用于控制换挡差异感的方法及应用其的四轮驱动车辆与流程

文档序号:14193040阅读:82来源:国知局
用于控制换挡差异感的方法及应用其的四轮驱动车辆与流程

相关申请的交叉引用

本申请要求于2016年10月6日向韩国知识产权局提交的申请号为10-2016-0128924的韩国专利申请的权益,该公开的全部内容通过引用并入本文。

本公开涉及四轮驱动车辆的换挡控制。



背景技术:

通常,e_4wd系统(电动四轮驱动系统)被配置成使得变速器(自动变速器或双离合变速器)和发动机(扭矩源1)直接连接到前轮,电动机(扭矩源2)直接连接到后轮。

因此,e_4wd系统已经通过由扭矩源1、扭矩源2的总和实现的驾驶员请求扭矩的变化或车速的变化来应用换挡控制,以移除换挡差异感,通过其,与换挡前后直接连接变速器的离合器或制动器的情况相比,从前轮传递的车轮扭矩通过实际换挡段的滑差(slip)而改变。

例如,换挡控制可包括速度控制换挡方法或时间控制换挡方法。速度控制换挡方法可通过经速度控制而实现快速换挡来提高换挡质量。时间控制换挡方法可通过经换挡时间的可变控制而在实际换挡段前后维持加速度来提高换挡质量。

因此,应用e_4wd系统的4wd车辆可通过超越简单的滑差控制换挡方法的速度控制换挡方法或时间控制换挡方法来实现更高级的换挡质量,并且提供能够同时实现4wd和hev(混合动力电动汽车)功能的优点。

然而,与滑差控制换挡方法相比,速度控制换挡方法或时间控制换挡方法可仅提供更加完善的换挡质量,并且可能在完全消除换挡差异感中必定受到限制。这样的原因源于应用e_4wd系统的4wd车辆在实际换挡段中向驱动轮传递扭矩时不能避免所传递扭矩的变化。

因此,如同滑差控制方法这样的速度控制换挡方法或时间控制换挡方式势必具有以下限制,即它们不是对于应用e_4wd系统的4wd车辆的换挡差异感的根本的问题解决方案。

本部分的公开内容提供本发明的背景。申请人注意到,本部分可能包含本申请之前的信息。但是,通过提供本部分,申请人不承认本部分所包含的任何信息构成现有技术。



技术实现要素:

本公开旨在提供一种4wd驱动车辆,其中可以实现加速度换挡控制模式,其用于在通过被直接连接到未与变速器连接的驱动轴的扭矩源来执行实际换挡时,由将被传递到与变速器连接的驱动轴的独立扭矩通过在换挡前后段和实际换挡段中基本上相等地维持的加速度来消除换挡差异感。

根据本发明的实施例的控制方法可以包括确定是否需要换挡的步骤;准备换挡和计算平均车辆加速度的步骤;确定实际换挡的步骤;通过连接到在实际换挡中与变速器未连接的驱动轴的扭矩源计算用于维持先前计算的平均车辆加速度的扭矩,然后使其成为指令扭矩的步骤;以及通过扭矩源将指令扭矩应用到驱动轴的步骤。

另一方面,根据本发明的实施例的控制方法可在车辆行驶期间的换挡中通过控制器实现加速度换挡控制模式,其中加速度换挡控制模式可执行(a)使换挡段前到a,使得a可与分别将实际换挡段的前段和后段划分为换挡准备段和换挡完成段的变速器的sp(换挡阶段)相匹配,并且计算车辆加速度的平均值gavg的步骤,(b)当a离开换挡准备段时识别进入实际换挡段的步骤,(c)在进入实际换挡段之后计算变速器传递扭矩tqtransfer或变速器干预扭矩tqintervention的步骤;(d)使用变速器传递扭矩tqtransfer通过扭矩预测模式输出变速器输入扭矩tqinput-1和其他驱动轴输入扭矩tqinput-2的步骤;以及(e)使用变速器干预扭矩tqintervention通过扭矩干预模式输出变速器输入扭矩tqinput-1和其他驱动轴输入扭矩tqinput-2的步骤。

在实施例中,可根据车辆的驾驶员请求扭矩tqdriver或车速v的换挡条件执行加速度换挡控制模式,当驾驶员请求扭矩的变化或车速的变化执行换挡时,满足换挡条件,并且可由控制器监控驾驶员请求扭矩和车速。

在实施例中,车辆加速度的平均值gavg是换挡准备段中的g传感器的车辆加速度测量值的平均值。a是具有大于0且小于实际换挡段的数的校准因子。通过使用在变速器内部产生的滑差来计算变速器传递扭矩tqtransfer。

在实施例中,扭矩预测模式可执行(d-1)步骤:计算车辆的驾驶员请求扭矩tqdriver与变速器传递扭矩tqtransfer之差,并将计算出的差值定义为第一加速度维持控制扭矩tqfeedforward-1;以及(d-2)步骤:在进入实际换挡段的状态下将变速器干预扭矩tqintervention输出为变速器输入扭矩tqinput-1,并对校正车辆加速度的平均值为当前车辆加速度的误差补偿gavg_compensation值和第一加速度维持控制扭矩tqfeedforward-1进行求和,并将其输出到其他驱动轴输入扭矩tqinput-2。

在实施例中,扭矩干预模式可执行(e-1)步骤:计算车辆的驾驶员请求扭矩tqdriver与变速器干预扭矩tqintervention之差,并将计算出的差值定义为第二加速度维持控制扭矩,(e-2)步骤:在进入实际换挡段的状态下将变速器干预扭矩tqintervention输出为变速器输入扭矩tqinput-1输出,并将校正车辆加速度的平均值gavg为当前车辆加速度的误差补偿gavg_compensation值和第二加速度维持控制扭矩tqfeedforward-2进行求和,并将其输出到其他驱动轴输入扭矩tqinput-2。

此外,在实施例中,四轮驱动车辆包括:控制器,关于传递到与变速器连接的驱动轴的变速器输入扭矩tqinput-1将独立的其他驱动轴输入扭矩tqinput-2传递到未连接到变速器的驱动轴,以便在换挡的前段和后段之间连接的实际换挡段中的车辆加速度可以被维持为与在车辆行驶期间换挡时换挡的前段和后段的车辆加速度相等;变速器控制器,控制变速器;以及g传感器,测量车辆加速度。

在实施例中,控制器可包括:扭矩源控制器,控制生成变速器输入扭矩的扭矩源1和生成其他驱动轴输入扭矩的扭矩源2;以及扭矩映射控制器,与扭矩源控制器连接并通过反馈控制器校正车辆加速度的误差。

应用根据本发明的实施例的e_4wd系统的四轮驱动车辆可通过将加速度控制换挡方法的换挡控制应用于所有换挡等级来实现以下优点和效果。

首先,四轮驱动车辆可通过在通电上/下换挡中通过未与变速器连接的扭矩源向驱动轮传递正扭矩(+扭矩)来提高换挡质量;其次,通过在断电上/下换挡中通过未与变速器连接的扭矩源向驱动轮传递负扭矩(-扭矩)来提高换挡质量;再次,可通过使用未与变速器连接的扭矩源通过在诸如停止前换挡的换挡解决制动扭矩的不足。

附图说明

结合附图,从下面的详细描述中将更清楚地理解本发明上述的和其他的方面、特征和优点,其中:

图1a和图1b是根据本发明的实施例的使用加速度换挡控制模式来控制换挡差异感的方法的流程图;

图2是实施了根据本发明的实施例的加速度换挡控制模式的四轮驱动车辆的示例;

图3是根据本发明的实施例的四轮驱动车辆通过加速度换挡控制模式消除换挡差异感之前的换挡过程的示例;

图4是根据本发明的实施例的用于产生加速度维持控制扭矩的滑差反馈控制器的示例;

图5是根据本发明的实施例的用于产生加速度维持控制扭矩的非滑差反馈控制器的示例;并且

图6是根据本发明的实施例的四轮驱动车辆通过加速度换挡控制模式消除换挡差异感之后的换挡过程的示例。

具体实施方式

本发明的一个方面提供了一种用于控制电动4wd(e-4wd)车辆中的车轮驱动电动机的系统。电动4wd(e-4wd)车辆具有电动机20-2和发动机20-1。在实施例中,电动机20-2和发动机20-1独立地操作,使得它们可以向车辆的不同车轮提供不同的驱动扭矩。在实施例中,连接到发动机20-1的变速器40驱动一个或多个前轮1-1而非后轮。电动机20-2驱动一个或多个后轮,而非前轮。

在实施例中,车辆的控制器30基于驾驶员在加速踏板上的输入来计算驾驶员请求扭矩(tqdriver)。控制器30控制发动机20-1和电动机20-2以提供驾驶员请求扭矩(tqdriver)。在实施例中,假定电动机提供其所需扭矩(电动机输入扭矩),控制器30计算变速器40需要提供以实现驾驶员请求扭矩(tqdriver)的变速器输入扭矩(tqinput-1)。进一步地,假定变速器提供其所需扭矩(变速器输入扭矩),控制器30计算电动机需要提供以实现驾驶员请求扭矩(tqdriver)的电动机输入扭矩(另一驱动轴输入扭矩,tqinput-2)。控制器使用变速器输入扭矩控制发动机20-1,并且还使用电动机输入扭矩控制电动机20-2。

在实施例中,控制器30监控驾驶员请求扭矩(tqdriver)和车辆速度,并确定是否满足用于换挡的预定条件集合(s10)。当满足预定条件集合时,变速器控制器50使变速器40进行换挡。在换挡期间,由于变速器40内部的滑差,从变速器40产生的扭矩不完全传递到前轮,这导致向前轮传递减小的扭矩(tqtransfer)。在实施例中,控制器30基于来自监控变速器40的操作的传感器的信息并且还基于来自变速器控制器50的信息来计算减小的扭矩(tqtransfer)。

在实施例中,鉴于所计算的减小的扭矩(tqtransfer)来计算电动机输入扭矩(tqinput-2),以补偿换挡期间变速器中的扭矩损失。在实施例中,在计算电动机20-2的电动机输入扭矩(tqinput-2)时,控制器30使用驾驶员请求扭矩(tqdriver)和所计算的减小的扭矩(tqtransfer)来计算前馈扭矩(tqfeedforward-1)(图1b中的s50)。在实施例中,在计算电动机20-2的电动机输入扭矩(tqinput-2)时,控制器进一步考虑由加速度传感器70测量的车辆的加速度(图1b中的s52)。

参照图1a和图1b,用于换挡差异感的方法可在确定是否需要换挡的步骤s10和换挡完成步骤s70之间执行加速度换挡控制模式。在加速度换挡控制模式中,可实现加速度换挡控制的可变值的计算,诸如s20;可实现当从换挡准备段sp((换挡阶段)=a)移动到实际换挡段(例如s30和s40)时,由变速器内部的滑差引起的传递扭矩tqtransfer的可预测性确定;然后,在驱动轴(与变速器连接,例如前轮)的变速器输入扭矩tqinput-1恒定的状态下,可以改变其他驱动轴(不与变速器联接,例如后轮)的其他驱动轴输入扭矩tqinput-2,例如s50或s60。因此,加速度换挡控制模式可通过等同地维持换挡前后和实际换挡段的加速度除了非滑差控制换挡方法、速度控制换挡方法和时间控制换挡方法来克服当在实际换挡段向驱动轮传递扭矩时不能避免传递扭矩变化的结构限制。

参照图2,4wd车辆1可包括e_4wd系统10(电动四轮驱动系统),自动变速器或双离合器变速器型变速器40、以及用于检测车辆的加速度的g传感器70。e_4wd系统10可包括将动力传递到前轮1-1的扭矩源120-1(例如,发动机)、将动力传递到后轮1-2的扭矩源220-2(例如,电动机)、用于单独或综合地控制扭矩源120-1和扭矩源220-2的扭矩源控制器30、用于控制连接到扭矩源120-1的变速器40的变速器控制器50以及连接到扭矩源控制器30以执行加速度换挡控制模式的扭矩映射控制器60。

特别地,扭矩映射控制器60可包括用于校正平均车辆加速度和当前车辆加速度之间的误差以便满足实际换挡段中的平均车辆加速度的反馈控制器,可计算加速度维持控制扭矩tqfeedback(例如,tqfeedback-1、tqfeedback-2),为此,可应用pid控制或各种控制算法。反馈控制器的示例通过下面的图4和图5进行详细描述。

e_4wd系统10可经由硬件将前轮1-1与变速器40连接,将变速器40与扭矩源120-1连接,将后轮1-2与扭矩源220-2连接,以及将扭矩源控制器30与扭矩映射控制器60连接,并且经由通信网络将扭矩源控制器30与扭矩源120-1和扭矩源20-2连接,将扭矩源控制器30与扭矩源控制器30连接,将变速器控制器50与变速器40连接,以及将扭矩映射控制器60与g传感器70连接。

在下文中,将参照图3至图6详细描述使用加速度换挡控制模式来控制换挡差异感的方法的实施例。加速度换挡控制模式的控制对象是连接到扭矩映射控制器60的扭矩源控制器30并将解释为控制器。加速度换挡控制模式的控制对象是扭矩源220-2,但如果需要,也可包括扭矩源120-1。

步骤s10可在应用e_4wd系统10的4wd车辆1处于行驶的状态下,由控制器确定是否满足换挡条件。为此,控制器可监控驾驶员请求扭矩tqdriver的变化或者车速v的变化,然后通过变化程度确定换挡条件满足。在这方面,驾驶员请求扭矩tqdriver指扭矩源120-1和扭矩源220-2之和,车速v指4wd车辆1的行驶速度,变速条件满足指变速器控制器50改变变速器40的换挡阶段。

因此,在换挡条件满足的状态下控制器进入步骤s20,同时继续监控,诸如步骤s10-1。

步骤s20可由控制器计算应用于加速度换挡控制的变量值,并且步骤s30可由控制器检测是否进入换挡阶段sp的换挡准备段。

参照图3的换挡过程,换挡阶段sp可从换挡线的变速器输入速度的sp线划分成换挡准备段、实际换挡段和换挡完成段,并且从加速度线可知车辆加速度测量值在实际换挡段中显著降低。特别地,在换挡准备段、实际换挡段和换挡完成段中,换挡阶段sp可被划分成大于0的数,数字大小具有换挡准备段<实际换挡段<换挡完成段的关系。在这方面,“<”是表示两个值的大小的不等式符号。

因此,控制器可通过当前车速、当前档位和移动加速器踏板轨迹的量等来检测驾驶员请求扭矩tqdriver,并计算作为由g传感器测量的车辆加速度测量值的平均值的平均车辆加速度值gavg。因此,可基于所确定的驾驶员请求扭矩tqdriver来分配扭矩源120-1和扭矩源220-2。此外,控制器可以根据sp>a的关系确定换挡条件满足状态转换为换挡准备状态。在这方面,sp是换挡阶段,a表示与sp的换挡准备段、实际换挡段和换挡完成段之中的换挡准备段匹配的换挡阶段之前,作为具有大于0的数的校准因子,并且“>”是表示两个值的大小的不等式的符号。

因此,不满足sp>a指sp未离开换挡准备段,并且将在换挡准备段中由g传感器70测量的车辆加速度测量值计算为平均车辆加速度值gavg。

因此,由于满足sp>a指sp离开换挡准备段,然后进入实际换挡段,则控制器进入步骤s40,从而将换挡准备段转换为换挡开始状态。

步骤s40可由控制器确定由变速器内部的滑差引起的传递扭矩tqtransfer是否被预测。其原因在于,当从换挡准备段向实际换挡段移动时,在变速器40内部发生的滑差预测由变速器40向驱动轴(前轮1-1)传递的传递扭矩tqtransfer。为此,控制器可使用对变速器40的监控数据或与变速器控制器50协同控制。

因此,当通过滑差预测传递扭矩tqtransfer时,控制器可以转换为步骤s50和s52的扭矩预测模式,而当不通过滑差预测传递扭矩tqtransfer时,控制器转换到步骤s60和s62的扭矩干预(torqueintervention)模式。因此,控制器可根据是否通过变速器40的滑差预测传递扭矩tqtransfer来改变从扭矩源220-2向后轮1-2的驱动轴传递的其他驱动轴输入扭矩tqinput-2。

按如下执行扭矩预测模式。

步骤s50可由控制器计算传递到后轮1-2的驱动轴的第一加速度维持控制扭矩tqfeedforward-1。为此,控制可应用关系:tqfeedforward-1=tqdriver-tqtransfer。在这方面,tqfeedforward-1是第一加速度维持控制扭矩,tqdriver是驱动请求扭矩,tqtransfer是通过控制器或变速器控制器50处的变速器40的滑差预测的变速器传递扭矩,“=”是两个值相等的等价符号,“-”是计算两个值之差的计算符号。在这种情况下,可通过变速器控制领域的常规方法来实现通过滑差的tqtransfer的预测。

因此,tqfeedforward-1可通过从tqdriver中减去tqtransfer获得的值来计算。

步骤s52可根据进入实际换挡段由控制器将动力分配给前轮和后轮。为此,控制器控制扭矩源120-1,以将变速器输入扭矩tqinput-1传递到与变速器40连接的前轮1-1的驱动轴上,并且控制扭矩源220-2,以将其他驱动轴输入扭矩tqinput-2传递到未与变速器40连接的后轮1-2的驱动轴上。

参照图4,扭矩映射控制器60可包括滑差反馈控制器60-1,并且控制器可结合滑差反馈控制器60-1生成变速器输入扭矩tqinput-1和其他驱动轴输入扭矩tqinput-2。

具体地说,通过将关系tqinput-1=tqintervention应用于变速器输入扭矩tqinput-1,控制器可计算对变速器40的监控数据或产生用于生成从变速器控制器50提供的变速器干预扭矩tqintervention的输出。通过将关系tqinput-2=tqfeedforward-1+gavg误差补偿值gavg_compensation应用到其他驱动轴输入扭矩tqinput-2,控制器通过平均车辆加速度和当前车辆加速度的误差校正来满足实际换挡段的平均车辆加速度gavg,然后生成用于产生其他驱动轴输入扭矩tqinput-2的输出。

按如下执行扭矩干预模式。

步骤s60可由控制器计算传递到后轮1-2的驱动轴的第二加速度维持控制扭矩tqfeedforward-2。为此,控制可以应用关系:tqfeedforward-2=tqdriver-tqintervention。在这方面,tqfeedforward-2是第二加速度维持控制扭矩,tqdriver是驱动请求扭矩,由于变速器40的滑差导致的不可预测性,tqintervention是由控制器或变速器控制器50通过传输监控数据或设置映射直接计算的变速器传递扭矩。在这种情况下,可以变速器控制领域的常规方法来实现tqintervention的计算。

因此,tqfeedforward-2可通过从tqdriver中减去tqintervention来计算。

步骤s62可根据进入实际换挡段由控制器将动力分别分配给前轮和后轮。为此,控制器控制扭矩源120-1,以将变速器输入扭矩tqinput-1传递到与变速器40连接的前轮1-1的驱动轴,并且控制扭矩源220-2,以将其他驱动轴输入扭矩tqinput-2传递到未与变速器40连接的后轮1-2的驱动轴。

参照图5,扭矩映射控制器60可包括非滑差反馈控制器60-2,并且控制器可结合非滑差反馈控制器60-2生成变速器输入扭矩tqinput-1和其他驱动轴输入扭矩tqinput-2。

具体地说,通过将关系tqinput-1=tqintervention应用于变速器输入扭矩tqinput-1,控制器可计算对变速器40的监控数据或产生用于生成从变速器控制器50提供的变速器干预扭矩tqintervention的输出。通过将关系tqinput-2=tqfeedforward-2+gavg误差补偿值gavg_compensation应用到其他驱动轴输入扭矩tqinput-2,控制器通过平均车辆加速度和当前车辆加速度的误差校正来满足实际换挡段的平均车辆加速度gavg,然后生成用于产生其他驱动轴输入扭矩tqinput-2的输出。

步骤s70可由控制器结合变速器控制器50确定换挡完成。步骤s70指sp从实际换挡段进入换挡完成段,从而停止其他驱动轴输入扭矩tqinput-2的输出。

参照图6,从扭矩线可以知道其他驱动轴输入扭矩tqinput-2与变速器输入扭矩tqinput-1在实际换挡段中相互补偿。从加速度线可以知道,即使在划分为换挡准备段和换挡完成段的换挡的前段和后段中,实际换挡段中的平均车辆加速度gavg维持基本相等。因此,加速度换挡控制模式可克服传递扭矩变化,这在现有的滑差控制方法、速度控制方法和时间控制方法中,在实际换挡段中向驱动轮传递扭矩时不被克服,从而实现没有换挡差异感的换挡质量。

如上所述,根据本发明的实施例的4wd车辆可通过加速度换挡控制模式消除换挡差异感,并且加速度换挡控制模式关于被传递到与变速器连接的驱动轴的变速器的输入扭矩tqinput-1,将独立的其他驱动轴输入扭矩tqinput-2传递到未与变速器连接的驱动轴,使得连接在变速器的换挡的前段和后段之间的实际换挡段中的车辆加速度可以维持为等于换挡的前段和后段的车辆加速度,从而克服在传统的滑差控制方法、速度控制方法和时间控制方法中没有克服的传递扭矩变化,当在实际换挡段中向驱动轮传递扭矩并实现没有换挡差异感的换挡质量。

在本公开中讨论的实施例是可使具有本发明所属技术领域的典型知识的人们(以下简称“有关领域的技术人员”)容易地执行本发明的实施例,但是本发明不限于上述实施例和附图,因此不限制本发明所附的权利要求的范围。因此,对相关技术领域的技术人员显而易见的是,在不脱离本发明的技术思想的范围内,可进行若干转置、转换和变更,并且显然可由本领域技术人员容易地改变的部件也包括在本发明的权利要求的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1