两用LNG/LIN储存罐的吹扫方法与流程

文档序号:18888101发布日期:2019-10-15 21:16阅读:952来源:国知局
两用LNG/LIN储存罐的吹扫方法与流程

本发明涉及使用液氮(lin)作为冷却剂将天然气液化以形成液化天然气(lng),更具体地说,涉及使用lng储存罐储存和/或输送液氮到lng液化位置。



背景技术:

lng生产是将天然气从具有天然气充裕供给源的位置供应到具有天然气强需求量的遥远位置的迅速增长的手段。所述常规lng循环包括:(a)初步处理所述天然气资源以除去污染物例如水、硫化合物和二氧化碳;(b)通过各种可能的方法,包括自冷冻、外部冷冻、贫油等分离一些重质烃气体,例如丙烷、丁烷、戊烷等;(c)基本上通过外部冷冻将天然气冷冻以在接近大气压和大约-160℃下形成lng;(d)在为此目的设计的油船或油轮中将lng产品输送到销售位置;和(e)将所述lng再加压和再气化成可以分配到天然气消费者的加压天然气。常规lng循环的步骤(c)通常要求使用通常由大型气体涡轮机驱动器驱动的大型制冷压缩机,所述驱动器排放显著的碳及其它排放物。大的资本投入(数量级为数十亿美元)和大规模基础设施可以被要求作为液化站的一部分。常规lng循环的步骤(e)一般包括使用低温泵将lng再加压到要求的压力,然后通过经由中间流体,但是最终用海水的交换热,或通过燃烧所述天然气的一部分以加热和蒸发lng使所述lng再气化以形成加压天然气。一般而言,不使用制冷的lng的可获得的有效能(exergy)。

在不同位置产生的低温致冷剂,例如液化氮气(“lin”)可以用于使天然气液化。作为lng-lin构思已知的方法涉及非常规lng循环,其中用天然气液化方法替换上述至少步骤(c),所述天然气液化方法基本上使用液氮(lin)作为冷冻的开放回路源(anopenloopsource)和其中修改上述步骤(e)以使用制冷的lng的有效能来促进氮气的液化而形成lin,所述lin然后可以被输送到资源位置并用作冷冻源用于lng的生产。美国专利号3,400,547描述了将液氮或液体空气从市场船运到将它用于使天然气液化的油田部位。美国专利号3,878,689描述了使用lin作为冷冻源以制备lng的方法。美国专利号5,139,547描述了使用lng作为致冷剂以产生lin。

所述lng-lin构思还包括在油船或油轮中将lng从资源位置输送到市场位置并将lin从市场位置反向输送到资源位置。相同油船或油轮的使用,和或许公共陆上容器设备的使用预期使成本和所要求的基础设施最小化。结果,可以预期lng被lin一定程度污染和lin被lng一定程度污染。lng被lin的污染可能不是主要关注,因为管线和相似分布装置的天然气规格(例如由美国联邦能源管理委员会颁布的那些)允许存在一些惰性气体。然而,因为在资源位置处的lin将最终排放到大气中,所以lin被lng的污染(lng当作为天然气再蒸发时是比二氧化碳厉害超过20倍的温室气体)必须降低到为这种排放可接受的水平。从罐除去残余内容物的技术是公知的,但是为了达到所需低水平的污染以避免在排放气态氮(gan)之前在资源位置处处理所述lin或蒸发的氮气可能不是经济或环境上可接受的。所需要的是使用lin作为冷却剂以制备lng的方法,其中如果lin和lng使用公共储存设施,则在用lin填充所述储存设施之前有效地吹扫残留在所述储存设施中的任何天然气。



技术实现要素:

本发明提供将液化氮气(lin)加载到初始含有液化天然气(lng)和在所述lng上方的蒸气空间的低温储存罐中的方法。提供第一和第二氮气料流。所述第一氮气料流具有比所述第二氮气料流更低的温度。在从储存罐卸出lng的同时,将所述第一氮气料流注入所述蒸气空间中。然后通过将所述第二氮气料流注入所述储存罐吹扫所述储存罐,从而将所述蒸气空间的天然气含量降低到小于5mol%。在吹扫所述储存罐后,用lin加载所述储存罐。

本发明还提供吹扫初始含有液化天然气(lng)和在所述lng上方的蒸气空间的低温储存罐的方法。提供了第一氮气料流,其具有在所述第一氮气料流的标准沸点的±20℃内的温度。提供了第二氮气料流,其具有在所述lng的温度的±20℃内的温度。所述第一氮气料流和所述第二氮气料流是来自氮气液化方法的滑流。在将所述第一氮气料流注入蒸气空间中同时,从所述储存罐卸出lng。将所述第二氮气料流注入所述储存罐中,从而将所述蒸气空间的甲烷含量降低到小于5mol%。在将所述第二氮气料流注入所述储存罐后,用液氮(lin)加载所述储存罐。

本发明还提供交替储存液化天然气(lng)和液氮(lin)的两用低温储存罐。液体出口布置在所述罐的低处并容许液体从所述罐移除。一个或多个氮气入口布置在所述罐的顶部或顶部附近。在将lng经由液体出口从所述罐移除时,所述一个或多个气体入口将氮气导入所述罐中。一个或多个附加的氮气入口布置在所述罐底部附近并容许附加的氮气导入所述罐中。当将所述附加的氮气导入所述罐中时,一个或多个气体出口容许从所述罐移除气体。在经由所述一个或多个气体出口从所述罐移除所述附加的氮气的同时,一个或多个液体入口容许低温液体例如lin导入所述罐中。

附图简述

图1是使液化天然气(lng)再气化和同时产生液氮(lin)的系统的示意图;

图2是根据本公开内容的方面的两用lng/lin罐的侧视图;

图3a-3d是在根据本公开内容的方面的吹扫方法中在各个时间下两用lng/lin罐的侧视图;

图4是根据本公开内容的方面的方法的流程图;和

图5是根据本公开内容的方面的方法的流程图。

详细描述

现将描述本公开内容的各个特定方面和型式,包括这里采用的优选的方面和定义。虽然以下详细描述给出了特定的优选方面,但是本领域技术人员应领会这些方面仅是示例性的,并且本发明可以按其它方式实践。对“本发明”的任何引用可以是指由权利要求限定的各方面的一个或多个,但不一定是全部。标题的使用仅仅是为了方便并不限制本发明范围。为了清晰度和简洁目的,数个附图中的相似的参考数字表示相似的项目、步骤或结构并且可以在每个附图中不详细描述。

在本文详细描述和权利要求内的所有数值通过“大约“或“大致”指示值进行修饰,并且考虑本领域中普通技术人员将预计的实验误差和偏差。

本文所使用的术语“压缩机”是指通过施加功提高气体压力的机器。“压缩机”或“冷冻剂压缩机”包括能够增加气体料流压力的任何单元、设备或装置。这包括具有单个压缩过程或步骤的压缩机,或具有多级压缩或步骤的压缩机,或更具体地说,在单个套管或壳内的多级压缩机。待压缩的蒸发料流可以提供给在不同压力下的压缩机。冷却过程的一些阶段或步骤可以包括并联、串联或这两者的两个或更多个压缩机。本发明不受压缩机(一个或多个)的类型或排列或布局限制,尤其是在任何致冷剂回路中。

本文所使用的“冷却”广泛地是指使物质的温度和/或内能降低和/或下降任何适合的、希望的或要求的量。冷却可以包括至少大约1℃,至少大约5℃,至少大约10℃,至少大约15℃,至少大约25℃,至少大约35℃,或至少大约50℃,或至少大约75℃,或至少大约85℃,或至少大约95℃,或至少大约100℃的温度下降。冷却可以使用任何适合的散热手段(heatsink),例如蒸汽产生、热水加热、冷却水、空气、致冷剂、其它工艺料流(集成)和它们的组合。冷却的一个或多个源可以组合和/或级联以达到所需出口温度。冷却步骤可以使用具有任何适合的设备和/或装备的冷却单元。根据一些方面,冷却可以包括间接换热,例如具有一个或多个换热器。在备选方案中,冷却可以使用蒸发(蒸发热)冷却和/或直接换热,例如直接地喷雾到工艺料流中的液体。

本文所使用的术语“膨胀设备”是指适合于将管线中的流体(例如,液体料流、蒸气料流或含液体和蒸气二者的多相料流)的压力降低的一个或多个设备。除非特别指出膨胀设备的特定类型,否则所述膨胀设备可以(1)至少部分地通过等焓手段,或(2)可以至少部分地通过等熵手段,或(3)可以是等熵手段和等焓手段两者的组合。用于天然气等焓膨胀的适合的设备是本领域中已知的并一般包括,但不限于,手工或自动操纵的节流设备例如,阀、控制阀、焦耳-汤姆逊(joule-thomson,j-t)阀或文丘里设备。用于天然气等熵膨胀的适合的设备是本领域中已知的并一般包括装备例如从此种膨胀提取或获得功的膨胀器或涡轮膨胀器。用于液体料流等熵膨胀的适合的设备是本领域中已知的,并一般包括装备例如从此种膨胀提取或获得功的膨胀器、水力膨胀器、液体涡轮机或涡轮膨胀器。等熵手段和等焓手段两者的组合的实例可以是并联的焦耳-汤姆逊阀和涡轮膨胀器,其提供单独使用或同时使用所述j-t阀和涡轮膨胀器的能力。等焓或等熵膨胀可以在全液相、全蒸气相或混合相中进行,并可以进行以促进从蒸气料流或液体料流向多相料流(具有气相与液相二者的料流)或向不同于其初始相的单相料流的相改变。在本文附图的描述中,在任一附图中参照超过一个膨胀设备不一定是指每个膨胀设备是相同类型或尺寸的。

术语“气体”可与“蒸气”互换地使用,并定义为呈不同于液态或固态的气态下的物质或物质混合物。同样地,术语“液体”是指呈与气态或固态不同的液态的物质或物质混合物。

“换热器”广泛地是指能够将热能或冷能从一种介质转移到另一种介质,例如在至少两种相异流体之间转移的任何设备。换热器包括“直接换热器”和“间接换热器”。因此,换热器可以具有任何适合的设计,例如并流或逆流换热器,间接换热器(例如缠绕式换热器或板翅式换热器例如铜焊铝板翅类型(abrazedaluminumplatefintype)),直接接触式换热器,壳管式换热器,螺旋型、发夹型、芯型、芯和釜型、印刷电路型、双套管型或任何其它类型的已知换热器。“换热器”还可以是指适合于允许一个或多个料流穿过并适合于在一个或多个致冷剂管线,和一个或多个进料料流之间进行直接或间接换热的任何柱、塔、单元或其它配置。

本文所使用的术语“间接换热”是指使得两种流体进入热交换关系,而没有流体彼此间的任何物理接触或掺合。芯在釜内换热器和铜焊铝板翅式换热器是促进间接换热的装备的实例。

本文所使用的术语“天然气”是指从原油井(伴生气体)或从地下含气地层(非伴生气)获得的多组分气体。天然气的组成和压力可能会有很大差异。典型的天然气料流含有甲烷(c1)作为主要组分。天然气料流还可以含有乙烷(c2)、更高分子量烃和一种或多种酸气。天然气还可以含有次要量的污染物例如水、氮气、硫化铁、蜡和原油。

已经使用一组数值上限和一组数值下限描述了某些方面和特征。不言而喻的是,从任何下限到任何上限的范围应被考虑,除非另有说明。所有数值是"大约"或"大致"指示值,并且考虑本领域中普通技术人员将预计的实验误差和偏差。

本申请中引用的所有专利、试验程序和其它文献在此公开物与本发明一致并且针对允许这种引入的所有权限的程度上充分引入供参考。

本文描述的是使用氮气吹扫lng输送罐的方法和工艺以致所述罐随后可用来输送lin。本公开发明的特定方面包括参照附图描述的下面段落中给出的那些。虽然仅特别参照一个附图描述一些特征,但是它们可以同样适用于其它附图并可以与其它附图或上文论述结合使用。

图1是根据本公开的方面的液氮(lin)生产系统100的实例的示意图。所述lin生产系统100可以在其中使lng再气化的陆基或船基位置。在由第一电动机106或其它动力驱动的氮气压缩机104中将氮气料流102压缩,从而形成压缩氮气料流108。料流102的所供应氮气优选具有足够低的氧含量,例如小于1mol%,如此以避免当与lng接触时的可燃性问题。如果最初将氮气从空气中分离,则残留氧可能在所述氮气中。压缩氮气料流108穿过第一换热器110并被lng料流112冷却而形成液化压缩氮气料流114。使用一个或多个泵116将lng料流112从lng源118泵送,所述lng源118在所公开的方面中可以是陆基或船基储存罐,并且在更尤其公开的方面中可以是在一个时期储存lng并在另一个时期储存lin的两用储存罐。第一换热器110可以加热lng料流112足以由其形成天然气料流120,后者然后可以被进一步加热、压缩、加工和/或分配以便发电或其它应用。

让液化压缩氮气料流114穿过第二换热器122,其中它经由与闪蒸氮气料流或蒸发氮气料流124间接换热而进一步冷却,所述氮气料流的来源将在本文进一步描述。使所述过冷液化氮气料流126膨胀,优选在功产生膨胀器128中膨胀,以形成部分液化氮气料流,其中所述部分液化氮气料流的压力是适合于将所形成的lin料流136输送以存储的压力。或者,所述功产生膨胀器128可以后面是膨胀阀(未显示)以进一步降低所述过冷液化氮气料流的压力以形成所述部分液化氮气料流。功产生膨胀器128可以与发电机130操作上连接,所述发电机130又可以直接地或间接地提供功率以驱动系统100或其它系统中的电动机、压缩机和/或泵。将所述部分液化氮气料流132引导至分离容器134,其中将此前所提及的闪蒸氮气料流或蒸发氮气料流124与所述lin料流136分离。可以将所述lin料流136送到陆基或船基储存罐,并且在所公开的方面中,可以储存在两用储存罐中,所述两用储存罐配置用来在一个时期储存lng并在另一个时期储存lin,如将进一步描述的那样。所述蒸发氮气料流124进入在接近氮气标准沸点的温度,或大约-192℃下的第二换热器122,并将液化压缩氮气料流114冷却。在一个方面中,蒸发氮气料流124的温度在-192℃的±20℃,或±10℃,或±5℃,或±2℃,或±1℃的范围内。温热的闪蒸或蒸发氮气料流138离开在接近所述lng的温度的温度下的第二换热器122,所述温度很可能接近于lng的沸点,即-157℃。在一个方面中,温热的蒸发氮气料流的温度在-157℃的±20℃,或±10℃,或±5℃,或±2℃,或±1℃的范围内。将所述温热的蒸发氮气料流138在蒸发氮气压缩机140中压缩,所述蒸发氮气压缩机140由第二电动机142或其它动力驱动,从而形成压缩蒸发氮气料流144。将所述压缩蒸发氮气料流144与氮气料流102结合以经由系统100循环。

如此前论述那样,为了完全利用lng-lin方法的利益,优选在同一个罐中将lng从其生产位置输送到其再气化位置,所述罐将lin从lng再气化位置输送到lng生产位置。此种两用罐示于图2中并一般由参考数字200指示。罐200可以安装在输送容器(未显示)上,所述输送容器在lng生产位置到lng再气化位置之间移动。罐200包括低处(其可以是贮槽202)、倾斜槽底的拐角等。液体出口204布置在贮槽202处以允许液体几乎完全从所述罐移除。与标准lng输送罐不同,无需在所述罐中保留lng剩余部分或“脚料”,因为所述罐将用lin装填以便回程到lng生产位置。一个或多个气体入口206可以布置在所述罐的顶部或顶部附近。一个或多个气体入口206可以置于所述罐中的其它位置处。当将所述lng正在泵出或以其它方式移除时,一个或多个气体入口206容许非常冷的氮气注入所述罐中。在一个方面中,所述非常冷的氮气可以从蒸发氮气料流124的滑流124a取得,所述蒸发氮气料流124如先前所述具有接近氮气沸点,即-192℃的温度。在另一个方面中,所述非常冷的氮气可以从温热的蒸发氮气料流138的滑流138a取得,所述温热的蒸发氮气料流138如先前所述具有接近天然气沸点,即-157℃的温度。在又一个方面中,所述非常冷的氮气可以是从滑流124a和138a取得的,或从系统100的其它氮气料流取得的气体的组合。罐200还具有一个或多个气体出口208以容许在将液体加载到所述罐中同时移除气体。所述罐还具有一个或多个液体入口210以容许液体,例如lng或lin泵送入所述罐中。一个或多个液体入口可以优选布置在所述罐的底部或底部附近,但是根据需要或要求可以布置在所述罐中的任何位置处。附加的气体入口212布置在所述罐的底部或底部附近。当正从所述罐吹扫天然气及其它蒸气时,所述附加的气体入口容许冷氮气注入所述罐中。在一个方面中,冷氮气可以从滑流138a、滑流124a、系统100的其它氮气料流或它们的组合取得。

根据所公开的方面的吹扫罐200的工艺或方法示于图3a-3d中。这些图中的加粗或加厚线表示在相应的附图中所示的工艺或方法的步骤期间使用的出口或入口。图3a表示在所述工艺或方法开始时罐200的状态。罐200用lng300填充或几乎填充,其中在所述罐中的lng上方的蒸气空间302中的任何气体的组成是大约90mol%甲烷或更高。当卸出lng时(图3b),经由液体出口204泵送或以其它方式排空所述lng。同时,经由一个或多个气体入口206将非常冷的氮气(其如此前论述那样可以包含来自滑流124a和/或138a的气体)注入所述罐中。在一个方面中,经由气体入口206注入的非常冷的氮气的温度可以比所述lng沸点更冷,以保持所述罐内的温度足够冷以防止或显著地降低所述罐中蒸发的lng的量。一旦从所述罐完全移除lng,残留蒸气的组成就可以是少于20mol%甲烷,或少于10mol%甲烷,或少于8mol%甲烷,或少于5mol%甲烷,或少于3mol%甲烷。

然后如下经由一个或多个气体出口208从所述罐200的蒸气空间302吹扫残留蒸气:经由附加的气体入口212将冷氮气料流注入所述罐中(图3c)。在一个方面中,可以将所述经吹扫的蒸气循环回到lin生产系统(例如,如图1所示,经由管线146或管线148)中以减少或消除进入大气的不希望的排放物。这方面将是合乎需要的选项,其中例如,lng/lin运载到达频率足够低以致产生和储存足够的液氮以将所述罐中的烃浓度足够稀释到适合的水平。或者,在一些方面中,所述经吹扫的蒸气可以经压缩并经由管线150与天然气料流120结合。这一方面将是合乎需要的选项,其中例如,lng/lin运载到达率更加频繁,并在此种情况下,可能产生天然气料流的氮浓度方面的临时性飙涨。所述冷氮气料流可以从系统100的任何部分取得,包括滑流124a和/或138a,并在一个优选的方面中,所述冷氮气料流从滑流138a取得。滑流138a稍微热于已经存在于所述罐中的非常冷的氮气(其在一个优选的方面中从滑流124a取得),并且此种配置因此可以为相同量的氮气质量流量提供大约两倍量的体积置换。所述吹扫过程可以将吹扫后蒸气的组成减少到少于2mol%甲烷,或少于1mol%甲烷,或少于0.5mol%甲烷,或少于0.1mol%甲烷,或少于0.05mol%甲烷。当所述罐的内部温度达到预定量时,或当将预定量的冷氮气导入所述罐中时,或当预定时间已经过去时,或当甲烷的mol%的测量已经减少到某个量时,图3c所示的吹扫过程可以确定为是完成的。一旦确定吹扫过程完成,就经由一个或多个液体入口210将lin304加载到所述罐中(图3d)。随着所述罐填充lin,蒸气空间302中的吹扫后蒸气从所述罐排出并可以引导至与lin生产系统100内的一个或多个氮气料流结合,例如,在第二换热器122的上游或下游的位置处结合。由于这里所公开的吹扫过程,在大约5mta(百万吨/年)的lin生产量下对于三至四天的船运周期,所述lin在填充罐200后可能具有少于100份/百万份(ppm)甲烷的浓度。或者,罐中的残留lin可以具有少于80ppm甲烷,或少于50ppm甲烷,或少于30ppm甲烷,或少于20ppm甲烷,或少于10ppm甲烷。

本公开内容的方面可以在许多方面进行修改,同时保持本发明的精神。例如,在整个本公开内容中,罐的蒸气空间中的甲烷的比例已经按质量计描述为mol%。或者,因为天然气可以不仅仅由甲烷组成,所以通过按质量计mol%替代所测得的蒸气空间中存在的非氮气的比例的说法(speak)可能是有利的。此外,可以根据需要或要求改变气体入口206、气体出口208和附加的气体入口212的数目和位置。

图4是将液化氮气(lin)加载到初始含有液化天然气(lng)和在所述lng上方的蒸气空间的低温储存罐中的方法400。在块402,提供第一氮气料流和第二氮气料流。所述第一氮气料流具有比所述第二氮气料流的温度更低的温度。在块404,从储存罐卸出lng,同时将所述第一氮气料流注入蒸气空间中。在块406,通过将所述第二氮气料流注入所述储存罐吹扫所述储存罐,从而将所述蒸气空间的甲烷含量降低到小于5mol%。在吹扫储存罐后,在块408,用lin加载所述储存罐。

图5是初始含有液化天然气(lng)和在所述lng上方的蒸气空间的低温储存罐的吹扫方法500。在块502,提供了第一氮气料流,其具有在所述第一氮气料流的标准沸点的±20℃内的温度。在块504,提供了第二氮气料流,其具有在所述lng的温度的±20℃内的温度。所述第一氮气料流和所述第二氮气料流是来自氮气液化方法的滑流。在块506,从储存罐卸出lng,同时将所述第一氮气料流注入所述蒸气空间中。在块508,将所述第二氮气料流注入所述储存罐中,从而将所述蒸气空间的甲烷含量降低到小于5mol%。在将所述第二氮气料流注入储存罐中后,在块510,用液氮(lin)加载所述储存罐。

这里公开的方面提供两用低温lng/lin储存罐的吹扫方法。所公开的方面的优点是所储存/输送的lin中的天然气处于可以接受的低水平。另一个优点是所公开的吹扫方法容许储存罐基本上排空lng。不要求剩余部分或“脚料”残留在罐中。这增强所述罐的两用性质,并当在其中加载lin时进一步降低所述罐中的天然气含量。还有一个优点是用于吹扫的氮气从lin生产/lng再气化系统取得。不要求产生额外的吹扫气体料流。又一个优点是可以将从储存罐吹扫的气体循环回到lin生产系统中。这种封闭系统减少或甚至消除不希望的排放物进入大气。

本公开内容的方面可以包括下面编号段落中所示的方法和系统的任何组合。这不应认为是所有可能方面的完全清单,因为可以从上面描述预期任何数目的变型。

1.将液化氮气(lin)加载到初始含有液化天然气(lng)和在所述lng上方的蒸气空间的低温储存罐中的方法,所述方法包括:

提供第一氮气料流和第二氮气料流,其中所述第一氮气料流具有比所述第二氮气料流的温度更低的温度;

从所述储存罐卸出所述lng,同时将所述第一氮气料流注入所述蒸气空间;

通过将所述第二氮气料流注入所述储存罐吹扫所述储存罐,从而将所述蒸气空间的甲烷含量降低到小于5mol%;和

在吹扫所述储存罐后,用lin加载所述储存罐。

2.段1的方法,其中所述第一氮气料流的温度在所述第一氮气料流的标准沸点的±5℃范围内。

3.段1或段2的方法,其中所述第二氮气料流的温度在所述lng的温度的±5℃范围内。

4.段1-3中任一段的方法,其中所述第一氮气料流和所述第二氮气料流是来自氮气液化方法的滑流。

5.段4的方法,还包括使用可从所述lng的再气化获得的低温使所述氮气液化方法中的氮气液化。

6.段4的方法,还包括使所述氮气液化方法中的加压液化氮气料流膨胀以产生lin和蒸发氮气料流,其中所述蒸发氮气料流的一部分是所述第一氮气料流。

7.段6的方法,还包括,在使所述加压液化氮气料流膨胀之前,使用所述蒸发氮气料流将所述加压液化氮气料流冷却以产生温热的蒸发氮气料流,其中所述温热的蒸发氮气料流的一部分是所述第二氮气料流。

8.段4的方法,其中将在lin加载期间从储存罐喷出的气体料流与在所述氮气液化方法内的氮气料流混合。

9.段8的方法,其中在所述氮气液化方法内的氮气料流包含所述第二氮气料流。

10.段1-9中任一段的方法,其中将在lin加载期间从储存罐喷出的气体料流与蒸发天然气料流混合。

11.段1-10中任一段的方法,其中将由于吹扫所述储存罐而从储存罐喷出的气体料流与lng蒸发气体料流混合。

12.段1-11中任一段的方法,其中在注入所述第二氮气料流之前在所述蒸气空间中的气体的甲烷含量小于20mol%。

13.段1-12中任一段的方法,其中在将所述lin加载到所述罐中之前在所述蒸气空间中的气体的甲烷含量小于2mol%。

14.段1-13中任一段的方法,其中在加载到所述储存罐中后所述lin的甲烷含量小于100ppm。

15.段1-14中任一段的方法,其中所述第一氮气料流和所述第二氮气料流具有小于1mol%的氧浓度。

16.段1-15中任一段的方法,其中将在lin加载期间从储存罐喷出的气体料流与由所述lng的再气化产生的天然气料流混合。

17.初始含有液化天然气(lng)和在所述lng上方的蒸气空间的低温储存罐的吹扫方法,所述方法包括:

提供第一氮气料流,所述第一氮气料流具有在所述第一氮气料流的标准沸点的±20℃内的温度;

提供第二氮气料流,所述第二氮气料流具有在所述lng的温度的±20℃内的温度;

其中所述第一氮气料流和所述第二氮气料流是来自氮气液化方法的滑流;

从所述储存罐卸出所述lng,同时将所述第一氮气料流注入所述蒸气空间;

将所述第二氮气料流注入所述储存罐,从而将所述蒸气空间的甲烷含量降低到小于5mol%;和

在将所述第二氮气料流注入所述储存罐后,用液氮(lin)加载所述储存罐。

18.交替地储存液化天然气(lng)和液氮(lin)的两用低温储存罐,包括:

布置在所述罐的低处并配置用来容许液体从所述罐移除的液体出口;

布置在所述罐的顶部或顶部附近的一个或多个氮气入口,所述一个或多个气体入口配置用来当经由所述液体出口从所述罐移除lng时将氮气导入所述罐;

布置在所述罐底部附近并配置用来容许附加的氮气导入所述罐中的一个或多个附加的氮气入口;

配置用来当将所述附加的氮气导入所述罐中时容许从所述罐移除气体的一个或多个气体出口;和

配置用来在经由所述一个或多个气体出口从所述罐移除所述附加的氮气的同时,容许低温液体例如lin导入所述罐中的一个或多个液体入口。

虽然上述内容涉及本公开内容的方面,但是可以在不脱离本公开内容基本范围的情况下设计本公开内容的其它和另外的方面,并且本公开的范围由随后的权利要求确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1