电吸移管和电泳偏离补偿装置的制作方法

文档序号:5458108阅读:183来源:国知局
专利名称:电吸移管和电泳偏离补偿装置的制作方法
电吸移管和电泳偏离补偿装置
本申请是申请号为97197575.2、国际申请日为1997年6月25日、发明名称 为"电吸移管和电泳偏离补偿装置"的发明专利申请的分案申请。
相关申请的交叉文献 本申请是申请日为1996年12月6日的美国专利申请第08/760,446号的部分 续展申请,而美国专利申请第08/760,446号是申请日为1996年6月28日的美国 专利申请第08/671,986号的部分续展申请,为了所有的目的,这些申请的全部内 容通过引用包括在此。
背景技术
人们对制造和运用微流体(microfluidic)系统来获得化学和生化信息的兴趣曰 益增大。目前,用通常与半导体电子工业相关的技术(诸如光刻法、湿式化学蚀刻 等)来制造这些微流体系统。术语"微流体"是指这样的系统或装置,它们所具有 的管道和小室一般在微米或亚微米标度上构造,例如,至少有一个截面尺寸在大 约O.l)am到大约500nm的范围内。早期,Manz等人在1990年Trends in Anal. Chem.節)第144-149页以及1993年Avd. in Ch讓atog 33第1-66页中,讨论了 用平面芯片技术制造微流体系统的方法,叙述了在硅和玻璃基片中构造这种流体 装置,尤其是微毛细管装置。
微流体系统有多种应用。例如,国际专利申请WO 96/04547 (公布于1996年 2月15日)将微流体系统用于毛细管电泳、液体层析、注流分析(flow injection analysis)以及化学反应和合成等。1996年6月28日提交的美国专利申请第 08/671,987号公开了微流体系统在快速分析大量化合物方面的广泛应用,分析其 对各种化学系统,特别是生化系统的影响,该专利申请的内容通过引用包括在此。 术语"生化系统" 一般是指一种化学相互作用,其中涉及一般在活的生物体里发 现的分子。这类相互作用包括在活体系统里发生的分解代谢和合成代谢反应的全 部范围,包括酶反应、结合反应、信号反应和其它反应。特别感兴趣的生化系统 例如包括受体-配体相互作用、酶-酶解物相互作用、细胞信号途径、供生物药效
筛选所涉及的模型屏障系统(如细胞或膜部分)的传送反应和其它各种一般系统。
已描述了在这些微流体系统或装置中传输和导向流体(例如,样品、分析物、 缓冲剂和试剂)的多种方法。一种方法是用微构造装置中的微型机械泵和阀使流体 在该装置中流动。参见,已公开的英国专利申请第2 248 891号(10/18/90),已公 开的欧洲专利申请第568卯2号(5/2/92),美国专利第5,271,724号(8/21/91)和 5,277,556号(7/3/91)。还可以参见,Miyazaki等人获得的美国专利第5,171,132号 (12/21/90)。另一种方法是依靠声学流的作用,用声能使流体样品在装置中流动。 参见,由Northrup和White等人发明的已公开PCT申请第94/05414号。 一种直 接的方法是施加外压,使流体在装置中流动。参见,由Wilding等人获得的美国 专利第5,304,487号。
再一种方法是运用电场使流体物料流过微流体系统的管道。例如,参见由 Kovacs发明的已公开欧洲专利申请第376 611号(12/30/88), Harrision等人在 1992年Anal. Chem. 64第1926-1932页上发表的文章,Manz等人在1992年 J.Chr謹tog. 593第253-258页上发表的文章,以及由Soane获得的美国专利第 5,126,022号。电动力具有直接控制、快速响应以及简单的优点。然而,仍存在一 些缺点。
为了获得最大的效率,希望将试验物料尽可能靠在一起传输。但是,传输物 料时不能与其它传输物料混杂。另外,物料在微流体系统的某一位置处于某一状
态,在其移动到微流体系统的另一位置后,物料应保持相同的状态。需要时,这 些条件允许控制对化合物物料的测试、分析和反应。
在用电动力移动物料的微流体系统中,试验物料区中带电分子和离子,以及 用于分隔这些试验物料区的区域中的带电分子和离子受到不同的电场作用,从而 影响流体的流动。
但是,当施加这些电场时,试验物料内带不同电荷的物质将呈现不同的电泳 移动,即带正电荷的的移动速度与带负电荷的物质品种不同。过去,在受电场作 用的样品内分离不同物质品种不被看成是一问题,而且事实上还将其看成是毛细 管电泳现象的所需结果。但是,当希望进行简单的流体传输时,这些不同的移动 会在试验物料中引起不希望有的改变或"电泳偏离"。
如没有避免混杂的考虑和措施,微流体系统只好大距离地分离试验物料,或 者更糟的是, 一次将一种物料移过系统。在任何一种情况下,这都会大大地降低 微流体系统的效率。另外,如果传输中不能保持被传输物料的状态,那么就会失 去要求不改变物料而达到某一位置的许多应用。
本发明解决或基本上解决了这些电动传输问题。利用本发明,微流体系统能 够有效地移动物料,并且在被传输物料中没有不希望有的变化。本发明提供了一 种高通过量的微流体系统,该系统可以定向、快速和直接控制材料移过微流体系 统的管道,在诸如化学、生化、生物技术、分子生物学领域以及许多其它领域中 具有广泛的应用。

发明内容
本发明提供了一种微流体系统,该系统通过电渗作用,使试验物料在微流体 系统中以流体团(也称为"试验物料区")的形式沿管道从第一点移动到第二点。 高离子浓度的第一分隔区与每个试验物料区的至少一侧接触,而低离子浓度的第 二分隔区与包含试验物料的试验物料区以及第一或高离子浓度分隔区布置在一 起,致使在第一和第二点之间总是至少有一低离子浓度区,从而确保两点间的大 部分压降和所得的电场施加在低离子浓度区的两端。
本发明还提供了一种电吸移管,该电吸移管与利用电渗力移动试验物料的微 流体系统兼容。电吸移管具有一带管道的毛细管。电极沿毛细管的外侧长度固定, 并且终止于位于毛细管末端的电极环。通过控制该电极以及目标储库中电极上的 电压,在电动作用下,将物料导入管道,这里当把毛细管放入物料源中时,所述 目标储库与管道流体连接。为了便于导入微流体系统,可以在管道中形成一个由 试验物料区、高离子浓度缓冲分隔区以及低离子浓度缓冲分隔区组成的队列。
当电动作用使试验物料沿微流体系统的管道传输时,本发明还能对电泳偏离 进行补偿。在一实施例中,微流体系统中两点间的管道具有两个部分,这两个部 分的侧壁带有相反的面电荷。两部分之间放有一电极。将两点上的电压设置成基 本上相等,而在这两部分之间的中间电极上设置不同的电压,由此,两部分中的 电泳力沿相反的方法,而电渗力沿同一方向。当试验物料从一点传输到另一点时, 电泳力得到补偿,同时电渗力将流体物料移过管道。
在另一实施例中,在微流体系统多个管道的交会处形成一小室。小室的侧壁 与相交管道的侧壁相连。当试验物料区在交会处从一根管道转向另一根管道时, 小室的侧壁使试验物料区漏入第二管道中。第二管道的宽度使得扩散作用可以混 合当试验物料区沿第一管道传输时区域中受电泳偏离的任何试验物料。
在又一实施例中,本发明提供了一种微流体系统,以及使用该系统的方法,
所述方法可以控制流体流在至少具有两根相交管道的微流体装置内传输。系统包 括一基片,基片中至少安置了两根相交的管道。在该情况下, 一根管道比另一根 管道深。系统还包括一电渗流定向系统。当流体流至少包含两个离子浓度不同的 流体区时,该系统特别有用。
本发明还提供了一种使用本发明电吸移管的采样系统。采样系统包括样品基 片,基片上固定有多个不同的样品。还包括平移系统,用于相对所述样品基片移 动电吸移管。
如上所述的发明可以有多种不同的用途,用途本身也有具有创造性。举例如

在带管道之基片的一种用途中,至少把第一试验物料沿管道从至少第一位置 传输到第二位置,并且至少使用一个低离子浓度的区域,所述低离子浓度区因所 加电压沿管道传输。
在上述发明的一种用途中, 一个区域的离子浓度基本上低于试验物料的离子 浓度。
在上述发明的一种用途中,传输由高离子浓度分隔区分开多种试验物料。
把一种带管道的基片用于补偿电泳偏离的方法,其中沿所述管道至少传输第 一试验物料,管道被分成第一和第二部分,在该方法中,管道的侧壁带相反的电 荷,致使第一试验物料因在第一部分中传输而受到的电泳偏离基本上可以用因在 第二部分中传输而受到的电泳偏离来补偿。
在上述发明的一种用途中,第一电极位于第一部分的远端,第二电极位于各 部分之间的交会处,而第三电极位于第二部分的远端。
在上述发明的一种用途中,基片是一微流体系统。
在上述发明的一种用途中,基片是一电吸移管。
在上述发明的一种用途中,电吸移管具有一主管道,用于传输试验物料;以 及至少另一个管道,它与主管道流体连接,从主管道获得沿主管道传输的另一种 物料。
在上述发明的一种用途中,另一种物料被拖入主管道,在多种分离的试验物 料的每种物料之间成为一缓冲剂区。
一种把微流体系统用于优化流动条件的方法,其中微流体系统至少具有相交 的第一和第二流体管道,管道具有不同的深度。
在上述发明的一种用途中, 一根管道的深度是另一根管道的2至10倍。
一种把微流体系统用于电泳补偿的方法,微流体系统具有第一管道和与第一 管道相交的第二管道,管道之间交会处的形状使得沿第一管道朝第二管道传输的 流体在交会处混合,从而削除流体中的电泳偏离。
附图概述


图1是微流体系统一实施例的示意图2A示出了依照本发明一实施例,在图1微流体系统的管道中传输的一种 由流体区组成的结构;图2B是一比例图,示出了依照本发明在微流体系统的管 道中传输的另一种由不同流体区组成的结构;
图3A示出了另一种具有高离子浓度分隔区的结构,该结构是在微流体系统 的管道内传输试验物料区之前,图3B示出了一种具有高离子浓度分隔区的结构, 该结构是在微流体系统的管道中传输试验物料区之后;
图4A示出了依照本发明一电吸移管实施例的示意图;图4B是依照本发明 另一电吸移管的示意图5是一示意图,示出了本发明微流体系统中的管道,该管道的多个部分具 有带相反电荷的侧壁;
图6A-6D示出了本发明微流体系统中,漏斗侧壁在管道交会处的混合作用。
图7A示出了将样品流体三次注入充满低盐缓冲剂中的结果,其中样品流体 由两种带相反电荷的化学物质组成。图7B示出了三次样品注射的结果,其中样 品处于高盐缓冲剂中,将高盐缓冲流体注射在样品区的任何一端,起保护带的作 用,并且样品/保护带在充满低盐缓冲剂的毛细管中运动。图7C示出了类似于图 7B的三次样品注射的结果,不同之处在于降低了样品/高盐分隔区(保护带)之间的 低盐分隔区的大小,允许部分分辨样品内的物质,但不允许样品单元影响后续或 先前的样品。
图8是一示意图,示出了利用固定(例如,干燥)在基片或基体上的样品与采 样系统一起使用的电吸移管。
图9A是荧光性对时间的曲线图,示出了依照本发明被周期性注入并移过电 吸移管的样品流体的移动情况,其中样品流体由测试化学物质组成。图9B是另 一曲线图,示出了不同参数下样品流体与化学物质一起移过与电吸移管相连的微 流体系统的情况。图9C是一曲线图,示出了样品流体和化学物质移过一电吸移 管的情况,其中电吸移管由经气蚀的基片制成。图IO是一曲线图,示出了再次示出了依照本发明,样品流体中的某一化学 物质的移动情况,其中样品流体被周期性地注入电吸移管。在该实验中,物质是 小分子化合物。
本发明的详细描述
I.微流体系统的一般结构
图1例示了依照本发明的微流体系统100。如图所示,总体设备100被组装 在平面基片102上。合适的基片材料根据它们与所述设备进行特定操作的条件的 匹配性来选择。这类条件包括pH、温度、离子浓度和施加电场的极端值。另外, 基片材料也可根据它们对由设备进行分析或合成的关键组分的惰性来选择。
有用的基片材料包括,例如玻璃、石英和硅,以及聚合基片(如塑料)。若是 导体或半导体基片,通常需要在基片上包含一绝缘层。如下所述,当设备中包含 电气元件(如电气流体导向系统和传感器之类),或者用电渗力使材料在系统周围 移动时,这点尤为重要。对于聚合基片,基片材料可以是刚性、半刚性或非刚性, 不透明、半透明或全透明,这根据它们的用处而定。例如,包括光学或肉眼检测 元件的设备通常用(至少部分用)透明的材料制成,以允许(或至少有利于)检测。另 一种方法是,对于这类检测元件,在设备中包含由玻璃或石英制成的透明窗。另 外,聚合材料可为直链或支链(linear or branched backbone),并且可以交联或非交 联。特别优选的聚合物材料例子包括,如聚二甲基硅氧垸(PDMS)、聚氨酯、聚氯 乙烯(PVC)、聚苯乙烯、聚砜、聚碳酸酯等。
图1所示的装置包括一系列管道110、 112、 114和116,它们被制于基片的 表面内。如在定义"微流体"时所讨论的,这些管道一般具有非常小的截面尺寸, 最好在大约0.1微米至100微米的范围内。在下述的特殊应用中,尽管尺寸可能 有偏差,但深度大约为IO微米且宽度大约为60微米的管道可以有效地工作。
可以用本领域公知的任何数目的微制造技术将这些管道和其它微尺度元件 制备到基片102的表面内。例如,运用半导体制造工业中公知的方法,可把石版 印刷技术应用于制造玻璃、石英或硅基片。光刻掩模、等离子蚀刻或湿式蚀刻, 以及其它半导体处理技术限定了基片表面中和表面上的微尺度元件。另一方面, 可以使用诸如激光钻孔、微研磨等微机械方法。类似地,对于聚合基片,也可使 用公知的制造技术。这些技术包括注模技术或冲压模塑方法,以及聚合物微铸造 技术,其中前者通过滚动冲压生产出大张的微尺度基片,由此生产大量基片,而
后者将基片聚合在微制模具内。
除了基片102之外,微流体系统还包括包括一附加的平面元件(未示出),平
面元件覆盖在开有管道的基片102上,密闭和液封各种管道,从而形成导管。可
以用各种手段将平面覆盖元件与基片相连,所述手段例如包括热粘结、使用粘合 剂,或者在玻璃基片或半刚性和非刚性的聚合基片的情况下,在两个部件之间进 行自然粘合。平面覆盖元件可另外带有入口和/或储库,用以引入特定筛选所需的 各种液体组分。
图l所示的装置还包括储库104、 106和108,它们分别被放置成与管道114、 116和110和114的末端流体相连。如图所示,采样管道112用来将多种不同的 试验物料(subjectmaterial)引入装置。这样,管道112与大量分离的试验物料源流 体连接,所述试验物料被个别引入采样管道112,然后进入另一管道110。如图 所示,利用电泳,可用管道110来分析试验物料。应该注意,术语"试验物料" 仅仅是指诸如化学化合物或生物化合物的有关材料。试验化合物可以包括各种不 同的化合物,包括化学化合物、化学化合物的混合物,如多糖类、小的有机或无 机分子,生物大分子,如肽、蛋白质、核酸,或从生物物料如细菌、植物、真菌, 或者动物细胞或组织中制备的提取物,天然形成或合成的组合物。
系统100通过电动力使诸材料通过管道110、 112、 114和116,其中电动力
由一电压控制器提供,该电压控制器能够同时将可选择的电压电平施加到每个储 库(包括,地)上。利用多个分压器和多个继电器可以获得可选择的电压电平,实 现所述电压控制器的功能。另一种方法是,使用多个独立的电压源。电压控制器 通过电极与每个储库电气连接,所述电极被定位或制作在多个储库的每一个内。 例如,参见已公开的国际专利申请WO 96/04547(Ramsey),为了所有的目的,该
申请的全部内容通过引用包括在此。
II.电动传输 A. 一般情况
作用在系统IOO之管道内的流体物料上的电动力可以分为电渗力和电泳力。 本发明系统中使用的流体控制系统使用电渗力在位于基片102之表面上的各种管 道和反应室内移动、引导和混合流体。概括地说,当把合适的流体放入表面上带 有官能团的管道或者其它流体导管时,这些基团会离子化。例如,当管道表面包 含羟基官能团时,质子可以脱离管道表面并进入流体。在这种情况下,表面带有
负的净电荷,而流体带有过量的质子或正电荷,尤其在管道表面与流体之间的界 面附近。
通过沿管道长度施加电场,阳离子向负电极流动。带正电的物质在流体中移 动拖着溶剂与其一同移动。流体的稳态移动速度一般由下式给出
其中,V是溶剂速度,S是流体的介电常数,g是表面的g电势,E是电场强度,而 Tl是溶剂的粘度。因此,从该式可知,溶剂速度直接与g电位和所加电场成正比。 除了电渗力之外,还存在电泳力,当带电分子通过系统100的管道时,电泳
力会影响带电分子。试验物料在系统ioo中从一点传输到另一点时,通常希望试
验物料的组合物在传输中不受影响,即试验物料在传输中不被电泳区分。
依照本发明,试验物料作为流体团(下文称"试验物料区")在管道中来回移 动,流体团具有较高的离子浓度,可使作用在这些特殊区域内的试验物料上的电 泳力最小。为了尽量减小电泳力在试验物料区内的影响,可在流体团的每一侧安 排流体分隔区("第一分隔区")。这些第一分隔区具有较高的离子浓度,可以使 这些区域内的电场最小,如以下说明的,这使得试验物料基本上不受传输(在流体
系统中从一个地点传输到另一地点)的影响。试验物料通过系统ioo的代表性管道
110、 112、 114和116在具有某种离子浓度的区域以及离子浓度不同于那些运载 试验物料之区域的其它区域中传输。
图2A示出了一具体的结构,该图表示,试验物料区200沿微流体系统100 的一条管道从点A传输到点B。在试验物料区200的每一侧,具有由高离子浓度 流体构成的第一分隔区201。另外,由低离子浓度流体构成的第二分隔区202周 期性地分离由试验物料区200和第一分隔区201形成的结构。由于第二分隔区202 的离子浓度较低,所以点A与点B之间的大部分压降都加在这些第二分隔区202 上。将第二或低浓度分隔区202间置在试验物料区200和第一分隔区202组成的 结构之间,致使当以电渗方式通过管道抽运试验物料区200和第一分隔区201时, 在点A和点B之间至少存在一个第二或低离子浓度分隔区202。这保证了大部分 压降都加在第二分隔区202上,而不是加在试验物料区200和第一分隔区201上。 换句话说,点A和点B之间的电场集中在第二分隔区202,而试验物料区200和
第一分隔区201受较小电场(和较小电泳力)的作用。因此,根据试验物料区200、 第一分隔区201和第二或低离子浓度分隔区201内的相对离子浓度,可以制备由 这些试验物料区200以及第一和第二分隔区201和202组成的结构。
例如,图2B示出了一种结构,该结构将第二或低离子浓度分隔区202规则 地间隔在第一分隔区202/试验物料区200/第一分隔区201的每一组合之间。这种 结构保证了在点A和点B之间至少存在了个第二或低离子浓度分隔区202。另外, 附图画出了试验物料区200、第一或高浓度分隔区201以及第二或低浓度分隔区 202的一个可能组合的相对长度。在图2B的示例中,试验物料区200在高离子浓 度150mM的NaCl中含有试验物料。试验物料区200在管道中的长度为lmm。 两个第一分隔区201具有离子浓度为150mM的NaCl。每个第一分隔区201的长 度均为lmm。第二分隔区202为2mm长,并且具有离子浓度为5mM的硼酸盐缓 冲剂。设计这种特殊的配置可以在试验物料区200和缓冲区201中保持快速电泳 的化合物,同时化合物传过微流体系统的管道。例如,利用这些方法,可用72 秒以上的时间使一个含有例如苯甲酸的试验物料区流过微流体系统,而不受到过 度的电泳偏离。
一般地说,可以确定流体流过微流体系统之管道的速度vE。F,并且通过测量 可以确定一个试验物料分子将通过管道的总长度lT。因此,试验物料分子通过总
长度的渡越时间tTr为
tTr=lT/VE0F
为了在位于试验物料区200后的第一分隔区201内包含试验物料分子x,第一分
隔区201的长度lq应该大于试验物料分子X在第一分隔区201中的电泳速度Vqx 乘以渡越时间
lq>(VqX)(tTr)
由于电泳速度正比于第一分隔区201中的电场,所以本发明可以控制Vqx,以便 通过微流体系统的管道,传输试验物料。
在图2A和2B的结构中,第一或高离子浓度分隔区201帮助把试验物料的 位置保持在其试验物料区200的附近。无论试验物料的电荷极性如何,位于试验 物料区200任何一侧的第一分隔区201保证脱离试验物料区200的任何试验物料
仅受到一较小电场的作用,因为第一分隔区201具有相对较高的离子浓度。如果 已知试验物料的极性,那么也就知道了电泳力对试验物料分子的作用方向。
图3A例示的情况是,所有试验物料区200中试验物料的电荷使得电泳力对 试验物料分子的作用方向与电渗流的方向相同。因此,第一分隔区201沿流动方 向推进试验物料区200。试验物料区200后面不存在第一分隔区201,因为电泳 力在该方向上保持试验物料不脱离试验物料区200。通过取消一半第一分隔区 201,每条管道长度可以运送更多的包含其试验物料的试验物料区200。这提高了 微流体系统的传输效率。相对于试验物料区200和第一或高离子浓度分隔区201, 如此安排第二或低离子浓度分隔区202,使得对第二分隔区202加较大的电场, 而试验物料区200和第一分隔区201中的电场(和电泳力)保持较小。
在图3B中,第一分隔区201沿电渗流的方向跟在试验物料区200的后面。 在该例中,所有试验物料区200中试验物料的电荷使得作用在试验物料分子上的 电泳力与电渗流的方向相反。因此,试验物料可以脱离其试验物料区的边界,在 效果上,落在其试验物料区200的后面。紧跟在试验物料区200后面的第一分隔 区201保持试验物料不会离其试验物料区200太远。同样,相对于试验物料区200 和第一或高离子浓度分隔区201,如此安排第二或低离子浓度分隔区202,使得 较大的电场加在第二分隔区202上,而试验物料区200和第一分隔区201中的电 场保持较小。
选择各种高低离子浓度的溶液,为第一和第二分隔区201和202制备具有所 需电导率的溶液。赋予溶液导电率的特定离子可以从无机盐(诸如NaCl、 KI、 CaCl2、 FeF3、 (!^4)2804等)、有机盐(诸如苯甲酸吡啶翁盐,月桂酸苯甲烃铵), 或者混合的无机盐/有机盐(诸如苯甲酸钠,脱氧硫酸钠,盐酸苄基胺)中获得。这 些离子的选择还要与微流体系统中进行的化学反应、分离等兼容。除了水性溶剂 之外,水性/有机溶剂的混合物(诸如DMSO浓度较低的水)可用来帮助增溶试验物 料分子。例如,有机溶剂的混合物(诸如CHCl3:MeOH)还可用于加速分析磷酯酶 活性。
一般,当使用水性溶剂时,用无机离子调节溶液的电导率。当使用低极性溶 剂时, 一般使用有机离子或混合的无机/有机离子。当两种不混合的溶剂同时存在 (例如,水与癸烷之类的烃),致使电流必须从一种溶剂流入另一种溶剂时,可以 通过无极溶剂用离子载体(例如,表霉素,无活菌素,各种冠醚等)及其适当的离 子传导电流。
B.对基于压力的流水进行电动控制
在本文所述的电动流系统中,由于管道中存在差动流体(例如,在特定系统 中,具有不同的电动迁移率),所以在系统中,沿管道长度存在多个不同的压力。 例如,这些电动流系统一般在一给定的管道中使用一系列由低离子浓度流体和高 离子浓度流体形成的区域(例如第一和第二分隔区,和试验物料的试验物料区), 以影响电渗流,同时防止在容纳试验物料区的试验物料内出现电泳偏离。当管道 内的低离子浓度区趋向于在其长度上施加在大部分电压时,它们将把流体推过管 道。相反,管道内的高离子浓度区在其长度上提供相当小的压降,从而由于粘性 拖带减慢流体流动。
作为这些推拖效应的结果, 一般会沿充满流体的管道的长度产生压力变化。 最大压力一般在低离子浓度区的前沿(例如,第二分隔区),而最小压力一般在这 些低离子浓度流体区的后沿。
尽管在直道系统,这些压差几乎不相关,但它们的作用会减弱对流体方向的 控制以及对使用相交管道结构的微流体装置的操纵,即先前通过引用包含的,美
国专利申请第08/671,987号所述描述的系统。例如,在把第二管道构造成与包含 不同离子浓度之流体区的第一管道相交的情况下,当这些不同的流体区移过交会 处时,上述压力波动会使流体流入和流出相交的第二管道。这种波动流可能会明 显地干扰流体在电渗作用驱动下从第二管道定量流出,以及/或者扰乱管道内不同 的流体区。
通过减小相交管道(例如第二管道)相对第一或主管道的深度,可以基本上消 除流体流动中的波动。特别是,对于一给定的电压梯度,对于纵横比(宽度深度) 大于10的管道,在电渗流推进方向上,流速一般按管道深度的倒数而变化。对
于计算中一些较小的无关紧要的误差,这一通用比对于较小的纵横比(例如,纵横
比〉5)仍然保持正确。相反,相同管道中压力引起的流动将按管道深度倒数的三 次幂来变化。因此,因同时存在离子浓度不同的流体区而在管道中增大的压力将 按管道深度倒数的平方来变化。
由此,通过相对于第一或主管道的深度将相交第二管道的深度减小因子X, 可以明显地减小由压力引起的流动,即减小因子X3,同时仅略微减小由电渗引起 的流动,即减小因子X。例如,当相对第一管道将第二管道的深度减小一个数量 级时,那么由压力引起的流动减小1000倍,而由电渗引起的流动将仅减小10倍。 因此,在某些方面,本发明提供了如本文中作一般描述的微流体装置,例如这些
装置中至少安置了第一和第二相交管道,但第一管道比第二管道深。 一般情况下, 可以改变管道的深度,为所需应用获得优化的流动条件。这样,根据应用,第一 管道的深度可以大于第二管道深度的大约二倍、大于第二管道深度的大约5倍, 甚至大于第二管道深度的大约10倍。
除了在减小压力效应时使用不同的管道深度外,还可用变化的管道深度使同 一装置中不同管道内有流体作差动流动,例如混合来自不同源的不同比例的流体 等。
III.电吸移管
如上所述,通过微流体系统100,可以在试验物料区200中或附近有效地传 输任何试验物料。当试验物料通过系统管道传输时,利用第一和第二分隔区201 和202可以将试验物料限制在一区域中。为了有效地将试验物料导入微流体系统 中,本发明还提供了一种电吸移管,该电吸移管可以在试验物料区200与第一和 第二分隔区201和202的同一序列组合流中,将试验物料导入微流体系统。
A.结构和操作
如图4A所示,电吸移管250由一中空毛细管251构成。毛细管251具有一 管道254,该管道的尺寸与微流体系统100的管道的尺寸相同,并且与其流体接 连。如图4A所示,管道254是一圆柱体,其截面直径在1-100微米的范围内, 直径最好大约为30微米。电极252沿毛细管251的外壁而行,并终止一环状电 极253,其中环状电极253围绕在毛细管251的末端。为了将试验物料区200中 的试验物料以及缓冲区201和202吸入电吸移管的管道254,相对于与管道254 流体连接的目标储库(未示出),对电极252施加电压。目标储库位于微流体系统 中,从而按序列将试验物料区200和缓冲区201和202从电吸移管传输到系统100 中。
从程序上讲,将电吸移管250的毛细管道末端放入试验物料源。相对于目标 储库中的电极,对电极252施加一电压。环状电极253与试验物料源接触放置, 对电源电气偏压,从而在试验物料源和目标储库之间产生一压降。结果,试验物 料源和目标储库变成微流体系统中的点A和点B,即如图2A所示。电动作用将 试验物料导入毛细管道254,产生一试验物料区200。然后,截断电极252上的 电压,并放毛细管道放入高离子浓度的缓冲物料源。再次相对目标储库电极,对 电极252施加一电压,致使通过电动作用将第一分隔区201导入毛细管道254内,
紧接在试验物料区200之后。如果之后希望在电吸移管管道254内获得第二或低 离子浓度分隔区202,那么毛细管道254的末端插入低离子浓度缓冲物料源中, 并对电极252施加一电压。然后,将电吸移管250移动到另一个试验源,在管道 254中产生另一个试验物料区200。
通过重复上述步骤,在电动作用下,将由第一和第二分隔区201和202分隔 开的具有不同试验物料的多个试验物料区200导入毛细管道254中,从而导入微 流体系100中。
注意,如果试验物料源和(低离子浓度和高离子浓度的)缓冲物料源具有其自 己的电极,那么就不需要电极252。目标储库和源电极之间的电压对电吸移管起 作用。另一种方法可使电极252与毛细管251成固定关系,但相互分离,以便当 毛细管251的末端接收储库时,电极252也接触储库。操作过程与针对图4A的 电吸移管的描述相同。
图4B示出了图4A中电吸移管250的一种变化。在该变化中,不要求将电 吸移管270在试验物料源和缓冲物料源之间转移,从而在吸移管内产生第一和第 二分隔区201和202。电吸移管270具有本体271和三个毛细管道264、 275和 276。主管道274的工作方式与上述电吸移管250的相同。但是,两个辅助毛细 管道275和276的一端与缓冲源储库(未示出)流体连接,而管道275和276的另 一端与主管道274流体连接。 一个储库(即与辅助管道275相连的储库)含有高离 子浓度的缓冲物料,而另一储库(即与管道276相连的储库)含有低离子浓度的缓 冲物料。
所有储库都与电极连接,用于在操作电吸移管270时对这些储库电气偏压。 电吸移管270还可以沿其本体271的壁具有电极272,该电极终止于位于主管道 274末端的环状电极273。通过对电极272(和环状电极273)施加电压从而沿管道 274、 275和276产生压降,不仅可以把试验物料从试验物料源拖入主管道274, 而且还可以把高离子浓度和低离子浓度的缓冲物料从辅助管道275和276拖入主 管道274。
为利用电极272操作电吸移管270,将主毛细管道274的末端放入试验物料 源280。相对于目标储库中的电极,对电极272施加一电压,从而在试验物料源 280和目标储库之间产生一压降。电动作用将试验物料拖入毛细管道274。然后, 将毛细管道末端移离试验物料源280,并在连接管道274的目标储库和连接管道 275的储库之间产生一压降。在管道274中形成第一或高离子浓度分隔区201。
当从辅助管道275拖入缓冲物料时,毛细管的作用禁止将空气导入管道274中。 如果之后希望在主管道274中获得第二或低离子浓度分隔区202,那么对目标储 库中的电极以及低离子浓度缓冲物料储库中的电极施加一电压。电动作用将第二 分隔区202从第二辅助管道276导入毛细管道274。然后,可以将电吸移管270 移到另一个试验物料源,以便在管道274中产生另一个试验物料源200。
通过重复上述步骤,在电动作用下,将由第一和第二分隔区201和202分隔 开的具有不同试验物料的多个试验物料区200导入毛细管道274中,从而导入微 流体系100中。
如果不希望使试验物料源经受来自环状电极273的氧化/还原反应,那么可以 不用电极272操作电吸移管。由于在高离子浓度的溶液中,电渗流较慢,所以从 连接管道274的储库到连接管道275的储库施加电势(-至+ )将在管道274和275 的交会点形成真空。该真空将来自试验物料源的采样拖入管道274。当用这种方 式操作时,管道275和276中的溶液会在某种程度上冲淡试验物料。通过减小管 道276和275相对于管道274的尺寸,可以减缓这种冲淡。
为了把第一和第二分隔区201和202导入毛细管道274,如上所述操作电吸 移管270。将毛细管道末端移离试验物料源280,并在管道274的目标储库和连 接所选管道275或276的储库之间产生一压降。
尽管根据两个辅助管道和一个主管道的情况作了一般描述,但应该理解,不 可以提供另外的辅助管道,将其它流体、缓冲剂、稀释液和试剂等导入主管道。
如上所述,对于微流体装置(例如,芯片)内的相交管道,因不同吸移管管道 内差动流体所产生的压差还会影响对吸移管管道内流体流动的控制。因此,如上 所述,为了优化对流体的控制,还可以提供各种吸移管管道,使其彼此具有不同 的管道深度。
B.电吸移管的制造方法
电吸移管可以由一中空的毛细管制成,如图4A所述的那样。但是,对于更 复杂的结构,电吸移管最好由与上述微管道系统相同的基片材料制成。用对于微 流体系统之微管道的相同方式在基片上制作电吸移管管道(和储库),并且如上所 述用平面覆盖元件覆盖带管道的基片。然后,对基片和覆盖元件的边界成形,按 要求为吸移管形成合适的水平尺寸,特别在其末端。可以使用诸如蚀刻、气蚀(用 粒子和受迫气体冲击表面)以及磨削等技术。然后,按要求在基片表面和可能的覆 盖物上形成电极。另一种方法是,在把基片和覆盖元件固定在一起之前,对基片
和覆盖元件的边界整形。这种制造方法特别适于多管道的电吸移管,例如刚刚就 图4B所描述的以及以下将对图8描述的。
IV.采样系统
如上所述,上述方法、系统和设备一般将在各种学科中寻找到广泛的应用。 例如,如上所述,这些方法和系统特别适于药物发现应用中高通过量的化学筛选,
参见1996年6月28日提交的、共同待批的美国专利申请第08/671,987号,该专 利申请在前面已通过引用包括在此。 A.样品基体
一般,就液体样品的采样数目(例如,来自多井板multi-well plate),对本发
明的吸移和流体传输系统进行描述。但是,在许多情况下,需要采样的基于流体 的样品的数目和种类会产生许多样品处理问题。例如,在化学筛选和药物发现应 用中,筛选用的化合物库的数目可以成千上万。因此,这类库要求数量极大的样 品板,即使在自动机械系统的帮助下,这也会在样品存储、处理和识别上产生各 种困难。另外,在某些情况下,当以液态保存时,特殊的样品化合物会劣化、复 杂化,或者具有相当短活性的半活体。当在筛选之前以液态长时间存储样品时, 有可能导致不可信的结果。
因此,本发明以固定格式提供需采样的化合物,从而获得可以解决这些问题 的采样系统。"固定格式(immobilized format)"是指通过结合到固定基体(S卩,多 孔基体、带电基体、疏水或亲水基体)内,在固定位置上提供样品材料,其中固定 基体将样品保留在固定位置上。另一种方式是,这类固定样品在给定的样品基体 上包含被定位和干燥的样品。在较佳情况下,以干燥形式在样品基体上提供要筛 选的化合物。 一般,这种样品基体将包括任何数量的材料,用于材料的定位或固 定,例如包括诸如纤维素、硝化纤维、PVDF、尼龙、聚砜等。 一般,最好用柔 性的样品基体,这可使固定有大量不同化合物的样品基体折叠或巻起,有利于存 储和处理。
一般,可以用任何已知的方法对样品基体施加样品。例如,用允许对大量化 合物定位的自动机械吸液系统将样品库定位在样品基体的薄片上。另一种方法 是,处理样品基体,为样品定位提供预定的区域,例如,锯齿状的井,或者由疏 水屏障围绕的亲水区,或者由亲水屏障围绕的疏水区(例如,样品原始处于疏水溶 液中),这样将在千燥处理过程中保持被定位的材料。于是,这种处理允许使用更
先进的样品施加方法,诸如在美国专利第5,474,796号中描述的,用压电泵和喷 嘴系统将液体样品射到表面上。但是, 一般地说,'796专利中描述的方法是关于 在表示上施加液体样品,以便随后与其它液体样品反应。但是,这些方法很容易 被修改成,在基片上提供干燥的定位样品。
类似地,可以使用其它的固定或定位方法。例如,当样品稳定于液态时,样 品基体可以包括多孔层,凝胶或其它聚合物材料,它们保持液体样品,不允许过 度扩散和蒸发,但允许按需要至少提取一部分样品材料。为了把样品拖入吸移管, 吸移管将使一部分样品脱离基体,例如通过溶解基体、离子交换、稀释样品等方 法。
B.再增溶吸移管
如上所述,本发明的采样及液体传输方法和系统容易适用于筛选、分析或处 理以这些样品格式固定的样品。例如,当在样品基体上以干燥形式提供样品材料 时,可以把电吸移管系统施加到基体的表面。然后,如上所述,例如通过倒转施 加在吸移管上的电场极性,或者通过从低离子浓度缓冲剂储库到高离子浓度缓冲 剂储库施加一电位,来操作电吸移管,以排出小体积的液体,增溶先前位于基体 表面上的干燥样品(溶解保留的基体,或从固定支持物中洗出样品)。 一旦使样品 再增溶,就按其通常的正向方式操作吸移管,如前所述将增溶的样品拖入吸移管 管道中。
图8示出了对于实现该功能很有用的电吸移管的一个实施例,以及它的工作 情况。概括地说,吸移管(如图所示)800的顶端802 —般与分析系统(例如,微流 体芯片)相连,以使对吸移管804、 806和808独立施加电压。 一般,管道804和 808分别与包含低离子浓度流体和高离子浓度流体的缓冲剂储库流体连接。在操 作过程中,吸移管810的尖端与样品基体812的表面接触,该表面上有一固定(例 如,干燥的)样品814。从低离子浓度缓冲剂管道804到高离子浓度缓冲剂管道施 加一电压,以便迫使缓冲剂排出吸移管的尖端,从而接触并溶解样品。如图所示, 为了将排出的溶液保持在吸移管尖部和基体表面之间,吸移管816可以包括一凹 陷区或"样品杯"818。在某些情况下,例如当筛选有机样品时,为了保证溶解 样品,可以在低离子浓度缓冲剂中包含一种合适浓度的可接收的溶剂,例如 DMSO。然后,从高离子浓度缓冲剂管道到样品管道806施加一电压,以便按样 品栓的形式将样品拖入吸移管中。 一旦完全将样品从样品杯提取到吸移管中,由 于空气进入样品管道将产生较大的表面张力,从而停止吸入样品,并且高离子浓
度的缓冲剂溶液将开始流入样品管道,在样品之后形成第一分隔区822。然后, 通过从低离子浓度缓冲剂管道804到样品管道806施加电压,可以将低离子浓度 缓冲溶液注入样品管道,即成为第二分隔区824。在表述基体上下一个样品位置 之前或期间,通过在高离子浓度缓冲剂管道和样品管道之间施加电压,可以将第 一或高离子浓度分隔区822导入样品管道。如前所述,用这种方式可以表述具有 成千或上万种需筛选的不同化合物的一个或多个样品基体巻、片或板,允许在合 适的设备或系统中对它们进行序列筛选。
V.消除电泳偏离
如上所述,用电动力将试验物料传过微流体系统100。如果在溶液中使试验 物料带电,那么它不仅会受到电渗力,而且会受到电泳力。因此,试验物料在沿 微流体系统的管道从一点移动到另一点的过程中,可能会受到电泳的作用。因此, 起点处试验物料的混合物以及带不同电荷的物质在试验物料区200中的位置可能 不同于终点处的混合物或位置。另外,在终点处,试验物料甚至可能不在试验物 料区200内,尽管处于第一分隔区201内。
因此,本发明的另一方面是,当把试验物料传过微流体系统IOO时,补偿电 泳偏离。图5示出了一种补偿电泳偏离的方法。在上述微流体系统中,沿长度将 每根管道IIO、 112、 114和116看作一整体结构。在图5中,例示的管道140被 分成两个部分142和144。每个管道部分142和144的侧壁具有极性相反的面电 荷。盐桥133(诸如玻璃料或凝胶层。)以物理方式将两个管道部分142和144连 接在一起。尽管盐桥133将管道140中的流体与储库135中的离子流体(离子流体 被盐桥133部分限定)分离,但盐桥133允许离子穿过。因此,储库135以电气方 式而不是以流体方式与管道140联系。
为了在点A和点B之间沿管道140产生电渗力和电泳力,分别在占A和点B 处安装电极132和134。另外,将第三电极137布置在位于两个部分142和144 交汇处的储库135中。使电极132和134保持相同的电压,而电极137处于另一 电压。在图5所示的例子中,两个电极132和134处于负电压,而电极137以及 两部分142和144的交汇点处于零电压,即地电压。因此,在部分142和144中 产生压降,并使两部分中的电场指向相反的方向。具体地说,电场指向彼此背离。 因此,在管道部分142中,作用在特定带电分子上的电泳力沿一个方向,而在管 道部分144中,电泳力沿另一方向。当通过两部分142和144后,可以补偿试验物料的任何电泳偏离。
但是,两部分142和144中的电渗力仍然沿同一方向。例如,如图5所示, 假设管道部分142的侧壁具有正的面电荷,它们吸引溶液中的负离子,而管道部 分144的侧壁具有负的面电荷,它们吸引溶液中的正离子,那么两部分142和144 中的电渗力是向附图右方的。因此在电渗力的作用下,试验物料从点A传输到点 B。但是电泳力在部分142中沿一个方向,而在另一部分144中沿相反的方向。
为了形成侧壁带正或负面电荷的管道,用带有面电荷的绝缘薄膜(诸如聚合 物)涂覆管道的一个或两个部分。例如,在微流体系统100中,基片102和管道可 以由玻璃制成。用带有相反面电荷的聚合物(例如聚赖氨酸)涂覆每根管道的一部 分,或者用包含氨基官能团的硅垸化剂(例如,氨基丙基三氯三垸)对每根管道的 一部分进行化学改良。另外,两个管道部分的面电荷密度和体积应该大约相同, 以便补偿电泳偏离。
代替用固体的平面基片制备管道,还可以用两根毛细管制备管道,其中用盐
桥将两根毛细管对接在一起,盐桥将离子流体储库与毛细管中的流体分离。还在 离子流体储库中放置一个电极。 一个毛细管具有负的面电荷,而另一毛细管具有 正的面电荷。所行的毛细管管道如上所述工作。
图6A-6D示出了本发明的另一实施例,在该实施例中,补偿了当试验物料从 点A移动到点B时,因电泳偏离引起的对试验物料的影响。在该实施例中,在点 B(如图1所示在两管道之间的相交处)混合试验物料。
图6A-6D示出了小室160,它位于管道150、 252、 154和156的交会处。小 室160具有四个侧壁162、 164、 166和168。侧壁162与管道152的一个侧壁以 及管道150的一个侧壁相连;侧壁164与管道154的一个侧壁以及管道152的另 一侧壁相连,侧壁166与管道156的一个侧壁以及管道154的另一侧壁相连,以 及侧壁168与管道156的相对侧壁以及管道150的相对侧壁相连。假设材料通过 管道152向管道156流动,如果材料转向管道150,那么侧壁162和168形成一 漏斗°
侧壁162和168的尺寸可以容纳沿管道152传输的试验物料栓200的长度。 侧壁162和168将栓200漏入管道150的宽度中。管道150的宽度致使试验物料 在管道150的宽度上发生扩散,即发生混合,并消除了试验物料区200沿管道162 传输时产生的试验物料的任何电泳偏离。例如,如果管道150为50微米宽,那 么对于扩散常数为lX10—ScmVsec的分子,横跨管道的扩散大约在一秒钟内发生。
在图6A中,阳离子试验物料的栓200沿管道152向管道156移动。当栓200 到达小室160时,试验物料己受电泳作用,从而物料更集中于试验物料区200的 前端。图6B示出了这一情况。然后,终止沿管道152和156施加的压降,并沿 管道154和150产生一压降,以便将试验物料区200拖入管道150。小室160的 侧壁162和168使试验物料区200与其经电泳偏离的试验物料一起漏下。图6C 示出了这一情况。通过扩散,在试验物料沿管道150传输任何明显的距离之前, 试验物料在管道150的宽度上展开;混合试验物料区200中的试验物料,并准备 在微流体系统100中进行下一步操作。
除了可以用来校正单一样品内的电泳偏离,应该理解,图6所示的结构可用 于在这些微流体装置中混合流体单元,例如两种不同的试验物料,缓冲剂,反应 剂等。
举例
例1-按电吸移管的类型格式,迫使带不同电的物质同移 为了证明用来消除或减小电泳偏离的诸方法的有效性,在毛细管管道中,通 过电动作用抽运两种带相反电荷的物质,并使其在单个样品栓中同移。用Beckman
毛细管电泳系统模拟毛细管管道中的电泳力。
概括地说,在本实验中使用一种样品,它在低离子浓度(或"低盐")(5mM 硼酸盐)或高离子浓度("高盐")(500mM硼酸盐)的缓冲剂中包含苄基胺和苯甲酸。 苯甲酸大约是苄基胺浓度的2倍。所有的注射时间持续0.17分钟。注射电压8或 30kV决定了注射栓的长度。低盐和高盐缓冲剂如上所述。
在第一实验中,将在低盐缓冲剂中连续三次注射的样品导入充满低盐缓冲剂 的毛细管中。注射在8kV的电压下进行,并在30kV的电压下通过低盐注射使它 们分离。图7A示出了这些注射产生的数据。这些数据表示,第一和第二注射的 节基酸峰(识别为低峰,因其浓度较低)先于第一注射的苯甲酸峰(高峰)。另外,第 三注射的苄基胺峰几乎于第一苯甲酸峰重合。因此,该实验显示了电泳偏离的作 用,其中样品峰没有不按其进入管道的次序离开毛细管管道。由图可以清楚地看 出,这种分离实质上会影响单一样品的特性,或更糟地是,还会央及先前或后续 导入的样品。
在第二实验中,毛细管充满低盐缓冲剂。在8kV电压下,通过第一次导入/ 注入高盐缓冲剂将样品注射到毛细管中(第一分隔区1)。接着,在8kV电压下注
射高盐缓冲剂中的样品,然后在8kV电压下第二次注射高盐缓冲剂(第一分隔区
2)。用这一方式注射三种样品,并在30kV电压下通过注射低盐缓冲剂使其分离。 如图7B所示,样品中所含的两种化合物被迫在同一样品栓中一同移动通过毛细 管管道,并且每次注射由单个峰表示。这证明了样品是对齐的,与电泳移动无关。 通过相对于样品大小,减小样品间低盐分隔栓的大小,可以部分分辨每次样 品注射的各成份。当在电动抽运期间希望对样品进行某些分离,但不影响前后 注入的样品时,这是非常有用的。这可以通过在8kV而非30kV电压下注射低盐 分隔栓来获得。图7C示出了该例的数据。
例2-试验物料通过电吸移管迁移到微流体系统基片中
图9A-9C示出了如上所述通过电吸移管将试验物料(即样品)导入微流体系统 的实验测试结果。样品是PH值为7.4的磷酸盐缓冲盐溶液中含若丹明B。高离 子浓度("高盐")缓冲剂也由PH值为7.4的磷酸盐缓冲盐溶液形成。低离子浓度 ("低盐")缓冲剂由PH值为8.6的5mM硼酸钠溶液形成。
在测试中,周期性地将含有荧光若丹明B注入电吸移管的毛细管管道中,其 中电吸移管与微流体系统的基片相连。如前所述,还将高盐和低盐缓冲剂注射到 试验物料区之间。图9A是若丹明B荧光强度对时间的曲线图,其中若丹明B的 荧光强度是在毛细管道与基片管道的连接处附近,沿毛细管道的某一点上测得 的。(顺便提一下,应该看出图9A-9V和图10曲线图中荧光强度轴上的数字表示 相对参考值,不是绝对值。)注射周期为7秒,将试验物料区移过吸移管的电场为 1000伏/厘米。用光电二极管监测来自毛细管道的光的综合时间被设置为io毫秒。 由图9A可见,很容易证明光强峰以7秒的间隔出现,这与荧光若丹明B的注射 周期匹配。
在另一实验中,将相同的缓冲剂与若丹明B样品一起使用。监测占在与电吸 移管相连的基片管道中。注射周期设为13.1秒,包含若丹明B的源储库与基片 中的目标储库之间的电压设为-3000伏。监测光电二极管的综合时间为400毫秒。 如图9B所示,荧光强度峰接近于若丹明B的注射周期。
图9C示出了第三实验的测试结果。在该实验中,电吸移管由基片制成,并 通过气蚀成形。监测点沿基片(和平面覆盖物)中形成的毛细管道。这里,样品材 料是pH值为7.4的PBS缓冲剂中包含100pM若丹明B。高盐缓冲剂溶液仍是pH 值为7.4的PBS,而低盐缓冲剂溶液仍是pH值为8.6的5mM硼酸钠。同样,周 期性的荧光强度峰与若丹明B注入电吸移管的周期一致。
图10示出了依照本发明将另一种试验物料周期性地注入电吸移管的结果。
在该实验中,样品是lOOpM的小分子化合物,pH值为7.4的磷酸盐缓冲盐溶液 中含1X的DMS0。高盐缓冲剂仍是pH值为7.4的磷酸盐缓冲盐溶液,而低盐缓 冲剂仍是pH值为8.6的5mM硼酸钠。将试验物料区移过电吸移管的所加电压为 -4000伏,而用光电二极管监测来自毛细管道的光的综合时间设为400毫秒。如 前所述,将样品周期性地注入电吸移管中。同上述结果一样,图IO表明,对于 小分子化合物,电吸移管以匀均的时间间隔移动样品。
尽管为了清楚和理解的目的,已详细描述了上述发明,但本领域的技术人员 通过阅读该公开内容,显然可以不脱离本发明实质范围,在形式和细节上进行各 种变化。例如,可以按各种组合使用上述所有技术。为了所有目的,本申请中引 用的所有公开物和专利文献均通过引能包括在此,其引用程度与单独表示每个公 开物或专利文献的一样。
权利要求
1.一种在微流体系统的毛细管道内将流体样品从第一点传输到第二点的方法,所述方法包括下述步骤将第一分隔流体的第一栓导入所述管道,所述第一分隔流体具有第一离子浓度;将样品流体栓导入所述管道;将第一分隔流体的第二栓导入所述管道;将第二分隔流体栓导入所述管道,所述第二分隔流体的离子浓度低于第一分隔流体的离子浓度,致使所述第一和第二点之间的大部分压降和所得电场施加在所述第二分隔流体的两端;以及在所述管道的两端施加一电压,从而在所述管道内传输所述各个栓。
2. 如权利要求l所述的方法,其特征在于,所述管道与具有电极的微流体系 统进行流体传输,并且用于导入各栓的所述各个步骤包括使所述管道的末端与所述第一分隔流体的源接触,并且从所述第一分隔流体 的源到所述电极施加一电压,从而在电动作用下,将所述第一分隔流体的第一栓 导入所述管道,并朝着所述微流体系统的方向传输;使所述管道的末端与所述样品流体的源接触,并从所述样品流体的源到所述 电极施加一电压,从而将所述样品流体栓导入所述管道,并朝着所述微流体系统 的方向传输;使所述管道的末端与所述第一分隔流体的源接触,并且从所述第一分隔流体 的源到所述电极施加一电压,从而将所述第一分隔流体的第二栓导入所述管道, 并朝着所述微流体系统的方向传输;以及使所述管道的末端与所述第二分隔流体的源接触,并且从所述第二分隔流体 的源到所述电极施加一电压,从而将所述第二分隔流体栓导入所述管道,并朝着 所述微流体系统的方向传输。
3. 如权利要求2所述的方法,其特征在于,还包括:在导入所述第一分隔物料的第一栓之前,将所述样本流体的第二栓导入所述 管道;和/或在导入所述第二分隔物料栓之前,将所述样本流体的第二栓导入所述管道;或在导入所述第一分隔物料的第一栓之前,将另一样本流体的栓导入所述管道;和/或在导入所述第二分隔物料的栓之前,将另一样本流体的栓导入所述管道; 对不同的样本源重复上述步骤,以便在电动作用下,将多个被分隔流体隔开 的不同样本导入所述毛细管道,并且朝着所述微流体系统的方向传输,不混合所述不同的样本。
4. 如权利要求3所述的方法,其特征在于,所述第一分隔物料包含具有高离子浓度的溶液。
5. 如权利要求3所述的方法,其特征在于,所述第一和第二分隔物料中的至 少一个包含基本上不混合的流体。
6. 如权利要求3所述的方法,其特征在于,所述第一和第二分隔物料中的至 少一个包括离子载体。
7. 如权利要求3所述的方法,其特征在于,所述管道的截面积大约为10-1000 微米2。
8. 如权利要求3所述的方法,其特征在于,所述第一分隔流体包含高离子浓 度的溶液,并且所述第二分隔流体包含低离子浓度的溶液。
9. 如权利要求4所述的方法,其特征在于,还包括下述步骤 沿所述管道布置通达所述管道末端的第二电极,致使当所述管道末端接触所述样本或分隔源时,所述第二电极接触一源;并且所述电压施加步骤包括在所述 微流体系统电极和所述第二电极之间产生一电压差。
10. 如权利要求4所述的方法,其特征在于,所述电压施加步骤包括相对于 所述微流体系统电极,对所述试验物料或分隔源施加一负电压。
全文摘要
本发明涉及一种电吸移管和电泳偏离补偿装置,以及一种在微流体系统的毛细管道内将流体样品从第一点传输到第二点的方法。该管道(140)被分成多个部分(142,144)。每个管道部分(142,144)的侧壁上有极性相反的面电荷。两个管道部分(142,144)通过诸如玻璃料或凝胶层等盐桥(133)以物理方式相连。盐桥(133)分离管道(140)中来自离子化流体储库(135)的流体。分别在A部和B部沿管道(140)产生电渗力和电泳力。另外,在储库(135)中布置第三电极(137)。
文档编号F04B17/00GK101185871SQ20071014887
公开日2008年5月28日 申请日期1997年6月25日 优先权日1996年6月28日
发明者J·沃雷斯·帕斯, 迈克尔·R·克耐普 申请人:卡钳生命科学股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1