磁记录磁道检查装置用的基准规的制作方法

文档序号:6109960阅读:170来源:国知局
专利名称:磁记录磁道检查装置用的基准规的制作方法
技术领域
本发明申请是名称为“摄像测实际空间长度的方法和光学系统校正法及其基准规”、申请号为97102342.5的发明申请的分案申请,原申请日期为1999年1月23日。
本发明涉及磁记录磁道检查装置用的基准规。
近年来,由于图像处理装置的高速化和低价格化的进展,图像处理系统在开发现场和制造现场的测定和检查中的使用多了起来。

图18是一般的处理系统的结构图。
在图中,设置于位置调整装置27的试样(未图示)可以用该装置27调整其位置。摄像装置24具体地说就是CCD摄像机和线性传感器等,以试样为图像进行摄像。光学系统23使试样在摄像装置的摄像面成像。图像存储器25保存得到的图像。运算装置26对得到的图像进行预定的处理。
用这样的结构拍摄试样的图像,处理得到的图像,进行测定等事项。
作为这样的系统的光学系统23的校正方法有例如对长度已知的线图或标度进行摄像,根据该像的长度进行倍率的计算的方法。但是,由于摄像中使用的光学系统23引起的图像畸变,对得到的图像原封不动地进行测定的话,测定结果包含有误差。因此有必要对畸变加以修正。在日本专利特开昭63-222247号所述的技术中,公开了修正放射线图像摄影装置的摄入图像畸变修正方法。在该方法中,拍摄所得图像成点状图案的,具有放射线吸收系数的畸变测定构件。把得到的图像的像点位置与本来应该成像的真正的像点位置加以比较,用进行插补处理的方法制作畸变修正表,对图像进行修正。
而近年来,音像装置,如便携式磁带放音装置、电影所显示的趋势那样,正在进行装置小型化。在另一方面, 特别是电影、固定式VTR那样的录像装置,对长时间记录提出了要求。满足这样的要求的重要技术有音像的高密度记录。为了在VTR和DAT等各种规格中保持录放装置之间的互换性,并实现高密度记录,如何进行高线性磁道记录是一种重要的技术。因此,检查磁道的线性的方法是重要的。日本专利特开平3-222102号公报所述的、磁记录磁道检查装置的已有技术是,把记录磁道看作光栅,把磁道的弯曲看作光栅的变形,采取衍射条纹-光栅图像解析的方法进行磁道线性测定的方法。已有的磁记录磁道检查装置的基本结构与图18所示的图像处理系统的结构例大致相同。
在这样的已有的磁记录磁道检查装置的校正操作中,一个像素所相当的实际空间长度可由光学系统23的设定倍率求得。这里所说的实际空间长度意味着在磁记录磁道检查装置等的图像处理系统中得到的图像的被拍摄物体的实际长度。而在磁记录磁道检查装置中,需要使摄像范围符合磁带(未图示)的磁道条纹的有效范围。摄像范围的调整操作是,看摄像装置24拍摄的图像的摄像范围,进行大体上的调整。
又,实施这样的校正操作的结果得到的磁记录磁道检查装置的测定精度的确认方法如下。
首先,用磁记录磁道检查装置测定实际磁带上的磁道条纹在磁带宽度方向上的位移分布。接着,使用显微镜检查方法测定相同磁带的相同测定处的位移分布。显微镜检查方法使用显微镜用目视测定磁带宽度方向上的磁道边缘位置。把这一结果与理想的磁道边缘位置加以比较求出磁道条纹的位移分布。把这两个测定结果加以比较,进行测度精度的确认。
但是,图18的光学系统23的设定倍率与实际得到的图像的倍率并非严格一致。因此,例如磁道条纹的线性测定那样的1微米以下的数量级成问题的测定中,得不到足够精度的倍率或一个像素的平均实际空间长度。而在用线图和标度的摄像进行的倍率测定中,只能得到在1条线上的数据。
又,在已有的摄像范围调整方法中,摄像范围只能粗略调整。
还有,关于图像畸变的修正,使用日本专利特开昭63-222247号所述的那样的点状图案进行的图像畸变测定中,在测定区域内数据取得的数目受到限制,由于只能增加这些插补点,精度不好。
而且,在日本专利特开平3-222102号所述的技术中关于校正方法没有叙述。在精度确认时使用磁带作为测定对像。由于磁带上的磁带条纹的位移分布并非已知,必须使用显微镜预先进行测定。但是,使用显微镜的检查方法,其测定精度取决于设置磁带的台的移动精度。因此,测定精度最多不过±0.3微米左右,不能进行比这高的检查。又由于磁带非常薄,处理时如果加以过度的负荷就会发生变形。因此,有位移分布改变等问题,位移分布是不能说已知的。因此,磁记录磁道检查装置的正确的测定精度无法确认。
本发明目的在于,针对上述存在问题,提供精密测定一个像素的平均实际空间长度的方法,提供进行摄像范围的测定或调整,和图像畸变的测定及以其结果的反馈进行图像畸变的修正的光学系统的校正方法。
本发明的目的还在于提供,用于借助于一个像素的平均实际空间长度和摄像范围的测定或调整,和图像畸变的测定及以其结果的反馈实现没有图像畸变影响的磁记录磁道检查的磁记录磁道检查装置的校正方法及基准规。
本发明的目的还在于提供高精度地实现这些光学系统的校正方法和磁记录磁道检查装置的校正方法的方法。
本发明的目的还在于提供高精度的测定精度确认法和测定精度确认时使用的基准规。
本发明的使用摄像装置的实际空间长度测定方法,把平行于栅线的方向和/或垂直于栅线的方向作为水平扫描方向,对含有规定的栅线的栅图用光学系统所成的像用摄像装置进行摄像,得到栅像。在该栅像的检查区域内的任意区域中,对每一像素列计算在与格子线垂直的方向上与摄像装置的一个像素列对应的栅线的条数,然后将其平均,计算栅线条数的平均值。将格子条数平均值乘栅间距,算出与栅线垂直的方向上的任意区域的实际空间长度。把所述实际空间长度除以相同方向的像素数目,算出栅像中,在垂直于格子线的方向上的一个像素的平均实际空间长度。以这样得到的一个像素的平均实际空间长度为依据可以对光学系统进行校正。
又,作为对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,用摄像装置摄像、检查的磁记录磁道检查装置用的基准规,在其表面有,作为基准规的坐标系的基准的线图,以及以相等间距描画得相对于线图的基准方向具有规定角度的栅图。所使用的基准规,这些图案具有的厚度,使得在磁记录磁道检查装置上设置时它们的表面与在磁记录磁道检查装置上设置磁带时该磁带上面的高度位置实质上相等。借助于此,可以高精度地进行测定精度的确认。
图1是本发明的实施例中的光学系统的校正系统的结构图。
图2表示本发明的实施例的栅图的例子。
图3是表示本发明的实施例的光学系统的校正方法的功能的方框图。
图4是本发明的实施例的栅像的图解。
图5是本发明的实施例的线条细化处理的说明图。
图6是表示本发明的实施例的栅图的例子图7是表示本发明的实施例的栅图的例子。
图8是本发明的实施例的图像的修正方法的说明图。
图9是本发明的实施例的磁记录磁道检查装置的结构图。
图10表示本发明的实施例的基准规上的图案。
图11是本发明的实施例的磁记录磁道检查装置的光学系统的校正方法的功能方框图。
图12表示本发明的实施例的磁带的磁道条纹图像的例子。
图13表示本发明的实施例的栅像中某一条线的辉度分布的例子。
图14表示本发明的实施例的栅像中某一条线的辉度分布上进行傅利叶变换的结果的功率谱的例子。
图15是本发明的实施例的磁道条纹位移分布的修正方法的说明图。
图16表示本发明的实施例中用于确认测定精度的基准规。
图17是本发明的实施例的基准规上的图案的例子。
图18是一般的图像处理系统的结构图。
本发明的采用摄像装置的实际空间长度测定方法,包含第1步骤把平行于所述栅线的方向和/或垂直于所述栅线的方向作为水平扫描方向,对含有以已知值为间距等间距配置的栅线的栅图用光学系统所成的像用摄像装置进行摄像,得到栅像、第2步骤在该栅像的检查区域内的任意区域中,对每一像素列计算在与所述栅线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第3步骤将所述第2步骤求得的对各像素列的栅线条数平均,计算栅线条数的平均值、第4步骤将格子条数平均值乘以所述栅间距,算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第5步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像中在垂直于所述栅线的方向上的一个像素的平均实际空间长度。
所述第2步骤也可以包含,在所述检查区域内,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频率谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,从其结果的实部与虚部的比计算所述栅图的相位值分布的步骤,以及用所述相位分布,计算在所述检查区域的任意区域内的、垂直于所述栅线的各像素列的栅线条数的步骤。
本发明的采用摄像装置的磁记录磁道上实际空间长度测定方法,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,通过光学系统用摄像装置进行摄像时的光学系统的校正方法,具有第1步骤把含有以已知值为栅间距等间距配置且平行于所述摄像装置的水平扫描方向和/或垂直于该方向的栅线的栅图,设置于实质上与所述磁带的摄像位置相同的位置上、第2步骤对所述栅图用所述摄像装置进行摄像以得到栅像、第3步骤在所述栅像内的、所述磁记录磁道检查装置的检查区域内的任意区域中,对每一像素列计算在与所述栅线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第4步骤将所述第3步骤求得的对各像素列的栅线的条数平均,计算栅线条数的平均值、第5步骤将栅线条数平均值乘以所述栅间距,算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第6步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像中、在垂直于所述栅线的方向上的一个像素的平均实际空间长度。
所述第3步骤也可以包含,在所述检查区域内,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频率谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,从其结果的实部与虚部的比计算所述栅像的相位值分布的步骤,以及用所述相位分布,计算在所述检查区域的任意区域内的、垂直于所述栅线的方向上的各像素列的栅线条数的步骤。
本发明的采用摄像装置的实际空间长度测定方法,包含第1步骤把平行于所述栅线的方向和/或垂直于所述栅线的方向作为水平扫描方向,对含有以已知值为间距等间距配置的栅线的栅图用光学系统所成的像用摄像装置进行摄像,得到栅像、第2步骤在该栅像的检查区域内的任意区域中,对每一像素列计算与所述格子线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第3步骤将所述第2步骤求得的对于各像素列的栅线的条数加以平均,计算出栅线条数的平均值、第4步骤将栅线条数平均值乘以所述栅间距,算出在与所述栅线垂直的方向上的所述任意区域的实际空间长度、第5步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,计算出所述栅像中在垂直于所述栅线的方向上的一个像素的平均实际空间长度、第6步骤把所述实际空间长度乘以所述检查区域的与所述栅线垂直的方向上的像素数目,算出在所述检查区域中的摄像范围。
所述第2步骤可包含在所述检查区域内,在所述栅图中栅线的垂直方向上进行傅利叶变换,从得到的频谱提取基频分量的步骤、对提取的基频分量进行反傅利叶变换,根据其结果的实部和虚部的比,计算所述栅像的相位分布的步骤,以及用所述相位分布,计算在所述检查区域的任意区域中的、与所述栅线垂直的方向上的各像素列的栅线条数的步骤。
所述第6步骤可以包含把所述一个像素的实际空间长度乘以所述检查区域的与所述栅线垂直的方向上的像素数目,算出所述摄像装置在所述检查区域中的摄像范围,调整光学系统的倍率,使该摄像范围为规定值的步骤。
也可以是所述第2步骤包含在所述检查区域内,在与所述栅图中栅线垂直方向上进行傅利叶变换,从得到的频谱提取基频分量的步骤、对提取的基频分量进行反傅利叶变换,根据其结果的实部和虚部的比,计算所述栅像的相位分布的步骤,以及用所述相位分布,计算所述检查区域内的任意区域中与所述栅线垂直的方向上的各像素列的栅线的条数的步骤,所述第6步骤包含把所述一个像素的实际空间长度乘以所述检查区域的与所述栅线垂直的方向上的像素数目,算出所述摄像装置在所述检查区域中的摄像范围,调整光学系统的倍率,使该摄像范围为规定值的步骤。
本发明的采用摄像装置的磁记录磁道上实际空间长度测定方法,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,通过光学系统用摄像装置进行摄像时的光学系统的校正方法,具有第1步骤把含有以已知值为栅间距等间距配置且平行于所述摄像装置的水平扫描方向和/或垂直于该方向的栅线的栅图,设置于实质上与所述磁带的摄像位置相同的位置上、第2步骤对所述栅图用所述摄像装置进行摄像以得到栅像、第3步骤在所述栅像内的、所述磁记录磁道检查装置的检查区域内的任意区域中,对每一像素列计算与所述格子线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第4步骤将所述第3步骤求得的对各像素列的栅线条数平均,计算栅线条数的平均值、第5步骤将所述栅线条数平均值乘以所述栅间距,算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第6步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像中在垂直于所述栅线的方向上的一个像素的平均实际空间长度、第7步骤把所述一个像素的平均实际空间长度乘以所述检查区域的与所述栅线垂直的方向上的像素数目,算出所述检查区域的摄像范围。
所述第3步骤也可以包含在所述检查区域,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,根据其结果的实部与虚部的比计算所述栅像的相位值分布的步骤,以及用所述相位值分布,计算在所述检查区域的任意区域的、垂直于所述栅线的方向上的各像素列的栅线条数的步骤。
所述第7步骤也可以包含把所述一个像素的平均实际空间长度乘以所述检查区域的与所述格子线垂直的方向上的像素数目,算出所述摄像装置在所述检查区域中的摄像范围,调整光学系统的倍率,使该摄像范围为规定值的步骤。
也可以是所述第3步骤包含在所述检查区域,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,根据其结果的实部与虚部的比计算所述栅像的相位值分布的步骤,以及用所述相位值分布,计算在所述检查区域的任意区域的、垂直于所述栅线的方向上的各像素列的栅线条数的步骤,所述第7步骤包含把所述一个像素的平均实际空间长度乘以所述检查区域的与所述栅线垂直的方向上的像素数目,算出所述摄像装置在所述检查区域中的摄像范围,调整光学系统的倍率,使该摄像范围为规定值的步骤。
本发明的光学系统校正方法具有,第1步骤把平行于所述栅线的方向和/或垂直于所述栅线的方向作为水平扫描方向,对含有以已知值为间距等间距配置的栅线的栅图用光学系统所成的像用摄像装置进行摄像,得到栅像、第2步骤在该栅像的检查区域内的任意区域中,对每一像素列计算出在与所述栅线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第3步骤将所述第2步骤求得的对各像素列的栅线条数平均,计算栅线条数的平均值、第4步骤将栅线条数平均值乘以所述栅间距,计算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第5步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像中在垂直于所述格子线的方向上的一个像素的平均实际空间长度,以及第6步骤用所述实际空间长度,求出所述栅像中在所述检查区域的所述栅线的垂直方向上的位移分布,从而在整个所述检查区域得到该方向的畸变分布。
也可以是所述第2步骤包含在所述检查区域内,在与栅图中栅线垂直的方向上进行傅利叶变换,从得到的频谱提取基频分量的步骤、对提取的基频分量成份进行反傅利叶变换,根据其结果的实部和虚部的比,计算所述栅像的相位分布的步骤,以及用所述相位分布,计算所述检查区域内的任意区域中的,与所述格子线垂直的方向上的各像素列的栅线的条数的步骤,第6步骤包含用所述相位值分布,计算出在所述检查区域的、与所述栅线垂直的方向上的位移分布的步骤。
本发明的磁记录磁道摄像用的光学系统校正方法,是对磁录放装置所记录且进行过可视化处理磁带上的磁记录磁道的磁道图案,通过光学系统用摄像装置进行摄像检查的磁记录磁道检查装置中光学系统的校正方法,具有第1步骤把含有以已知值作为格子间距等间距配置且平行于所述摄像装置的水平扫描方向和/或垂直于该方向的栅线的栅图,设置于实质上与所述磁带的摄像位置相同的位置上、第2步骤对所述栅图用所述摄像装置进行摄像以得到栅像、第3步骤在所述栅像内的、所述磁记录磁道检查装置的检查区域内的任意区域中,对每一像素列计算在与所述栅线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第4步骤将所述第3步骤求得的对于各像素列的栅线条数平均,计算栅线条数的平均值、第5步骤将所述栅线条数平均值乘以所述栅间距,算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第6步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像中在垂直于所述栅线的方向上的一个像素的平均实际空间长度、第7步骤用所述实际空间长度,求出所述栅像中在所述检查区域的所述栅线的垂直方向上的位移分布,从而在整个所述检查区域得到所述磁记录磁道检查装置的光学系统在该方向的畸变分布。
也可以是所述第3步骤包含在所述检查区域,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,根据其结果的实部与虚部的比计算所述栅像的相位值分布的步骤,以及用所述相位值分布,计算在所述检查区域的任意区域的、垂直于所述栅线的方向上的各像素列的栅线条数的步骤,所述第7步骤包含用所述相位值分布,计算出所述栅像中在所述检查区域的所述栅线的垂直方向上的位移分布的步骤。
本发明的光学系统校正方法具有,第1步骤把平行于所述栅线的方向和/或垂直于所述栅线的方向作为水平扫描方向,对含有以已知值为间距等间距配置的栅线的栅图用光学系统所成的像用摄像装置进行摄像,得到栅像、第2步骤在所述栅像的检查区域内的任意区域中,对每一像素列计算与所述栅线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第3步骤将所述第2步骤求得的对各像素列的栅线条数平均,计算栅线条数的平均值、第4步骤将栅线条数平均值乘以所述栅间距,算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第5步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像的、在垂直于所述栅线的方向上的一个像素的平均实际空间长度、第6步骤用所述实际空间长度,求出所述栅像中在所述检查区域的所述栅线的垂直方向上的位移分布,从而在整个所述检查区域得到所述光学系统在该方向的畸变分布、第7步骤用所述畸变分布修正所述光学系统所成的像。
也可以是所述第2步骤包含在所述检查区域,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,根据其结果的实部与虚部的比计算所述栅像的相位值分布的步骤,以及用所述相位值分布,计算在所述检查区域的任意区域的、垂直于所述栅线的方向上的各像素列的栅线条数的步骤,所述第6步骤包含用所述相位值分布,计算出在所述检查区域、与所述栅线垂直的方向上的位移分布的步骤。
本发明的磁记录磁道摄像用的光学系统校正方法,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,通过光学系统用摄像装置进行摄像检查的磁记录磁道检查装置中光学系统的校正方法,具有第1步骤把含有以已知值作为格子间距等间距配置且平行于所述摄像装置的水平扫描方向和/或垂直于该方向的栅线的栅图,设置于实质上与所述磁带的摄像位置相同的位置上、第2步骤对所述栅图用所述摄像装置进行摄像以得到栅像、第3步骤在所述栅像内的、所述磁记录磁道检查装置的检查区域内的任意区域中,对每一像素列计算在与所述栅线垂直的方向上与所述摄像装置的一个像素列对应的栅线的条数、第4步骤将所述第3步骤求得的对各像素列的栅线条数平均,计算栅线条数的平均值、第5步骤将所述栅线条数平均值乘以所述栅间距,算出与所述栅线垂直的方向上的所述任意区域的实际空间长度、第6步骤把所述实际空间长度除以所述任意区域的所述栅线的垂直方向的像素数目,算出所述栅像中、在垂直于所述栅线的方向上的一个像素的平均实际空间长度、第7步骤用所述实际空间长度,求出所述栅像中在所述检查区域的所述栅线的垂直方向上的位移分布,从而在整个所述检查区域得到所述磁记录磁道检查装置的光学系统在该方向的畸变分布、第8步骤用所述摄像装置对磁带上记录的磁道图案进行摄像,计算出用所述畸变分布修正的所述磁道图案的位移分布。
也可以是所述第3步骤包含在所述检查区域,在栅图中栅线的垂直方向上进行傅利叶变换,从得到的频谱取出基频分量的步骤、对取出的基频分量进行反傅利叶变换,根据其结果的实部与虚部的比计算所述栅像的相位值分布的步骤,以及用所述相位值分布,计算在所述检查区域的任意区域的、垂直于所述栅线的方向上的各像素列的格子条纹条数的步骤,所述第7步骤包含用所述相位值分布,计算出所述栅像中在所述检查区域的所述栅线的垂直方向上的位移分布的步骤。
本发明的基准规,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规,在其表面具有作为该基准规的坐标系的基准的线图和以等间距描画成相对于所述线图的基准方向具有规定的角度的栅图,所述线图和所述栅图具有这样的厚度,使得在磁记录磁道检查装置上设置时它们的表面与在磁记录磁道检查装置上设置磁带时该磁带上面的高度位置实质上相等。
所述栅图的间距也可以与所述磁带上的磁道图案的间距实际上相等。
本发明的基准规,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规,在其表面具有作为该基准规的坐标系的基准的线图,和实质上与在所述磁录放装置中分别由两个以上的具有规定的方位角的磁头记录在磁带上的理想磁道图案中,以具有一方位角的磁头记录的磁道图案为明部,并且以具有另一方位角的磁头记录的磁道图案为暗部时得到的磁道图案相同的模拟磁道图案,沿着所述模拟磁道图案上的至少一条以上的位移测定线的、所述模拟磁道图案对所述理想磁道图案的位移分布是已知的。
所述线条图案和所述模拟磁道图案具有这样的厚度,使得在所述磁记录磁道检查装置上设置时它们的表面与在所述磁记录磁道检查装置上设置磁带时该磁带上表面的高度位置实质上相等。
本发明的磁记录磁道摄像用的光学系统校正方法,是对磁录放装置所记录且进行过可视化处理的磁带上的磁记录磁道的磁道图案,通过光学系统用摄像装置进行摄像、检查的磁记录磁道检查装置的光学系统的校正方法,其中设置作为坐标系的基准的线图,和实质上与在所述磁录放装置中分别由两个以上的具有规定的方位角的磁头记录在磁带上的理想磁道图案中,以具有一方位角的磁头记录的磁道图案为明部,以具有另一方位角的磁头记录的磁道图案为暗部时得到的磁道图案实质上相同,并且沿着至少一条以上的位移测定线相对于所述理想磁道图案的位移分布为已知的模拟磁道图案,使得此二图案的表面与在所述磁记录磁道检查装置上设置所述磁带时所述磁带的上表面的高度位置实质上相同,用所述磁记录磁道检查装置测定所述模拟磁道图案对理想磁道图案的位移分布,把所述位移分布与所述位移分布测定结果加以比较,检测所述磁记录磁道检查装置的测量精度。
所述位移分布测定,可以在所述模拟磁道图案的图像中,在位移分布测定方向上进行傅利叶变换,从得到的频谱取出基频分量,对其进行反傅利叶变换,根据其结果的实部与虚部的比计算所述模拟磁道图案的图像的相位值分布,用所述相位值分布,计算所述模拟磁道图案的图像的位移分布。
又,本发明的基准规是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,通过光学系统,用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规,在其上表面具有,作为该基准规的坐标系的基准的线图,以及以等间距描画成相对于所述线图具有规定的角度的栅图还具有与在所述磁录放装置中,由分别具有规定的方位角的2个以上的磁头记录在磁带上的理想磁道图案中,以具有一方位角的磁头记录的磁道图案为明部,并且以具有另一方位角的磁头记录的磁道图案为暗部时得到的磁道图案相同的模拟磁道;沿着所述模拟磁道图案上的至少一条以上的位移测定线的、所述模拟磁道图案对所述理想磁道图案的位移分布是已知的,所述线图、所述栅图和所述模拟磁道图案具有这样的厚度,使得在所述磁记录磁道检查装置上设置时它们的表面与在所述磁记录磁道检查装置上设置所述磁带时与该磁带上表面的位置实质上相等。
实施例1
下面参照图1~图8对第1实施例加以说明。
图1是光学系统的校正系统的结构图。在图中基准规1的表面描画有下面所述的规定的栅图7。摄像装置CCD摄像机3配置为与单个透镜或透镜组构成的光学系统2具有共同的光轴,对光学系统2所成的像进行摄像。图像存储器4存储来自CCD摄像机3的图像,运算装置5对图像存储器4存储的图像进行处理。基准规1的位置调整装置6是例如XYθ台。
图2表示上述栅图7的详细情况。如图2所示,等间距地形成多条栅线7a,该间距为已知值。
下面按照图3的功能方框图对具有上述结构的光学系统2的校正系统中的光学系统2的校正方法的程序加以说明。
首先对栅像的摄像(步骤101)加以说明。首先,用XYθ台6调整基准规1的位置,使图1所示的基准规1的栅线7a(图2)与CCD摄像机的水平扫描方向平行。然后用CCD摄像机3对基准规1进行摄像。图4是表示栅像8的图。栅像8由CCD摄像机3对基准规1上的栅图7进行摄像得到,存储于图像存储器4。而如图4所示,在栅像8,对应于图1中的CCD摄像机3的水平扫描方向被定义为X方向,对应于垂直扫描方向的方向被定义为Y方向。在一个像素的实际空间长度、摄像范围与畸变分布的计算中,检查区域9内的栅线条数与分辨率有关,栅线条数多则精度高。因此,基准规1摄像时,最好是一条一条的栅线7a,在CCD摄像机3的析像度内拍摄出尽量多。例如在栅像8的栅线7a的正交方向(在图4为Y方向)的像素数目为512的情况下,栅线最好是128条左右。
下面对图3的栅线数计算(步骤102)加以说明。首先在图4的栅像8决定作为基准对像的区域、即检查区域9。该检查区域的1个像素的平均实际空间长度、摄像范围和畸变分布等都是校正的对像。因而,该检查区域9,在图1的光学系统所成的像中,设定于主要使用区域即可。例如,倘若是装入测定装置的光学系统,则测定为拍摄其测定对象用的区域即可。又在检查区域9内设定任意区域10。在该区域计算一个像素的平均实际空间长度。栅线数多则一个像素的平均实际空间长度的计算精度高。因此最好是,任意区域10所包含的栅线7a的条数,在一条一条的栅线7a处于CCD摄像机的析像度内的情况下尽量多。也可以是检查区域9和任意区域10为同一区域。
在图像存储器4存储的栅像8的检查区域9内的任意区域10,由运算装置5计算出Y方向的各像素列所包含的栅线数。运算装置5用例如下面所述的方法计算栅线数。
首先,对任意区域10的图像进行2值化处理。2值化处理的进行如下。首先在任意区域10决定辉度分布的阈值。阈值可以是任意区域10中辉度分布的平均值。高于阈值的像素作为明部,低于阈值的像素作为暗部。借助于以上处理使任意区域10的图像成为明部与暗部的2值图像。拍摄基准规1得到的图像通常对比度良好,噪声也小,因此,一旦进行2值化处理,其辉度分布为完整的矩形波。根据该矩形波的数目可以计算出栅线的条数。
还有,在这样以整数条数为单位计算栅线数时,最好尽量把任意区域10设定得使该区域所包含的栅线数为整数。
下面说明图3的栅线数平均值计算(步骤103)。在图1的运算装置5中,计算所得到的各像素列的栅线数的平均值,据此算出平均栅线数。
由于图像畸变的影响,栅线数因场所的不同而不同,而在步骤103的平均栅线条数计算中,计算出图4的任意区域10这一2维区域中的平均的栅线数。这样的测定方法比起用线图和标度求倍率那样的在一条线条上测定的方法,对于图3的一个像素的平均实际空间长度的计算(步骤105)和摄像范围的计算(步骤106)中算出的一个像素的平均的实际空间长度和摄像范围等,能够得到更加确切表达该栅像8的代表值。
下面说明图3的实际空间长度计算(步骤104)。在图1的运算装置5中,计算平均栅线数与基准规上的栅图7的已知的间距长度的乘积,据此算出图4的任意区域10的Y方向上的实际空间长度。
下面说明图3的一个像素的平均实际空间长度的计算(步骤105)。在图1的运算装置5中,将刚才求出的图4的任意区域10的Y方向上的实际空间长度除以任意区域10的Y方向上的像素数目,据此算出一个像素的平均的实际空间长度。
下面说明图3的摄像范围的计算(步骤106)。在图1的运算装置5中,把一个像素的平均实际空间长度乘以图4的检查区域9的Y方向上的像素数目,因此即可计算出检查区域9的Y方向上的实际空间长度,即检查区域的摄像范围。
又,在能够使图1的光学系统2的倍率像立体显微镜那样连续变化时,也能够根据计算出的摄像范围进行倍率调整。在想要的摄像范围已经预先设定的情况下,根据该摄像范围的实际空间长度与CCD摄像机3的摄像元件的实际空间长度计算出倍率。在把光学系统设定于该倍率后计算出摄像范围。由于图像畸变等影响,通常摄像范围的计算结果与所希望的摄像范围不一致。反复计算光学系统2的倍率和摄像范围以进行摄像范围的调整,可以使其一致起来。
下面对图3的畸变分布的计算(步骤107)加以说明。在图1的运算装置5中,用根据一个像素的平均实际空间长度的计算(步骤105)得出的一个像素的平均实际空间长度计算出图4的栅像8的检查区域9中的位移分布,即图1的光学系统2引起的图像的畸变分布。位移分布的计算方法有例如对检查区域9的图像进行2值化处理。还有进行如图5所示的线条细化处理,按像素单元求栅线7a的中心位置。在图5的图像中,栅图上部的两条线有若干弯曲,这是由光学系统2的畸变引起的。在本实施例中,如下面所详述,用畸变分布对光学系统2所成的像进行修正,可以修正CCD摄像机3通过光学系统2摄像时光学系统引起的图像畸变。将得到的位置分布乘以一个像素的平均实际空间长度,可以得到实际空间长度单元的栅线7a的位置分布。根据得到的位置分布和由图2的栅图7的间距计算出的真正的位置分布的比较,计算出图4所示的栅像8的Y方向上的位移分布。上述处理中得到的位移数据只是检查区域9内的栅线7a的中心位置的数据。为了得到栅线7a之间的位移分布,进行样条内插等插补处理。
这样的像素单元的测定中,位移分布的测定精度取决于基准规1的栅间距与一个像素的平均实际空间长度。栅间距越狭窄,位移量的分辨率越高,一个像素的平均实际空间长度越短,栅线7a的位置的分辨率也越高。在另一方面,栅间距只能狭窄到光学系统中一条一条的栅线7a能够识别的程度,或基准规1的制作精度的极限为止。而且与此配合,需要确保CCD摄像机3的像素数目。要把这些一起考虑,决定基准规1的栅间距及CCD摄像机3等摄像装置的像素数目。例如设使用的光学系统2的分辨率为8微米。在这种情况下,基准规1的栅间距至少必须是16微米以上。例如,栅间距取32微米,所使用的CCD摄像机3的像素数目在水平、垂直方向上分布为512像素,则被拍摄的栅线的条数最好是128条左右,因此,摄像范围大约为4毫米见方的区域。
以上的说明都是关于图4的检查区域的Y方向上的处理。用XYθ台6对基准规1的位置进行调整,使图1的基准规1的栅线7a与CCD摄像机3的垂直扫描方向成平行,用CCD摄像机3拍摄基准规1后,反复进行与上述相同的程序,可以计算出X方向的一个像素的实际空间长度、摄像范围与畸变分布。还有,也可以预先在基准规1描画图6所示的相互垂直的栅图。又可以把栅图做成图7那样的两个方向的栅,同时对拍摄到的这个两个方向的栅像进行X、Y方向的处理。
下面对图3的图像的拍摄(步骤108)加以说明。图像拍摄中,用图1的光学系统2和CCD摄像机3拍摄测定对像物体的图像。
下面对图3的图像的修正(步骤109)加以说明。在图1的运算装置5中,使用得到的X、Y方向的畸变分布实施图像修正。成为修正对像的图像是在图像拍摄步骤(步骤108)中拍摄到的任意图像。
图8是说明某一像素点的辉度值的修正方法用的模式图。P(0,0)、P(1,0)、P(0,1)及P(1,1)为各像素。下面对以像素P(0,0)的辉度为修正对像的情况加以说明。各像素点的位置矢量沿用该像素点的标号,取为P(0,0)、P(1,0)、P(0,1)、P(1,1)。而D(0,0)、D(1,0)、D(0,1)及D(1,1)分别为表示在各像素P(0,0)、P(1,0)、P(0,1)及P(1,1)的畸变量的矢量。这时在P(0,0)、P(1,0)、P(0,1)及P(1,1)的辉度分布记为B(0,0)、B(1,0)、B(0,1)及B(1,1),而修正后在P(0,0)的辉度记为Bt(0,0)。各像素P(0,0)、P(1,0)、P(0,1)及P(1,1)畸变修正后的对应位置分别记为Pt(0,0)、Pt(1,0)、Pt(0,1)及Pt(1,1)。又,各位置矢量Pt(0,0)、Pt(1,0)、Pt(0,1)及Pt(1,1)分别由下式求得。
Pt(0,0)=P(0,0)-D(0,0)Pt(1,0)=P(1,0)-D(1,0)Pt(0,1)=P(0,1)-D(0,1)Pt(1,1)=P(1,1)-D(1,1)这里从Pt(0,0)、Pt(1,0)、Pt(0,1)及Pt(1,1)到P(0,0)的距离分别记为d(0,0)、d(1,0)、d(0,1)及d(1,1),则得出,d(0,0)=|P(0,0)-Pt(0,0)|d(1,0)=|P(0,0)-Pt(1,0)|d(0,1)=|P(0,0)-Pt(0,1)|d(1,1)=|P(0,0)-Pt(1,1)|又,K、L、M和N由下式定义。
K=(1/d(0,0))/(1/d(0,0)+1/d(1,0)+1/d(0,1)+1/d(1,1))L=(1/d(1,0))/(1/d(0,0)+1/d(1,0)+1/d(0,1)+1/d(1,1))
M=(1/d(0,1))/(1/d(0,0)+1/d(1,0)+1/d(0,1)+1/d(1,1))N=(1/d(1,1))/(1/d(0,0)+1/d(1,0)+1/d(0,1)+1/d(1,1))这时,Bt(0,0)由下式求得。
Bt(0,0)=K×B(0,0)+L×B(1,0)+M×B(0,1)+N×B(1,1)如上所述,在检查区域9的各像素中,利用由畸变分布计算出的修正后的像素中对像像素的旁边的4点进行辉度计算,以此可以实施图像的修正。
像这样,采用第1实施例,可以精密地计算出CCD摄像机3拍摄光学系统2所形成的像时一个像素的平均实际空间长度。把一个像素的平均实际空间长度乘以检查区域9的栅线7a的垂直方向的像素数目,可以计算出CCD摄像机3拍摄光学系统2所形成的像时对应于检查区域9的部分的摄像范围。
又,把一个像素的平均实际空间长度乘以检查区域9的栅线7a的垂直方向的像素数目,计算出CCD摄像机3在检查区域9中的摄像范围,调整光学系统2的倍率,使摄像范围符合规定值,以此可以调整CCD摄像机3拍摄光学系统2所形成的像时对应于检查区域9的部分的摄像范围。
又,用一个像素的平均实际空间长度,求检查区域9的栅线7a的正交方向的位移分布,在整个检查区域9得到光学系统2的栅线7a的正交方向的畸变分布,可以计算出CCD摄像机3拍摄光学系统2所形成的像时对应于检查区域9的部分的畸变分布。
又,借助于用畸变分布修正光学系统2所形成的像,可以修正用CCD摄像机3拍摄光学系统2所形成的像时得到的图像。
在栅像的检查区域内的任意区域中,计算出摄像装置的各像素列的平均栅线数,乘以栅间距以算出规定方向上的所述任意区域的实际空间长度,将其除以该方向上的像素数目,以此可以求出栅像的一个像素的平均实际空间长度。借助于此,能够计算摄像范围,调整摄像范围,计算得到的像的畸变分布,以及使用该畸变分布对像进行修正,因此,能够对光学系统进行校正,对测定对像进行精密的测定。而且这些均可从栅像的摄像开始,进行一连串的处理。
实施例2下面参照图13、14对第2实施例进行说明。在本实施例,在光学系统2的校正中利用了使用傅利叶变换的相位分析。
在第2实施例使用的装置与第1实施例使用的光学系统2的校正系统相同。而且光学系统2的校正方法的程序也和第1实施例的光学系统2的校正方法的程序相同。但是,在第2实施例,在图3的栅线数计算(步骤102)中,利用了使用傅利叶变换的相位信息处理。下面对此加以说明。
首先,在图1的图像存储器4存储的栅像8(图4)中的检查区域9内的任意区域10,由运算装置5计算出Y方向上每一个像素列所包含的栅线数。运算装置5使用如下说明的采用傅利叶变换的栅像8的相位信息处理技术。
图13是一例栅像8中检查区域9内X方向或Y方向栅线7a正交方向上、某一线的辉度分布波形图。对此进行傅利叶变换,可得到频谱。
图14是对图13的辉度分布进行傅利叶变换时所得频谱的实部和虚部平方和功率谱的概略图。只从该频谱中取出表示原波形1次谐波分量的基频分量(相当于图14的斜线部分),进行反傅利叶变换,则在实部可得平滑的波形取代原来的波形,在虚部可得实部波形偏移半波长的波形。将虚部除以实部所得数取反正切,即得到各像素上原波形1次谐波的相位值。计算出在这样得到的栅像8的检查区域9的相位值分布中,任意区域10内的相位值变化量。相位值变化量为2π相当于一条栅线,因此,相位值变化量除以2π,即可以小数点以下的精度计算出任意区域10所包含的栅线数。从而可以得到比用2值化处理那样的方法精度高的数值。
接着,在图3的畸变分布计算步骤(步骤107)中利用进行傅利叶变换的相位信息处理。下面对此进行说明。
在运算装置5,计算一个像素的平均实际空间长度的步骤(步骤105)中,用求得的一个像素的平均实际空间长度,计算栅像8的检查区域9的位移分布,即光学系统2引起的图像畸变分布。在计算栅线数(步骤102)时,如果已计算了在栅像8的检查区域9的相位,就用该计算结果。如果尚未计算相位,就用在栅线条数计算(步骤102)中,利用进行傅利叶变换的相位信息处理时说明的程序计算该相位,算出在栅像8的检查区域9的相位分布。取由一个像素的平均实际空间长度计算出的各像素位置分布、在各像素将所得到的相位分布除以2π后乘以栅间距所得到的值二者之差,计算出栅像8的栅线7a的正交方向的位移分布。在使用上述的傅利叶变换的运算处理中,位移数据可在检查区域9内的所有像素点得到,没有必要进行插补处理。又可以以像素单元以下的精度算出位置分布,因此,即使是畸变小于一个像素那样的情况下,也能够以良好的精度计算出畸变。例如,个像素的实际空间长度为5微米的条件下摄像时,也能够计算出5微米以下的畸变量。
这样采用第2实施例,则利用栅图作为基准规,可以用进行傅利叶变换的相位信息处理法,使栅线数和位移分布的计算能达到小数点以下的精度。因而,一个像素的平均实际空间长度和摄像范围的计算、摄像范围的调整、所得到的像的畸变分布的计算,以及使用畸变分布的修正等,可以有更高的精度。
实施例3下面参照图9~图12和图15~图17对第3实施例加以说明。
图9是表示磁记录磁道检查装置20的结构图。在基准规21的表面描画着规定的图案41~43。所说的该规定的图案41~43,如图10所示,是作为图案的基准的线图41,格子间距相等、而且为已知,最好是该栅间距等于磁带的同一方位角的磁道的间距(例如DVC格式为20微米)那样的、平行于线图41的栅图42,以及垂直于线图41的栅图43。
基准规21和磁带(未图示)设置于试样设置台22上。基准规21所具有的厚度和平面度,使得基准规22在试样设置台22上设置时,其高度与设置磁带时相同。以此,可以用基准规21对磁记录磁道检查装置20的光学系统2进行校对。作为摄像装置的CCD摄像机3,与由单个镜头或镜头组构成的光学系统2配置在共同的光轴上,对光学系统2所成的像进行摄像。从CCD摄像机得到的图像存储于图像存储器4,运算装置5对图像存储器4存储的图像进行处理。基准规21的位置由位置调整装置6调整。该位置调整装置是例如XYθ台。
具有如上所述构成的磁记录磁道检查装置的光学系统2的校正方法的程序按照图11的功能方框图加以说明。
首先对图11中的基准规的设置(步骤201)加以说明。图9的基准规21设置在试样设置台22上。为了使基准规21和磁带(未图示)的高度和平面度相等,基准规21做成厚度和平面度与磁带相同也行。但是,实际上磁带的厚度非常薄,只有几微米到几十微米,把基准规21做得这么薄是很难的。于是,将基准规21做得比磁带厚一定的厚度。为了用试样设置台22抵消这个高度差,在试样设置台22组装上厚度等于磁带和基准规21的高度差的板,在设置磁带时,该板垫在磁带下面。或者为试样设置台22配备在光学系统2的光轴方向升降的机构(未图示)。
下面对图11的栅像的摄像步骤(步骤202)加以说明。首先,用XYθ台调整基准规21的位置,使图9的基准规21的线图41(图10)平行于CCD摄像机3的水平扫描方向,然后,用CCD摄像机3分别拍摄基准规21上的栅图42和43。例如,对于栅图42,用CCD摄像机3拍摄,存储于图像存储器的图像为如图4所示的栅像8。这时,基准规21设置在与磁带相同的位置上。又,基准规21的栅间距与磁带的磁道间距相同。这样,得到的栅像8的辉度分布接近于对磁带摄像时的辉度分布。因而,能够以接近实际测定的条件进行校正,作为校正方法是理想的。
下面对拍摄栅图42时得到的栅像8的处理加以说明,从而对栅线数计算等处理在Y向进行的情况加以说明。拍摄图案43时把处理方向改读到X方向上即可。
下面对图11的栅线数计算(步骤203)加以说明。在图4的栅像8确定作为校正对像的区域,即检查区域9。该检查区域的实际空间长度、摄像范围和畸变分布等都是校正的对像。磁记录磁道检查装置20中,将该检查区域9设定成大致上与作为测定对像的磁带的有效区域、即描画磁道图案区域一致。例如,DVC格式为5.24毫米。栅间距取20微米,则检查区域9所包含的栅线7a的数目为262条。因而,检查区域9的像素数目最好是1000个以上。下面在检查区域9内设定任意区域10。在该任意区域10计算一个像素的平均实际空间长度。任意区域10设定为与检查区域9相同亦可。
在图像存储器4存储的栅像8中的检查区域9内的任意区域10,用图9的运算装置计算出Y方向上的每一像素列包含的栅线数。运算装置5用在实施例1的栅线数计算(步骤102)中说明的方法计算出栅线数。
下面对图11的平均栅线数计算(步骤204)加以说明。与实施例1的平均栅线数计算(步骤103)的处理相同,在图9的运算装置中,计算所得到的各像素列中的栅线数的平均值,以此算出平均栅线数。
下面对图11的实际空间长度计算(步骤205)进行说明。与实施例1的实际空间长度计算(步骤104)的处理相同,在图9的运算装置中,将平均栅线数乘以基准规21上的栅图42的已知的间距,以此计算出任意区域10的Y方向上的实际空间长度。
下面对图11的一个像素的平均实际空间长度的计算(步骤206)加以说明。与实施例1的一个像素的平均实际空间长度的计算(步骤105)的处理相同,在图9的运算装置5中,首先将求得的任意区域10的Y方向上的实际空间长度除以任意区域10的Y方向上的像素数目,以此计算出一个像素的平均实际空间长度。
下面对图11的摄像范围的计算(步骤207)加以说明。与实施例1的摄像范围的计算(步骤106)的处理相同,在图9的运算装置5中,把一个像素平均的实际空间长度的计算(步骤206)求得的一个像素的平均实际空间长度乘以检查区域9的Y方向上的像素数目,以此可以计算出检查区域9的Y方向上的实际空间长度,即检查区域的摄像范围。
又,与实施例1的情况相同,可以根据计算出的摄像范围,对倍率可变的光学系统2的倍率进行调整,使摄像范围与磁带的有效区域一致。
下面对图11的畸变分布的计算(步骤208)加以说明。与实施例1的畸变分布的计算(步骤107)的处理相同,在图9的运算装置5中,用一个像素平均的实际空间长度的计算(步骤206)求得的一个像素的平均实际空间长度,计算图4的栅像8在检查区域9中的位移分布,即由光学系统2造成的图像的畸变分布。
也可以用图7那样的两个方向的栅代替基准规21上的栅图42、43(图10),同时对拍摄该栅所得到的栅像进行X方向和Y方向的处理。
下面对图11的磁道图案图像的拍摄(步骤209)加以说明。首先,在图9的试样设置台22设置磁带。这时,磁带处于和基准规21相同的位置。磁带预先进行了可视化处理。用XYθ台6进行位置调整,使磁带的边缘与CCD摄像机3的水平扫描方向平行。在磁带上用方位角、即磁头间隙的角度不同的2种磁头记录的磁道并行进行记录。进行照明时,使具有一种方位角的磁道为明部,具有另一种方位角的磁道为暗部。因此正好成为栅图那样的明暗图案。用CCD摄像机3对该图案进行摄像。磁道相对于磁带的长度方向略有倾斜地进行记录,因此所得到的磁道图案的图像28如图12所示。如图12所示,磁带的长度方向为X,磁带的宽度方向为Y。磁带图案的图像28被存储于存储器4。
下面对图11中排除图像畸变影响的磁道图案位移分布的计算(步骤210)加以说明。首先,用磁道图案的图像拍摄(步骤209)中所得到的磁道图案的图像28,按照磁记录磁道检查装置20的位移分布计算,计算磁道图案的Y方向的位移分布。这时所得到的位移分布还包含图像畸变的影响。
图15是磁道图案的位移分布的修正方法的说明图。矢量SEX和SEY分别表示磁道图案的图像28的某像素P中图像畸变的X分量和Y分量。这些都是欧拉坐标系的位移,表示像素P是从哪里位移而来的。而矢量SLX和SLY表示像素P中图像畸变在拉格朗日坐标系中的位移,即应该存在于像素P的点往什么地方位移。这里假定畸变分布的微分值十分小,矢量SLX和SLY分别以矢量SEX和SEY近似表示。
由于使用这样的方法,表示像素P中磁道图案在Y方向的位移的矢量D(未图示)所包含的图像畸变的Y方向分量的影响就是SEY本身。由于假定畸变分布的微分值十分小,矢量D所包含图像畸变的X方向分量的影响以图15中的矢量SEXY近似表示。图15中的θ是磁道的倾斜角。因而,表示修正後的磁道图案的Y方向位移的矢量Dt如下式所示。
Dt=D-SEY+SEX×Tanθ在运算装置5,在整个像素对包含图像畸变影响的位移分布进行该计算,以计算出排除图像畸变的影响的磁道图案的位移分布。
还有,作为排除图像畸变影响的磁道图案位移分布的计算(步骤210)的其他方法,也可以用运算装置5进行如下所示的处理。
亦即,对磁道图案图像的拍摄(步骤209)所得到的磁道图案图像28,用实施例1的图像修正(步骤109)中说明的方法,使用X及Y方向的畸变分布进行修正。对所得到的修正後的磁道图案图像28进行2值化处理和细线化处理,按像素单元求栅线的中心位置。把所得到的位置分布乘以一个像素的平均实际空间长度,得到实际空间长度单元的磁道图案的位置分布。根据所得到的磁道图案的位置分布与理想磁道图案的位置分布的比较,计算磁道图案图像28的位移分布。为了得到栅线之间的位移分布,进行样条内插等插补处理。
下面对迄今为止的一个像素的平均实际空间长度的计算、摄像范围的调整和畸变分布的计算等进行校正的结果所得到的磁记录磁道检查装置的测定精度确认方法加以说明。
首先,与图11的基准规的设置(步骤201)相同,把图16所示的测定精度确认用的基准规44设置于磁记录磁道检查装置20的试样设置台22。测定精度确认用的基准规44也和基准规21的情况一样,厚度与磁带的厚度相同,或比磁带厚一定的厚度,因此,在磁记录磁道检查装置20设置磁带时磁带上表面的位置与测定精度确认用的基准规44的图案描画面的位置相同。
在测定精度确认用的基准规44描画着图16所示的图案。该图案包含线图41和模拟磁道图案45。模拟磁道图案45的间距被描画为,与磁录放装置记录在磁带上的磁道图案的相同方位角的磁道的理想间距相等。而模拟磁道图案45相对于线图41的角度(图16的θ)被选择为,与磁录放装置记录在磁带上的磁道图案的理想磁道角相等。假如是DVC格式,则间距为20微米,磁道角为9.166809°。线图41在对模拟磁道图案45进行摄像时进行位置调整时作为基准使用。
接着,由磁记录磁道检查装置20对测定精度确认用的基准规44的图像进行摄像,计算排除图像畸变影响的模拟磁道图案45的位移分布。一旦对测定精度确认用的基准规44的图像进行摄像,即得到与磁道图案的图像28相似的模拟磁道图案图像(未图示)。对该模拟磁道图案图像进行与排除图11的图像畸变影响的磁道图案的位移分布的计算(步骤210)相同的处理,以计算出排除图像畸变影响的模拟磁道图案45对理想磁道图案的位移分布(图16的Y方向的位移分布)。
还有,模拟磁道图案45的位移分布的计算也可以利用实施例2的畸变分布计算(步骤107)的说明所述的使用傅利叶变换的相位信息处理进行。
而且,模拟磁道图案45对理想磁道图案的位移分布预先用其他测定手段测定。该测定手段得到的数据成为用于精度确认的基本数据。因而,测定手段必须是比磁记录磁道检查装置的测定精度更好的装置。测定精度确认用的基准规44用与半导体领域使用的掩模的制作工序相同的工序制作。这时,模拟磁道图案45的暗部由在玻璃基片上制膜的铬形成。而模拟磁道图案45的明部上不作任何加工。从而可以看见玻璃基片。高精度测定这样的在玻璃基片上描画的线条的位置用的测量仪器是光波干涉式坐标测定机。以此反复测定掩模图案的边缘位置,能以小于0.01微米的精度进行测定。使用该测量仪器测定精度确认用的基准规44的模拟磁道图案45的栅线的位置分布,计算相对于理想的测定图案的位移分布。下面把上述所得的位移分布称为基准位移分布。基准位移分布具有足够测定精度以用超微米评定磁记录磁道检查装置的测定精度。测定精度确认用的基准规44制作在玻璃基片上,以此可以维持模拟磁道图案45的位移分布。因而,如上所述得到基本位移分布,使模拟磁道图案45的位移分布成为已知。
接着,从磁记录磁道检查装置得到的位移分布中取出与基准位移分布对应的数据,即同一测定线条上的数据。将其称为试样位移分布。将试样位移分布与基准位移分布加以比较,能以超微米以下的精度确认磁记录磁道检查装置的测定精度。
而且,如图17所示,也可以将线图41、Y方向的栅图42、X方向的栅图43和模拟磁道图案45描画在一个基准规上。使用这样的基准规可以计算一个像素平均的实际空间长度、计算和调整摄像范围、计算畸变分布以及确认测定精度,而不必调换基准规。
这样采用第3实施例,可以计算出磁记录磁道检查装置20得到的图像的一个像素平均的实际空间长度。
又,把一个像素平均的实际空间长度乘以检查区域9的栅线的正交方向的像素数目,可以计算出检查区域9中的摄像范围,计算出与磁记录磁道检查装置20得到的图像的检查区域9对应的部分的摄像范围。
又,把一个像素平均的实际空间长度乘以检查区域9的栅线的正交方向的像素数目,计算出CCD摄像机3的检查区域9中的摄像范围,调整光学系统2的倍率使摄像范围为规定值,以此可以调整与磁记录磁道检查装置20得到的图像的检查区域9对应的部分的摄像范围。
用一个像素平均的实际空间长度,求栅像8的检查区域9中栅线的正交方向的位移分布,在整个检查区域9得出磁记录磁道检查装置20的光学系统2在与栅线正交的方向上的畸变分布,以此可以计算出与磁记录磁道检查装置20得到的图像的检查区域9对应的部分的畸变分布。
又,用CCD摄像机3对磁带上所记录的磁道图案进行摄像,用畸变分布计算出修正的磁道图案的位移分布,以此可以在磁记录磁道检查装置20得到排除图像畸变影响的检查结果。
又可以用规定的基准规对磁记录磁道检查装置进行校正。
而且由于基准规上的栅图的间距与磁带上的相同方位角的磁道的间距相等,所得到的栅像的辉度分布接近于磁道图案的图像的辉度分布。从而能够以接近于实际测定的条件进行校正。
又,使用规定测定精度确认用的基准规,可以实施在更高精度的校正操作後的测定精度确认。
又,在一个基准规上预先设置包含模拟磁道图案的多种图案,可以计算一个像素平均的实际空间长度、计算和调整摄像范围、计算畸变分布以及确认测定精度,不必调换基准规就可以实施一连串的处理。
下面参照图13、图14对第4实施例加以说明。对在磁记录磁道检查装置的光学系统的校正中利用进行傅利叶变换的相位分析的情况加以说明。
第4实施例所使用的装置与第3实施例所使用的磁记录磁道检查装置20相同。而磁记录磁道检查装置的光学系统的校正方法的程序也和第3实施例的磁记录磁道检查装置的光学系统的校正方法的程序相同。在本实施例中,在图11的栅线数的计算(步骤203)中利用了使用傅利叶变换的的相位信息处理。对此将加以说明。
在图9的图像存储器4所存储栅像8的检查区域9内的任意区域10中,由运算装置5计算出Y方向上的每一像素包含的栅线数。运算装置5使用了用下面说明的傅利叶变换的、栅像8的相位信息处理的方法。图13是栅像8的检查区域9中X方向或Y方向的栅线正交方向每一线条的辉度分布的波形的一个例子。对此进行傅利叶变换,即可得到频谱。
图14表示对图13的辉度分布进行傅利叶变换时所得频谱的实部和虚部平方和的功率谱的概略图。该频谱中只取出表示原波形1次谐波分量的基频分量(相当于图14的斜线部分),进行反傅利叶变换,则在实部可得平滑波形取代原波形,在虚部可得偏移实部波形半波长的波形。将虚部除以实部所得数取反正切,即得到各像素中原波形1次谐波的相位值。计算出在这样得到的栅像8的检查区域9的相位值分布中,任意区域10内的相位值的变化量。相位值变化量为2π相当于一条栅线,因此,相位值变化量除以2π,即可以小数点以下的精度计算出任意区域10所包含的栅线数。因而可以得到比用2值化处理那样的方法精度高的数值。
接着,对在图11的畸变分布计算步骤(步骤208)中利用进行傅利叶变换的相位信息处理的情况进行说明。在运算装置5,计算一个像素的平均实际空间长度的步骤(步骤206)中,用求得的一个像素的平均实际空间长度,计算栅像8的检查区域9的位移分布,即光学系统2引起的图像的畸变分布。在计算栅线数(步骤203)时,如果已经进行了在栅像8的检查区域9的相位计算,就使用该计算结果。如果尚未计算相位,就用在栅线数计算(步骤203)中,利用进行傅利叶变换的相位信息处理时说明的程序进行该相位计算,算出在栅像8的检查区域9的相位分布。取由一个像素的平均实际空间长度计算出的各像素的位置分布、在各像素将所得到的相位分布除以2π后乘以栅间距所得到的值二者之差,计算出栅像8的栅线的正交方向的位移分布。在上述使用傅利叶变换的运算处理中,位移数据可在检查区域9内的所有像素点得到,没有必要进行插补处理。又能以像素单位以下的精度算出位置分布,因此,畸变小于一个像素那样的情况下,也能够以良好的精度计算出畸变。而且,像磁记录磁道检查装置那样,栅线数已经确定,不能够用增加栅线数的方法来提高测定精度的情况下是有效的。
这样,采用第4实施例,则在计算栅线数时使用进行傅利叶变换的相位信息处理,以此能够以达到小数单位的高精度求得栅线数,因此,一个像素的平均实际空间长度的测定、摄像范围的计算和调整,可以有更高的精度。
又,在计算畸变分布时使用进行傅利叶变换的相位信息处理,以此,能够以小于像素单元计算位移分布,能够以更高精度计算畸变分布和利用畸变分布修正位移分布。
权利要求
1.一种基准规,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规,其特征在于,在其表面具有作为该基准规的坐标系的基准的线图,和以等间距描画成相对于所述线图的基准方向具有规定的角度的栅图,所述线图和所述栅图具有的厚度,使得在磁记录磁道检查装置上设置时它们的表面与在磁记录磁道检查装置上设置磁带时该磁带上表面的高度位置实质上相等。
2.根据权利要求1所述的基准规,其特征在于,所述栅图的间距与所述磁带上的磁道图案的间距实际上相等。
3.一种基准规,是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规,其特征在于,在其表面具有作为该基准规的坐标系的基准的线图,和实质上与在所述磁录放装置中分别由两个以上的具有规定的方位角的磁头记录在磁带上的理想磁道图案中,以具有一方位角的磁头记录的磁道图案为明部,并且以具有另一方位角的磁头记录的磁道图案为暗部时得到的磁道图案相同的模拟磁道图案,沿着所述模拟磁道图案上的至少一条以上的位移测定线的,所述模拟磁道图案的相对于所述理想的磁道图案的位移分布是已知的,所述线图和所述模拟磁道图案具有这样的厚度,使得在所述磁记录磁道检查装置上设置时它们的表面与在所述磁记录磁道检查装置上设置磁带时该磁带上表面的高度位置实质上相等。
4.一种基准规,是对磁录放装置所记录且进行过可视化处理的磁带上的磁记录磁道的磁道图案,通过光学系统用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规,其特征在于,在其上表面具有,作为该基准规的坐标系的基准的线图,以及以等间距描画,使其相对于所述线图具有规定的角度的栅图,还具有与在所述磁录放装置中,由分别具有规定的方位角的2个以上的磁头记录在磁带上的理想磁道图案中,以具有一方位角的磁头记录的磁道图案为明部,并且以具有另一方位角的磁头记录的磁道图案为暗部时得到的磁道图案实际上相同的模拟磁道图案;沿着所述模拟磁道图案上的至少一条以上的位移测定线的、所述模拟磁道图案对所述理想磁道图案的位移分布是已知的;所述线图、所述栅图和所述模拟磁道图案具有的厚度,使得在所述磁记录磁道检查装置上设置时它们的表面与在所述磁记录磁道检查装置上设置所述磁带时与该磁带上表面的位置实际上相等。
全文摘要
本发明涉及磁记录磁道检查装置用的基准规。这种基准规是对磁录放装置所记录且进行过可视化处理的磁带上磁记录磁道的磁道图案,用摄像装置进行摄像、检查的磁记录磁道检查装置用的基准规。在其表面具有作为该基准规的坐标系的基准的线图,和以等间距描画成相对于所述线图的基准方向具有规定的角度的栅图。所述线图和所述栅图具有的厚度,使得在磁记录磁道检查装置上设置时它们的表面与在磁记录磁道检查装置上设置磁带时该磁带上表面的高度位置实质上相等。
文档编号G01B5/14GK1404034SQ01125279
公开日2003年3月19日 申请日期1997年1月23日 优先权日1996年2月23日
发明者林谦一, 曾我部靖, 松浦贤司, 村田茂树 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1