从加压液化天然气中产生能量的制作方法

文档序号:5816750阅读:240来源:国知局
专利名称:从加压液化天然气中产生能量的制作方法
技术领域
本发明一般涉及一种用于对液化天然气进行再气化的方法,更特别地涉及一种用于对加压液化天然气(PLNG)进行再气化的方法,通过对可得到的液化天然气低温沉淀的经济使用而产生副产品能量。
背景技术
天然气经常在远离其最终使用地的区域得到。很常见的情况是,这种燃料的产地与使用地之间被一巨大的水体分隔开,从而有必要用为这种运输设计的大型容器运输天然气。天然气一般以低温液体在运载容器中跨海运输。在接收终点,这种在常规实践中压力接近大气压而温度约为-160℃(-256°F)的低温液体必须在环境温度和适当升高的压力,一般为80大气压的压力下被再气化并输送到一分配系统。这就需要增加实质的热量以及用于处理在卸载过程中产生的LNG蒸气的工艺。这些蒸气有时称为气化气体。
提出了许多不同的方法用于处理LNG卸载过程中产生的气化气体。气化气体的量可以是巨大的,特别是在一较高压力下卸载LNG时。在一些LNG卸载过程中,根据LNG的压力和组份,储存容器中留下的蒸气可构成产品质量的25%。回收气化蒸气的一种选择是将它泵送出储存容器而用作天然气产品。运行抽真空泵所需的功率增加了,对于LNG卸载过程来讲成为增加的成本。在工业上对于将使气化蒸气用于商业应用所需功率降到最小的工艺具有不断的兴趣。
提出了许多建议并已经建造了一些设备用于利用LNG巨大的低温潜能。这些工艺中的某一些应用LNG气化工艺来产生副产品能量,作为使用可得到的LNG低温的一种方式。可得到的低温是通过使用一热沉淀能量源,如海水,大气,低压蒸气以及燃料气体来利用的。沉淀之间的热传导是通过将多成份热传导介质中的一个单独成份用作热交换介质而实现的。例如美国专利第4,320,303号将丙烷作为一闭环工艺中的热传导介质来发电。LNG液体通过液化丙烷而被气化,该液体丙烷然后通过海水气化,而气化的丙烷用于驱动一涡轮机,该涡轮机驱动一发电机。从涡轮机排出的气化丙烷然后加热LNG,使LNG气化而丙烷液化。
尽管将LNG用作低温沉淀是公知技术,仍不断地需要一种改进的方法,该方法使用液化天然气的低温沉淀,同时经济而有效地从液化天然气中加工气化气体用作一种产品。
概述本发明提供一种改进的方法,用于对加压液化气(PLNG)进行再气化,同时从由液化气产生的气化蒸气中生产一气体产品,同时产生能量。气化气体从一储存和/或处理设备中回收,并由一个或多个压缩器压缩。压缩后,气化蒸气在一第一热交换器中冷却。冷却的气化气体然后被进一步压缩。然后气化蒸气在一第二热交换器中加热。将被再气化的加压液化气被进一步加压,最好加压到再气化产品所需的压力。加压液体然后被输送到第一热交换器,在该第一热交换器中加压液体由被压缩的气化蒸气部分加热,并至少部分被气化。这些加压气体然后被输送到一第二热交换器,以进一步加热加压气体,并产生一加压气态产品。本发明的方法同时通过在一封闭能量回路中使一第一热交换介质循环通过第一和第二热交换装置而产生能量,该封闭回路的方法包括下列步骤(1)将第一热交换介质输送到第一热交换器,与加压的气化气相进行热交换,与液化气进行热交换,以至少部分地液化第一热交换介质;(2)通过泵压对至少部分液化的第一热交换介质进行加压;(3)将步骤(2)中加压的第一热交换介质输送通过第一热交换装置,以至少部分地对液化的第一热交换介质进行气化;(4)将步骤(3)中的第一热交换介质输送到第二热交换器以通过与外部第二热交换介质的热交换进一步加热第一热交换介质,从而产生一加压蒸气;(5)将步骤(3)中气化的第一热交换介质输送通过一膨胀装置,将第一热交换介质膨胀到一较低压力,从而产生能量;(6)将步骤(5)中膨胀的第一热交换介质输送通过第一热交换器;及(7)重复步骤(1)至(6)。
本发明的实践提供了一种能能量源,该能量源能够满足从一储存船中抽取气化气体所需的压缩功率,并使气体到液体的转换过程的全部压缩功率降到最小。
附图简介通过参考下面的详细说明及附图,本发明及其优点将得到更好的理解,其中附图是本发明有代表性实施例的示意性流程图。


图1是本发明一实施例的示意性流程图,表示再气化LNG的方法。
图2是本发明第二实施例的示意性流程图。
附图中所示流程图表示实现本发明的方法的各种实施例。附图不会排除在本发明其它实施例的范围之外,其它实施例是对这些具体实施例正常的和期望的改进。为了表达简单和清楚起见,在附图中省略了各种所需的分系统,如阀,控制系统,及传感器。
发明的详细描述本发明的方法利用加压液化天然气(PLNG)的低温来压缩通过处理液化天然气产生的气化蒸气,以产生一气体产品,并提供一能量回路,该能量回路最好是为该工艺提供能量。本发明中,压缩气化蒸气以产生压力的全部压缩能量需求可通过在压缩阶段之间带有冷却的至少两个压缩阶段来实质性地减少。冷却是由加压液化天然气的低温提供的。
参照图1,参考数字10表示一条向绝热储存容器30输送PLNG的管道。储存容器30可以是一岸上静止储存容器或者可以是船上的容器。管道10可以是用于向船上储存容器加载的管道,或者可以是一条从一船上容器延伸到一岸上储存容器的管道。在本发明的实践中,储存容器30中的PLNG一般处于约1724千帕(250磅/平方英寸)以上的压力下,及一低于约-82℃(-116°F)的温度下,且优选是在-90℃(-130°F)至-105℃(-157°F)之间。
尽管容器30中PLNG的一部分在储存期间及储存容器卸载期间会气化成蒸气,容器30中PLNG的主要部分还是通过管道1输送到一适当的泵31而对液化气加压到一预定的压力,最好是加压到期望使用气化天然气的压力,或适于通过管道输送的压力。从泵31排出的压力一般在约4,137千帕(600磅/平方英寸)至10,340千帕(1,500磅/平方英寸)之间,更典型的是在约6,200千帕(900磅/平方英寸)至7,580千帕(1,100磅/平方英寸)之间。
从泵31排出的液化天然气由管道2导引经过热交换器32来至少部分地气化PLNG。从交换器32出来的加压天然气由管道3导引经过一第二热交换器33来进一步加热天然气流。气化的天然气然后由管道4导引到一适当的分配系统以用作燃料或通过一管道等进行输送。
气化的或位于储存容器30上面的蒸气由管道5导引到一压缩器34来增加蒸气的压力。尽管图1所示气化蒸气来自与对液化天然气进行再气化的储存容器相同的储存容器30,但气化蒸气也可以来自其它来源,如在向船和其它承载物或储存容器加注液化气时产生的蒸气。从压缩器34出来,加压蒸气由管道6导引到热交换器32来冷却蒸气。冷却的蒸气由管道7导引到一第二压缩器35来进一步增加蒸气的压力,最好是增加到管道4中气体产品的压力。从压缩器35出来的蒸气然后由管道8导引到热交换器33用于再冷却,并通过管道13排放而用作加压天然气产品。管道13中的天然气最好与管道4中的天然气相结合而输送到一管道或用于其它适当的用途。
热传导介质在一封闭的回路中循环。热交换介质通过管道15从第一热交换器32传送到一泵36,在该泵36中热传导介质的压力被提高到一升高的压力。回路中介质的压力取决于所需回路的性质以及所用介质的类型。处于液态及升高的压力下的热传导介质从泵36出来后,由管道16导引到热交换器32,热交换介质在热交换器32中被加热。从热交换器32出来,热传导介质由管道17导引到热交换器33,热传导介质在热交换器33中被加热。
来自一些适当的热源的热量由管道18引导到热交换器33,而冷却的热源介质从热交换器出来通过管道19。可以使用任何常规的低成本热源;如大气,地表水,海水,河水,或废弃的热水或蒸气。来自热源的热量经过热交换器33传递给热传导介质。该热传导使热传导介质气化,从而以具有升高压力的气体的形式通过管道20离开热交换器33。该气体通过管道20到达一适当的加工设备37。设备37最好是一涡轮机,但也可以是通过气化热传导介质的膨胀来操作的发动机的任何其它形式。通过加工设备37后热传导介质的压力减小,产生的能量可以任何所需的形式回收,如涡轮机的旋转,可用于驱动发电机或驱动再气化过程中所用的压缩器(如压缩器34和35)和泵(如泵31和36)。
减小压力的热传导介质从加工设备37通过管道21导引到第一热交换器32,热传导介质在其中被至少部分地冷凝,最好是全部冷凝,而LNG通过热量从热传导介质向LNG的传导而被气化。被冷凝的热传导介质从热交换器33通过管道15排到泵36,从而使冷凝的热传导介质的压力实质上增加了。
热传导介质可以是任何冰点在加压液化天然气的沸点温度之下的流体,不会在热交换器32和33中形成固体,且在通过热交换器32和33时具有高于热源冰点温度而低于热源实际温度的温度。因此热传导介质在它循环通过热交换器32和33过程中可以是液态,以交替地将显热传导到和传导出热传导介质。但优选的是,所用的热传导介质在循环通过热交换器32和33过程中经历至少部分的相变,而导致潜热的传导。
优选的热传导介质具有中等的蒸气压力,其温度介于热源实际温度和热源冰点温度之间,在通过热交换器32和33过程中使热传导介质气化。同样,为了进行相变,热传导介质必须可在一高于加压液化天然气的沸点温度的温度下液化,这样热传导介质在通过热交换器32过程中将被冷凝。热传导介质可以是一单纯化合物,也可以是具有这样的成份的化合物的混合,即热传导介质在高于液化天然气的气化温度范围的一个温度范围内冷凝。
尽管在本发明的实践中商业致冷剂可用作热传导介质,但优选的热传导介质是每个分子中含1至6个碳原子的碳氢化合物,如丙烷、乙烷和甲烷,及它们的混合物,特别是由于它们一般至少以最小量存在于天然气中,并因而容易得到。
图2示出本发明另一个实施例,在该实施例中具有与图1中部件相同号码的部件具有相同的加工功能。但本领域技术人员将认识到,从一个实施例到另一个实施例,加工设备在尺寸上,以及在对不同流体流速、温度和组份的处理能力上会有变化。除对从储存容器30出来的蒸气流的压缩和冷却外,图2中所示工艺与图1中所示工艺基本相同。图2中,蒸气流经受压缩器34、35和38的三个压缩阶段,分三个阶段提高管道5中蒸气的压力,优选的是大致与管道4中蒸气的压力相同。参照图2,气流5传送到第一压缩器34,而被压缩的蒸气由管道6传送经过热交换器32以冷却管道6中的蒸气。从热交换器32出来的蒸气(通过管道7)被导向到第二压缩器35以进一步增加蒸气的压力。蒸气从压缩器35出来由管道8导引穿过热交换器32进行再冷却。然后冷却的蒸气从热交换器32出来由管道9导引到第三压缩器38,该第三压缩器38将压力提高到所需的最终压力。加压的天然气从压缩器38出来由管道11导引穿过热交换器33以加热天然气,然后可由管道12传送到一适当的产品分配系统。
在通过压缩器34、35和38机组压缩气体蒸气的工艺中,由这些压缩器增加的压力最好不一样。由于从压缩器38出来的最终排放压力经常高于被压缩流体的临界压力,压缩器38可压缩一密相流体,压缩密相流体所需的功率小于压缩同等量的蒸气所需功率。如果压缩器38压缩一密相流体,压缩器38的压缩率最好高于压缩器34和35的压缩率。如果最终压缩阶段压缩一密相流体,通过使机组中最后的压缩器承担更大的压缩任务可将压缩机组的全部功率需求降到最小。但是,如果最终压缩阶段的压力并未处于被压缩流体的临界压力之上,使最后压缩器的压缩率高于其它压缩器的压缩率并没有明显的好处。各阶段最优的压力值可由本领域技术人员用商业上可得到的加工模拟器很容易地确定。
示例完成一模拟的质量和能量平衡来表示如图2所示的本发明第二实施例,其结果在下面的表1和表2中列出。表中的数据设定PLNG生产率为约752MMSCFD,热传导介质包含50%-50%甲烷-乙烷二元混合物。蒸气流5的输入条件为初始和最终压力的几何平均值和储存容器30的温度条件。表中的数据是用称作HYSYSTM的商业上可得到的工艺模拟程序来获得的。但是,也可以使用其它商业上可得到的工艺模拟程序来开发数据,包括例如本领域技术人员熟悉的HYSIMTM,PROIITM,及ASPEN PLUSTM。提供表中所列的数据是为了更好地理解本发明,但本发明并不解释为不必要地局限于此。温度和流速不认为是对本发明的限制,从此处的教导的观点看,本发明在温度和流速上可以有许多变化。
表1 *每天百万标准立方英尺表2在两种模拟情况下对压缩器34、35和38及泵31和36的功率要求进行比较情况1是没有阶段间的冷却,情况2是有阶段间的冷却。情况1中,假定气化的气体由压缩器34、35和38压缩而不使气化蒸气穿过热交换器32。情况2中,气化蒸气按照图2所示实施例所描述的本发明的实践进行加工。
表2
表2中的数据显示,图2中所示实际实施例(情况2)需要的功率比情况1中的总功率需求少15%(9,020kW比10,649kW)。在情况1和情况2中,涡轮机37产生的能量都多于运行压缩器和泵所需的能量。在进入压缩器34和38之前将气化蒸气(图2中的气流6和8)冷却到-84℃(-119°F)实质上降低了用于压缩的功率需求。另外,气化气体也提供了热交换器32中的部分加热任务,以加热气流2中的液化气。
本领域技术人员,特别是受到本专利教导的人将认识到对于上面公开的特殊方法具有许多改进和变形。例如,根据本发明,可依据系统的整体设计以及液化天然气的组份、温度和压力,使用多种温度和压力。如上所述,具体公开的实施例和示例不能用来限制和局限本发明的范围,本发明的范围由下面的权利要求及它们的等同物确定。
权利要求
1.一种用于回收能量的方法,其中将液化天然气气化并利用了低温潜能,包括以下步骤(a)将液化天然气加压到一预定压力;(b)将加压的液化天然气输送通过一第一热交换器,从而将液化天然气气化;(c)将气化天然气输送通过一第二热交换器,从而对气化天然气进行加热,以产生一第一蒸气产品;(d)将一作为工作流体的致冷剂在一封闭回路中进行循环,通过该第一热交换器以冷凝该致冷剂并加热该液化气,通过一泵以对冷凝的致冷剂进行加压,通过一第二热交换器,在该第二热交换器中从热源吸收热量以气化该加压的致冷剂,并通过一加工设备来产生能量;(e)用一第一压缩装置压缩气化的蒸气;(f)将被压缩的气化蒸气输送通过该第一热交换器,以冷却气化的蒸气并加热液化气;及(g)通过一第二压缩装置进一步压缩气化蒸气并将压缩蒸气从该第二压缩装置输送到该第二热交换器,以加热该气化蒸气,从而产生一第二蒸气产品。
2.如权利要求1所述的方法,其中步骤(f)中的冷却的气化蒸气通过一第三压缩装置进一步压缩,将进一步压缩的气化蒸气输送通过第一热交换器,在步骤(g)之前对气化蒸气进行再冷却。
3.如权利要求1所述的方法,其中步骤(e)中的气化蒸气具有一高于约1,724千帕(250磅/平方英寸)的压力,和一介于约-80℃(-112°F)和-112℃(-170°F)之间的温度。
4.如权利要求1所述的方法,其中将被再气化的加压液化天然气具有高于约1,724千帕(250磅/平方英寸)的初始压力,和一介于约-80℃(-112°F)和-112℃(-170°F)之间的温度。
5.如权利要求1所述的方法,其中用于第二热交换器的热源是水。
6.如权利要求1所述的方法,其中用于第二热交换器的热源是从主要包含下列各项的组中选择的一种热流体空气,地表水,海水,河水,废弃的热水和蒸气。
7.如权利要求1所述的方法,其中致冷剂包括每个分子中含有1至6个碳原子的碳氢化合物的混合物。
8.如权利要求1所述的方法,其中一发电机与该加工设备相联,以驱动一发电机。
9.如前述任一权利要求所述,并基本上如此处参照或不参照示例和/或附图所描述的方法。
全文摘要
一种方法,该方法利用加压液化天然气(PLNG)的低温压缩通过处理液化天然气而产生的气化蒸气,以产生一较高压力的气体产品,同时产生能量,该能量最好为该工艺提供至少一部分能量。PLNG被加压,输送到一第一热交换器(32)用于气化,气化材料被输送到一第二热交换器(33)用于进一步加热以产生一第一气体产品。一致冷剂在一封闭回路中循环通过第一热交换器以加热PLNG,通过一泵(36)以对致冷剂加压,通过一第二热交换器以气化该致冷剂,及通过一加工设备(37)以产生能量。气化气体被压缩并输送通过第一热交换器,进一步压缩,然后输送通过第二热交换器以产生一第二气体产品。
文档编号F17C9/02GK1295646SQ99804534
公开日2001年5月16日 申请日期1999年3月26日 优先权日1998年3月27日
发明者罗纳德·R·鲍恩, 摩西·明塔 申请人:埃克森美孚上游研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1