连续流热力泵的制作方法

文档序号:11907010阅读:216来源:国知局
连续流热力泵的制作方法与工艺

技术领域

本公开的实施例一般涉及低温泵系统/低温抽吸系统,更具体地,涉及适用于使用多个热力抽吸室的系统的实施例,该多个热力抽吸室顺序地从容器接收低温液体并且通过热交换器与提供连续气体供给的气体供给容器相互连接。



背景技术:

目前增长的需求是使用液体氢LH2用于较高密度存储,和LH2到气体氢(GH2)的转换用于往复运动(in reciprocating)和其他内燃发动机。作为示例性的用途,对具有大往复式发动机的高空长航时(HALE)类型的无人飞行器的需求正成指数增长,并且不久将达到每年3000个飞行器。已经证实,使用氢为这些飞行器加燃料是高效的且环保的解决方法。然而,只有通过作为液体的低温存储才可以实现氢的适当的存储密度。每个飞行器将需要LH2氢泵和GH2转换系统。如果没有合适的泵,那么飞行器将不能够满足HALE飞行器的长航时的需求。需要针对发动机的GH2的可靠连续流。

现有的机械LH2抽吸系统供应液体给传统的热交换器,用于转换成气体,例如火箭燃料系统中使用的机械LH2抽吸系统,已经证明它们是复杂的且对于扩展使用不够可靠。与在大约几秒或几分钟内耗尽其燃料的火箭系统不同,诸如HALE的应用需要数天或更长的时间连续供应GH2。此外,还需要无特别翻新需求的系统可重用性。

因此,希望提供具有简化的机械需求同时在一持续时间内提供连续流用于GH2转换的LH2抽吸系统。



技术实现要素:

此处所公开的实施例提供了用于提供气体氢的热力泵。该泵使用多个液体氢(LH2)容器,该多个液体氢(LH2)容器使用来自蓄压器的气体氢(GH2)被相继/顺序地加压。接收来自顺序加压的多个容器中每个容器的LH2的热交换器将加压的GH2返回至蓄压器,从而提供给发动机。

在操作中,实施例提供了通过增压泵交替地将多个液体氢容器中的一个与含有气体氢的蓄压器连接在一起,蓄压器提供连续流的氢给发动机。

已经讨论的特征、功能、和优势可以在本公开的各种实施例中独立实现,或是可以与其他实施例组合起来实现,进一步的细节可以参考下面的说明书和附图。

一种用于提供气体氢的热力泵系统,包含:蓄压器,其用于存储加压的气体氢;多个液体氢(LH2)容器,其与所述蓄压器的出口进行流体交流,并被控制用于顺序加压;和热交换器,其与所述蓄压器进行流体交流并与用于顺序接收LH2的多个容器进行受控流体交流。

所述热力泵进一步包含供给歧管,其将多个容器和所述热交换器互相连接,并且所述供给歧管具有用于顺序地供应LH2给所述热交换器的多个供给阀。

所述热力泵进一步包含加压歧管,其将所述蓄压器和所述多个容器互相连接,并且所述加压歧管具有多个加压阀,其顺序加压所述容器,同时顺序供应LH2。

所述热力泵进一步包含填充歧管,其将所述多个容器和杜瓦瓶互相连接,并且所述填充歧管具有用LH2顺序填充所述容器的多个填充阀。

本发明一个实施例中限定的所述热力泵进一步包含排放歧管(blow down manifold),其将所述多个容器和所述杜瓦瓶互相连接,并且所述排放歧管具有多个降压阀,其顺序降压来自容器的GH2,同时顺序填充LH2。

所述热力泵进一步包含在所述杜瓦瓶和容器中间的蓄压冷凝器,所述蓄压冷凝器提供LH2给填充歧管,并接收来自所述排放歧管的GH2。

一种气体氢(GH2)供给系统,包含:液体氢(LH2)的杜瓦瓶;热力泵,其具有从所述杜瓦瓶接收LH2的多个容器和提供GH2的热交换器,所述多个容器顺序地提供LH2给所述热交换器,并当容器中的LH2耗尽时用所述杜瓦瓶的LH2重新填充容器;以及供给GH2的蓄压器,所述蓄压器接收来自所述热交换器的GH2,并提供加压的GH2给所述多个容器。

所述GH2供给系统进一步包含:供给歧管,其将所述多个容器和所述热交换器相互连接,并且所述供给歧管具有用于顺序供应LH2给所述热交换器的多个供给阀;

本发明一个实施例中所限定的热力泵进一步包含加压歧管,其将所述蓄压器和所述多个容器互相连接,并且所述加压歧管具有多个加压阀,该多个加压阀顺序加压所述容器,同时顺序供给LH2。

所述热力泵进一步包含填充歧管,其将所述多个容器和所述杜瓦瓶互相连接,以及所述填充歧管具有用LH2顺序填充所述容器的多个填充阀。

所述热力泵进一步包含排放歧管,其将所述多个容器和所述杜瓦瓶互相连接,以及所述排放歧管具有多个降压阀,所述降压阀顺序减压所述容器的GH2同时顺序填充LH2。

所述热力泵进一步包含在所述杜瓦瓶和容器中间的蓄压冷凝器,所述蓄压冷凝器提供LH2给所述填充歧管,并接收来自所述排放歧管的GH2。

一种提供氢给发动机的方法,包含:通过增压泵交替地将多个液体氢容器中的一个容器与含有氢气的蓄压器连接,所述蓄压器提供连续流的氢气给发动机。

所述方法进一步包含:用所述容器和蓄压器中间的热交换器增加氢的温度;和提供来自所述发动机的热工作气体给所述热交换器。

所述方法进一步包含:使用加压歧管将所述容器与所述蓄压器互相连接,所述加压歧管具有连接到所述容器的多个加压阀;并且操作所述加压阀用于控制来自所述容器的氢的顺序流。

所述方法进一步包含:顺序地操作所述热交换器和每个液体氢容器中间的多个供给阀。

本发明一个实施例所述的方法,其中所述系统以一个流速连续运行。

一种利用热力泵将连续气体氢(GH2)供给发动机的方法,包含:用液体氢(LH2)填充多个容器和一个供给杜瓦瓶;通过具有用于加压的高压GH2的加压歧管将所述多个容器中的第一容器连接到蓄压器,并通过供给歧管将所述第一容器连接到热交换器;供应来自发动机的热工作流体给所述热交换器,以及供应来自所述热交换器的GH2给所述蓄压器;提供来自所述蓄压器的GH2给所述发动机;一旦容器中的所述第一容器中的液体氢耗尽,就断开所述第一容器与供给歧管和加压歧管;连接所述多个容器中的第二容器与所述加压歧管和供给歧管;将所述第一容器通过排放歧管经过第二热交换器连接到所述杜瓦瓶,以及通过填充歧管将所述第一容器与所述杜瓦瓶连接,通过第二热交换器重新填充所述第一容器;一旦容器中的所述第二容器中的液体氢耗尽,就断开所述第二容器与所述供给歧管和加压歧管;将所述多个容器中的下一个容器与所述加压歧管和所述供给歧管连接;通过所述排放歧管通过所述第二热交换器将所述多个容器中的第二容器与所述杜瓦瓶连接,并通过填充歧管将所述多个容器中的下一个容器与所述杜瓦瓶连接,通过所述第二热交换器重新填充所述第一容器;将所述多个容器顺序地连接和断开用于到与所述发动机的连续GH2流。

所述方法进一步包含连接在所述供给歧管和所述热交换器中间的第一增压泵的步骤。

所述方法进一步包含连接在所述杜瓦瓶和所述第二热交换器中间的第二增压泵的步骤。

附图说明

图1是使用热力泵的实施例的LH2存储和GH2供给系统的元件的示意图;

图2-16展示了所述热力泵提供连续GH2供给的操作。

具体实施方式

参考图1,此处所公开的实施例说明了通过比例流量控制装置由热力泵存储LH2和供给GH2到发动机和/或其他辅助系统的系统。对一个示例性实施例,LH2存储杜瓦瓶10为系统存储LH2。尽管示出一个杜瓦瓶,但是对于要求额外的LH2存储能力的可选实施例而言,可以使用多个杜瓦瓶。热力泵(TDP)12包括LH2转移蓄压器和返回GH2冷凝器14,返回GH2冷凝器14通过第一增压泵16接收来自杜瓦瓶10的LH2,并通过蓄压冷凝器中的第一热交换器18将GH2返回至杜瓦瓶。为所描述的实施例示出为球体20a、20b、和20c的多个TDP容器通过具有进气阀24a、24b、和24c进入各自的球体中的液体填充歧管22接收来自LH2转移蓄压器的LH2。每个球体分别通过供给阀28a、28b、和28c提供LH2给液体供给歧管26。

第二增压泵30引起液体流流过供给歧管进入热交换器32,热交换器32包括流入且通过热交换器32的一般来自发动机冷却系统的热工作流体线34,和流入且通过热交换器32的LH2到GH2转换线36。GH2转换线中的气体提供给GH2蓄压器38,GH2蓄压器38提供临时GH2存储用于通过比例流量控制装置(PFCD)40提供给发动机42,例如适用于HALE航空器应用的往复式内燃发动机。通过PFCD也可以提供GH2给其他辅助系统44,例如用于生成电力的燃料电池,从而补充发动机产生的机械动力。

GH2加压歧管46通过加压阀48a、48b和48c使GH2蓄压器38和每个TDP球体中的空余量/气隙(ullage)互相连接,用于对球体可操作地加压,这将在随后更详细地描述。通过降压阀52a、52b、52c连接到TDP球体的排放歧管50将GH2返回至GH2冷凝器14,用于返回至LH2杜瓦瓶10,这也将在随后更详细地描述。

提供快速断开装置54a和54b使地面服务设备(GSE)连接LH2杜瓦瓶,用于填充LH2和去除LH2,如果需要,在填充操作期间提供快速断开装置(QD)54c使得GH2流入GH2蓄压器或从GH2蓄压器流出至GSE。

图2-16说明了利用TDP泵12的存储和供给系统的操作。在图2中,填充系统的操作是通过由箭头所表示来自GSE的LH2流过QD 54b进入杜瓦瓶10、蓄压器14,并通过填充歧管22与开着的填充阀24a、24b和24c通过TDP球体穿出开着的降压阀52a、52b、和52c进入降压歧管,通过冷凝器18进入杜瓦瓶,并通过QD 54a排回至GSE完成。图2示出了具有冷的GH2的系统,冷的GH2是由冷却期间流过系统的LH2迅速蒸发产生的。在充分冷却系统之后,开始填充LH2的液体,如图3中所示。本领域的技术人员将认识到,起初惰性气体流(例如气体氢之后的氦)可以先于LH2流。完成通过QD 54c用GH2填装GH2蓄压器38同时用LH2填充杜瓦瓶和TDP球体。对于示例性的实施例,使用大约150磅/平方英寸(psia)的工作GH2压力。

如图4中所示,一旦完成填充TDP球体,填充阀24a、24b和24c被关闭。继续填充LH2杜瓦瓶直到充满,如图5中所示,在此时GSE可以被断开并且系统处于备用状态。在某些实施例中,由于操作考虑,可以要求在完成填充TDP球体之前用阀调节完成对LH2杜瓦瓶的填充。

如图6中所示,操作TDP 12从打开加压阀48c开始,将来自GH2蓄压器的GH2压力导入TDP球体20c。气体的热收缩导致气体压力较小地降低,如图所示大约减小5磅/平方英寸而到145磅/平方英寸。由增压泵30辅助,打开供给阀28c提供LH2流从TDP球体20c流入供给歧管26。LH2流过热交换器32将LH2气化为GH2,并流到蓄压器38以通过PFCD 40供给以便由发动机和/或其他辅助系统使用。流过热交换器32的流将蓄压器和TDP球体20c中的工作压力增加至图7中所示的标称值150磅/平方英寸。在示例性的实施例中,压力调节器(未示出)维持蓄压器中150磅/平方英寸的标称压力。剩余两个TDP球体20b和20a以及LH2杜瓦瓶和蓄压器14中的压力保持在25磅/平方英寸的标称值。

当TDP球体20c的LH2基本耗尽时,如图8中所示,加压阀48c和供给阀28c均关闭。加压阀48b打开,对TDP球体20b加压,如图中所示气体压力波动到145磅/平方英寸,以及供给阀28b打开,提供了LH2从TDP球体20b流入供给歧管,并穿过泵30至热交换器32然后至蓄压器38。填充阀24c和降压阀52c均打开,开始对TDP球体20c重新填充。

如图9中所示,流过热交换器32的流增加了蓄压器和TDP球体20b中的工作压力,使得在TDP球体20b和蓄压器38中实现压力恢复至150磅/平方英寸。TDP球体20c中压力降至大约25磅/平方英寸以供填充同时流过排放歧管50和热交换器18并返回至LH2杜瓦瓶10,导致蓄压器和冷凝器14中的压力稍微增加25-30磅/平方英寸。如图10中所示,当TDP球体20b的LH2耗尽时,来自增压泵16辅助的杜瓦瓶的25磅/平方英寸的LH2流填充TDP球体20c。对于所示的实施例,LH2饱和温度和饱和压力导致25磅/平方英寸杜瓦瓶压力。在可选的系统中,可以使用替换的压力和温度。

当TDP球体20b中的LH2基本耗尽时,如图11中所示,加压阀48c和供给阀28b均关闭。加压阀48a打开对TDP球体20a加压,如图所示气体压力波动至145磅/平方英寸,以及供给阀28ab打开提供LH2从TDP球体20a流入供给歧管和通过泵30流至热交换器32然后流至蓄压器38。填充阀24b和降压阀52b均打开,开始对TDP球体20b重新填充。

如图12中所示,在TDP球体20a和蓄压器38中实现了压力恢复至150磅/平方英寸。TDP球体20b中压力降至大约25磅/平方英寸以供填充同时流过排放歧管50和热交换器18并返回至LH2杜瓦瓶10,保持蓄压器和冷凝器14中的压力稍微增加25-30磅/平方英寸。如图13中所示,当TDP球体20a中的LH2耗尽时,来自增压泵16辅助的杜瓦瓶的LH2流填充TDP球体20b。

当TDP球体20a中的LH2基本耗尽时,如图14中所示,加压阀48a和供给阀28a均关闭。加压阀48c打开对TDP球体20c加压,如图所示气体压力波动至145磅/平方英寸,以及供给阀28c打开提供LH2流从TDP球体20c流入供给歧管和通过泵30流至热交换器32然后流至蓄压器38。填充阀24a和降压阀52a均打开,开始对TDP球体20a重新填充。

如图15中所示,在TDP球体20c和蓄压器38中实现了压力恢复至150磅/平方英寸。TDP球体20a中的压力降至大约25磅/平方英寸以供填充同时流过排放歧管50和热交换器18并返回至LH2杜瓦瓶10,保持蓄压器和冷凝器14中的压力稍微增加25-30磅/平方英寸。如图16中所示,当TDP球体20c的LH2耗尽时,来自增压泵16辅助的杜瓦瓶的LH2流填充TDP球体20a,使系统处于先前关于图8描述的状态,并且三个TDP球体之间循环转变,以便于连续供应GH2给蓄压器38和发动机或辅助系统。

对于示例性的实施例,例如HALE飞行器应用,(若干)LH2杜瓦瓶可以是一个或多个10英尺直径的球形真空有套容器。TDP球体是六英尺直径不锈钢钢化真空有套容器。在可选的实施例中,可以使用具有额外的绝缘材料的泡沫绝缘或真空外套。TDP球体并不是为了长期存储LH2。TDP球体的大小和热性能被选择成在循环之间具有最小温度变化(例如,预热期)的短时间内提供快速周期性的LH2填充、耗尽、和转移至液体供给歧管。对于该示例性的大小,每个TDP球体的周期大约在标称流速是一分钟,并可以20秒钟达到最大流状态。尽管对于该实施例已经示出三个TDP球体,但是为了达到期望的热性能和抽吸性能可以使用两个球体或更多的球体。此外,尽管在所描述的实施例中用可比较的时间示出了一个球体排出和耗尽球体重新填充的过程,但是需要对多个球体顺序地重新填充,从而适应比重新填充时间更快的耗尽时间。此外,虽然在示例性的实施例中使用了球形容器,然而,在可选的实施例中可以使用圆柱形容器或共形(conformal)容器。在某些实施例中,如图1中所示,加热器组件56可以用于每个TDP球体,从而维持具体的工作温度或热敏电阻。TDP球体填充和耗尽的周期大约是1分钟,其中热交换器32在大约2700lbs/小时的热工作流体流和大约47lbs/小时的H2流工作。增压泵16和增压泵30均是电驱动旋转泵,其提供大约1/2psi的顶部上升用于引入LH2流到系统中,从而避免流停滞。所描述的每个TDP球体中用于确定循环控制的充满和耗尽条件的水平传感器/液面传感器58可以是硅二极管点传感器、电容式传感器、或其它合适的装置。

现在已经如专利法规所要求进行详细地描述了本公开的各种实施例,本领域的技术人员将认识到,对此处所公开的具体实施例可以做出修改和替代。这些修改均在权利要求所限定的本公开的范畴和含义内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1