跷板”结构的mems(微机电系统)惯性传感器(诸如加速度计或陀螺仪),其中悬挂的质量块绕水平旋转轴是可倾斜的,该水平旋转轴属于该悬挂的质量块的延伸平面、且延伸穿过悬挂的质量块,使得被布置在旋转轴相对侧的悬挂的质量块的两个部分横向于延伸平面、在相反方向上移动(所谓的平面外移动或z移动)。

附图说明

为了更好地理解本公开,现在仅通过非限制性示例的方式,参照附图,描述本公开的实施例,其中:

图1是包括在印刷电路板上的多个mems传感器和对应的电子单元的系统的示意图;

图2是具有传感器和电子单元的不同布置的另一mems传感器的示意图;

图3是处于静止条件且没有应力情况下的“跷跷板”型mems传感器的示意性侧视图;

图4是由于辐射效应而存在应力情况下的“跷跷板”型mems传感器的示意性侧视图;

图5是已知的加速度计的简化透视图;

图6是图5的加速度计的俯视图;

图7是沿图6的截面平面vii-vii截取的示意性纵向截面,其表示由辐射效应引起的作用力;

图8是根据本设备的一个实施例的可移动质量块布局的示意性俯视图;

图9是沿本设备的图8的截面平面ix-ix截取的示意性纵向截面;

图10是本设备的可能实施例的俯视图;

图11a和11b示出了在已知设备和图10的设备上进行的测量的结果;以及

图12示出了包含本设备的电子设备的总体框图。

具体实施方式

图8和图9是具有所谓的“跷跷板”结构的惯性类型的传感器50的示意图。

详细地,传感器50包括可移动质量块51,可移动质量块51通过柱53悬挂在基板52(图9)之上,该柱53从基板52平行于笛卡尔参考系xyz的z轴延伸。柱53通过铰链和弹簧(未示出)耦合至可移动质量块51,这使得可移动质量块51能够绕旋转轴a倾斜。

可移动质量块51具有比其厚度大得多的、例如大十倍的特征量(这里在x方向上的长度)。特别地,在静止时,可移动质量块51具有在平行于笛卡尔参考系xyz的平面xy的平面中延伸的主表面(顶表面51a和底表面51b)、和平行于z轴延伸的厚度tp。如图9中可以看出的,可移动质量块51的厚度tp在其整个区域之上是均匀的。在所示示例中,可移动质量块51具有(在俯视图中)大致矩形的形状,其具有平行于x轴和y轴的边,并且旋转轴a(其平行于y轴延伸)相对于可移动质量块51的矩形形状是偏心的。因此,旋转轴a将可移动质量块51划分为第一半质量块54和第二半质量块55,第一半质量块54和第二半质量块55相对于旋转轴a被布置在相对侧、并且具有不同的面积。从而,如图9所示,第一半质量块54和第二半质量块55各自具有自己的形心b1、b2,形心b1、b2被分别布置在距旋转轴a的第一距离b1处和第二距离b2处,第一距离和第二距离彼此不同。特别地,在图8和图9所示的设备50中,b1<b2。

第一电极56和第二电极57被布置在底表面51b的前面,分别面向第一半质量块54和第二半质量块55,并且与第一半质量块54和第二半质量块55分别形成第一电容性元件58和第二电容性元件59。

半质量块54、55以不均匀的方式被穿孔;特别地,第一半质量块54具有第一孔60,并且第二半质量块55具有第二孔61。

第一孔60和第二孔61设置有多个,并且具有尺寸以便(连同对应的半质量块54、55一起)全局地限定第一周长p1和第二周长p2,第一周长p1和第二周长p2彼此不同,其中p1>p2,并且以便满足以下方程:

p1×b1=p2×b2(3)

特别地,在上面的方程(3)中,第一周长p1由第一孔60的所有周长和半质量块54的外周长的总和给出,同样地,第二周长p2由第二孔61的所有周长和半质量块55的外周长的总和给出。

在图8中,这通过形成第一孔60来表示,第一孔60的数目不同于第二孔61、并且具有矩形形状,该矩形形状具有长度w1的短边和长度l1的长边,而第二孔61具有正方形形状,该正方形形状具有边l2>l1。然而,孔61、62的数目、形状、和布置的组合是无穷的,并且要满足的唯一条件是方程(3),以最小化由于辐射效应引起的漂移。

例如,第二孔61也可以具有矩形形状,该矩形形状具有长度w2的短边和长度l2的长边。因此,通常,并且假设使第一孔60和第二孔61全都具有矩形形状,方程(3)变为:

n1(w1l1)b1=n2(w2l2)b2(3.1)

其中n1是第一孔60的数目,以及n2是第二孔61的数目。

在该情况下,方程(2)变为(根据它们是指第一质量块54还是第二质量块55,量由1或2来索引;或者如果对于两个质量块而言量是相同的,则量没有索引):

而且,作用在第一质量块54和第二质量块55上的力矩m1和m2分别由下式给出:

m1=f1b1(4.1)

m2=f2b2(4.2)

组合方程(2.1)、(2.2)、(4.1)和(4.2),并考虑方程(3),获得:

因此,相等值的力矩m1、m2分别作用在第一质量块54和第二质量块55上,并且相互补偿。结果就是,利用所指示的几何条件,辐射力作用在可移动质量块51上,但不引起可移动质量块51的旋转,并且因而不会产生偏移信号。

在图10中示出了加速度计的一个实施例,其满足以上的条件(3)或(3.1),并且因而具有经补偿的辐射效应,在图10中,为简单起见,与图8和图9的传感器50的那些部分等同的部分由增加100的标号来指定,因此不再被详细地描述。

特别地,图10的加速度计150包括悬挂的质量块151(其中仅示出了结构的一半;悬挂的质量块151的整个结构可以通过将图10中示出的结构绕水平轴b翻转而获得)。

悬挂的质量块151具有第一半质量块154和第二半质量块155,第一半质量块154和第二半质量块155由多个柱153(在所示实施例中为四个柱153,其中两个可见)承载。在图10中,弹簧170将柱153连接到两个半质量块154、155(显然,未示出的类似弹簧被提供在可移动半质量块151中,未示出)。在所示的实施例中,弹簧170具有折线结构,其具有一对第一部分170a(其从相应的柱153延伸并围绕相应的柱153延伸)、单个中心部分170b(其是第一部分的延长部分并且沿旋转轴a延伸)、以及两个发散部分170c(其从中心部分170b朝向相应的半质量块154、155、与旋转轴a垂直地延伸)。然而,弹簧170的形状可以改变,并且不是本专利申请的部分。

根据以上内容,每个半质量块154、155具有关于旋转轴a不对称的多个开口,开口的数目和尺寸满足以上提及的方程(3)或方程(3.1)的关系。

在所示的实施例中,具有更小面积的半质量块154具有阻尼开口175,阻尼开口175容纳多个阻尼结构176(图10中示出其中两个),这不是本专利申请的部分。

而且,在所示的实施例中,第一半质量块154具有大致平行于旋转轴a的限界侧177,该限界侧177具有容纳矩形开口179的突出部178。

其他开口180可以相对于第二半质量块155不对称地在第一半质量块154中延伸。

在加速度计150中,对所有的贯穿开口(阻尼开口175、矩形开口179、和其他开口180)进行了研究,以使它们的周长、连同第一孔160的周长、第一半质量块154的周长和弹簧170的半槽周长的总和,相对于第二孔161的周长、第二半质量块155的周长以及弹簧170的另一半槽的周长的总和,满足方程(3)给出的关系。

从而,通过在设计阶段简单地设置尺寸,可以在没有其他应力的情况下,大幅度地降低或者甚至完全消除由于辐射效应产生的输出信号的偏移。

由本申请人进行的研究已经证实了理论结果,如图11a和图11b所示,图11a和图11b表示对具有类似结构的设备执行的迟滞测量,设备最初在一侧从-80℃向上被重新加热至约60℃,然后从约60℃向下冷却至-80℃。特别地,图11a示出了通过传统加速度计获得的加速度(为mg,其中g是重力加速度),该传统加速度计具有仅与通常的几何和功能考虑相关的贯穿开口,且不满足上述的关系(3),并且图11b示出了通过图10的设备获得的结果,其与传统的加速度计的不同之处仅在于贯穿开口的几何结构。可以注意到,在传统设备中(图11a),加热和冷却曲线示出高的迟滞,而在满足条件(3)的设备中(图11b),加热和冷却曲线几乎是重叠的,几乎不存在迟滞。

通过仅改变第一半质量块54(即,图8的较小尺寸的半质量块)中的开口、孔和贯穿槽的几何结构和周长,可以获得以上结果;然而,为了满足关系(3),也可以仅关于第二半质量块55(较大尺寸的)对贯穿开口进行修改。有利的是,在不影响可移动质量块的机电参数、尺寸和机械强度的情况下,并且因而在不影响惯性传感器的其他性能参数的情况下,同时改善关于辐射力的行为的情况下,可以获得这一条件。

此外,可以在不修改惯性传感器的制造工艺的情况下,并且因而以不变的制造成本,获得所追求的尺寸设置。

如图12所示,所描述的惯性传感器特别适于集成在电子设备200中,该电子设备可以被用于旨在处理、存储、发射和接收信号和信息的多个电子系统中。例如,电子设备200可以是例如惯性导航系统、汽车系统或便携式系统,便携式系统诸如为:pda(个人数字助理)、便携式计算机、移动电话、可穿戴设备(诸如智能手表)、数字音频播放器、照相机或摄像机。

电子设备200可以例如包括传感器50(此处形成加速度计)、电子电路205(通常是asic)和电子控制单元220(例如微处理器),该电子电路205可操作地耦合到传感器50,形成用于传感器50的读取接口,向传感器50供给偏置信号(以本身已知的方式,此处未详细地示出),检测可移动质量块51(图8)的位移程度,并由此确定作用在可移动质量块51上的沿z轴的加速度;电子控制单元220被连接到电子电路205,并被配置为例如基于检测的加速度来监管电子设备200的一般操作。此外,电子装置200可以包括:被连接到电子控制单元220的输入/输出接口240(例如具有键盘和显示器)、用于在音频输出(未示出)上生成声音的扬声器250、以及内部存储器260。传感器50和电子电路205可以被封装在封装结构中,并形成惯性设备230。

最后,很明显,可以对本文中描述和示出的mems设备进行修改和变化,而不会因此脱离本公开的范围。特别地,如已经提到的,贯穿开口的布置和数目可以相对于已示出的布置和数目发生很大的变化,并且可移动质量块和设想的结构的形状和布置也可以是与相应功能相关的任何形状和布置,条件是开口满足以上关系(3)。

此外,可以将上述各种实施例组合以提供进一步的实施例。可以根据以上详细的描述对实施例进行这些和其他改变。通常,在所附权利要求书中,所使用的术语不应被解释为将权利要求限制为说明书和权利要求书中公开的特定实施例,而应被解释为包括所有可能的实施例以及这些权利要求所享有的等同物的全部范围。相应地,权利要求不受本公开的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1