可同时投射多相移图案而对物体进行三维检测的系统的制作方法

文档序号:5834281阅读:275来源:国知局
专利名称:可同时投射多相移图案而对物体进行三维检测的系统的制作方法
技术领域
本发明涉及三维检测物体的方法。本发明具体涉及可同时将多相移图案投射到物体上以便对其进行的三维检测的系统。
背景技术
众所周知,可采用干涉方法来进行物体的三维测量或测量物体的高度(凹凸度)的变化。一般说来,这些方法在于在物体的表面上产生干涉图案,然后分析得到的干涉测量图像(或干涉图),可得到物体的凹凸度。该干涉测量图像一般包括一系列的黑白条纹。
需要应用激光来产生干涉测量条纹的干涉测量法一般称作“经典干涉测量法”。在这种经典方法中,激光的波长和测量组件的结构一般决定得到的干涉图的周期。经典干涉测量法一般用在可见光谱中,测量微米数量级的高度变化。
然而在可见光谱中用这种方法测量表面上的为0.5~1mm的高度变化时将会产生困难。因为测量得到的干涉图的黑白条纹的密度增加,造成分析非常麻烦。
经典干涉测量法的另一缺点是,这些方法需要对噪音和震动特别敏感的测量组件。
与经典干涉测量方法的准确度相比,基于Moire干涉测量法的三维检测方法在可见光谱范围内可以更准确地测量物体。这些方法是基于分析1)在配置于待测物体上面的格栅和物体上的阴影之间得到的拍频(Moire阴影法)或2)在格栅于物体上的投影和另一格栅之间得到的拍频(Moire投射法),该另一格栅配置在物体和用来照相最后干涉图的照像机之间。在两种情况下,在两个格栅之间的拍频将产生所得到的干涉图的条纹。
具体是,Moire阴影法包括将格栅配置在待测物体附近的步骤、并从与物体平面形成的第一角度(例如45°)进行照明,然后用配置在第二角度(例如与物体的平面成90°)照相机照相该干涉图。
因为格栅和物体之间的距离变化,所以高度的这种变化将使干涉图的图案发生变化。可以分析这种图案的变化,得到物体的凹凸度。
应用Moire阴影法来测量物体凹凸度的缺点是格栅必须很靠近物体配置,以便获得准确的结果,这样对测量组件安装造成限制。
Moire的投射法类似于Moire的阴影法,因为配置在照相机和物体之间的格栅其作用类似于Moire阴影法中格栅阴影的作用。然而Moire投射法的另一个缺点是它需要很多调节,因此一般造成不准确的结果,因为它需要定位和跟踪两个格栅。另外,第二格栅趋向于阻挡照相机,从而妨碍照相机同时用来摄取其它测量像。
应用基于“相移”干涉测量法的方法可以在将图案投射到物体以后通过分析许多物体像的相位变化来测量物体的凹凸度。每个像对应于格栅相对于物体的位置变化,或对应于产生图案的任何其它装置相对于物体的位置变化。
在干涉测量图像上每个像元(x、y)的强度I(x,y)由以下方程确定I(x,y)=A(x,y)+B(x,y)·cos(Δφ(x,y))(1)其中Δφ是相位变化(或相位调制),而A和B是对每个像元计算的系数,在Coulombe等的题为“测量物体凹凸度的方法和系统”的PCT申请NO.W0 01/06210中说明一种采用至少三个干涉像来测量物体高度的方法和系统。实际上,因为方程(1)包含三个未知数即A、B和Δφ,所以需要每个像元的三个强度I1、I2和I3即需要三个像来计算相位变化Δφ。由于已知相位变化,所以可以用以下公式计算在每个点h(x,y)相对于基准表面的物体高度分布(凹凸度)(见

图1)h(x,y)=Δφ(x,y)·p/2π·tan(θ)(2)式中p是格栅的节距,而θ是如上所述的投射角。
由Coulombe等用的三个像对应于格栅相对于物体表面的小平移。格栅的位移这样选择,使得在像中产生相位变化。Coulombe等提出用一种系统获得像,该系统可使格栅相对于待测物体运动。这种系统的一个小缺点是,它需要使格栅在像的各次摄像之间移动,从而增加了拍摄像的时间。在例如用这种系统来检测生产线上的运动物体时,这是特别有害的。更一般地讲,在这种系统中,任何运动部件将增加不准确的可能性以及损坏的可能性。
因此,需要一种没有上述先有技术缺点的三维检测物体的方法和系统。
发明概要具体是,本发明提供一种三维图象摄取装置(grabber),该装置包括用于将至少两个相移图案投射到物体上的图案投射组件;各个投射像的特征在于预定的带宽;以及对预定带宽敏感的像获取装置,用于同时摄取在物体上各个投射图案的像。
本发明的另一方面提供一种测量物体凹凸度的系统,该系统包括用于同时将至少三个相移图案投射到物体上的图案投射组件;各个投射组件的特征在于预定带宽;对该预定带宽敏感的像获取装置,用于摄取在物体上至少三个相移投射图案中各个图案的像;各个像包括许多具有强度值的像元;控制器,该控制器构成为可以a)从该像获取装置接受至少三个投射在物体上的图案像;b)采用相应像元的至少三个物体强度值计算各个像元的物体相位;c)采用在相应像元位置的物体相位计算在各个像元位置的物体凹凸度。
本发明的系统最好用于检测铅的共面性(lead coplanarity)。
本发明再一方面是提供一种测量物体凹凸度的方法,该方法包括以下步骤同时将至少三个相移图案投射到物体上a)摄取物体上至少三个相移图案中各个图案的像,从而收集像上各个像元位置的强度值;b)用相应像元的至少三个物体强度值计算各个像元位置的物体相位;c)用在相应像元位置的物体相位计算在各个像元位置的物体的凹凸度。
本发明实施例的用于测量物体凹凸度的系统和方法是有利的,因为这种系统和方法能够用固定部件检测运动的物体。
下面参考附图,阅读以下仅作为举例的优选实施例的非限制性说明可以明显看出本发明的其它目的、特征和优点。
附图的简要说明这些附图是图1是示意图,示出将格栅投射到物体上;图2是示意图,示出本发明实施例的用于测量物体凹凸度的系统;图3是示意图,示出本发明第一实施例的图2所示的三维图象摄取装置;图4是示意图,示出本发明实施例的光谱分离装置;图5是示意图,示出本发明第二实施例的图2所示的三维图象摄取装置;图6是示意图,示出本发明第三实施例的图2所示的三维图象摄取装置;图7是示意图,示出本发明第四实施例的图2所示的三维图象摄取装置;图8是方块图,示出本发明实施例的测量物体凹凸度的方法。
优选实施例说明回到附图的图2和3,说明本发明实施例的用于测量物体凹凸度的系统10。
用于测量物体10凹凸度的系统包括格栅投射组件11、像获取装置12和形为计算机14的控制器,该控制器最好装有存储装置16、输出装置18和输入装置20,这些装置和格栅投射组件11与像获取装置12一起构成三维图象摄取装置(以后称作为“3D摄取装置”)15。下面详细说明这种摄取装置。
该计算机14最好设计成可以处理由系统15得到的像,并通过分析这些像来测量物体30的凹凸度(见例如图3)。
如要进一步说明的,最好用本发明实施例的方法来进行像的处理和物体30凹凸度的测量。然而,也可以采用其它方法而不会违背本发明三维图象摄取装置的精神和特征。
该计算机14最好装有存储器装置,这些存储装置可以在用计算机14处理这些像时储存这些像,从而增加处理速度。
储存装置16可以是例如硬盘、可读写的CD-ROM驱动存储盘或其它已知的数据存储装置。这些储存装置可以直接连接于计算机14,或可以通过计算机网络例如因特网进行远距离连接。按照本发明的实施例,储存装置16可用来储存由像获取装置12摄取的像、物体30的凹凸度以及其它的中间结果。这些文件可以以计算机14能读出的很多格式和分辨率储存起来。
输出装置20可以使像变成可目视的像,并且使计算机产生的数据变成可目视的数据,这种输出装置20可以为各种形式,从显示器到印刷装置。
输入装置18可以是常规的鼠标器、键盘或其它任何已知的输入装置,或为这些输入装置的联合装置,这些输入装置可以将数据和指令输入到计算机14。
计算机14可以是常规个人计算机,或是包含处理器、存储器和输入/输出口(未示出)的其它任何处理机。该输入/输出口可以包括网络的连接,以便将像传送到存储装置16或从存储装置16中输出。
当然,计算机14可以运行测量物体凹凸度方法的软件,如下面将说明的。
下面具体参考附图的图3,更详细说明本发明第一实施例的3D摄取装置15。
格栅投射组件11包括照明组件22、装在支承件(未示出)上的格栅24以及投射器28。
该照明组件22最好包括通过格栅24投射的白光光源34。光源34例如是输送白光光源(未示出)白光的光导纤维(未示出)的端部。在光源34和格栅24之间最好还应用非球面透镜36或其它任何聚光镜。可以相信,技术人员可以想象出其它的在本发明精神范围内的照明组件。或可以用装在框架内的任何图案替代该格栅。
按照本发明的第一实施例,照明组件22还包括位于照明组件22和格栅24(见图4)之间的光谱分离器(或“分光器”)35。光谱分离器35被设计成可以将光源34产生的白光37分光成至少两个不同的单色光(在图4中三种形式虚线中的各种虚线代表单色光),或将光分成两个不重叠的带宽。
当然,如果要采用相移方法应用3D像摄取装置15、17、19和21的其中一个装置来测量物体的凹凸度,则它们应当被改变成可以同时投射至少三个相移的格栅,如上面说明的那样。
或还可以应用能将白光分解成许多单色光或两个不重叠带宽的任何装置。
另外,也可以用包含许多单色光的非白光光源来替代白光光源。
因为产生这些结果的装置被认为在这种技术中是众所周知的,所以在本文中将不再详细说明这些装置。
格栅24的结构可以随适合于测量物体30凹凸度所需的分辨率的变化而改变。例如,已经发现具有250条刻线/英寸的ronchi格栅(ronchiruling)可以测量电路板的铅共面性,其中,要求的分辨率约为1mm。
最好应用形状为50mm的电视透镜的投射器28来将格栅投射在物体36上。
使白光光源34投射通过光谱分离器35和格栅24这种方法有利于可以同时将至少两个单色相移的格栅投射到物体30上。
光谱分离器35可以用将白光分解成连续光谱的棱镜式装置取代。在本例子中,像获取装置12可以作成为对单个的波长敏感。
在光的入射方向(图2的虚线42)和像获取装置的视线(图2的虚线44)之间的角度θ可以根据待测量物体的特性。
我们认为,技术人员有能力相对于物体30定位该照明组件22、格栅24和格栅投射器28,从而在物体30上形成具有要求节距p的投射格栅。
例如具有250条刻线/英寸密度的在物体30和投射器28之间的距离43为22cm的角度θ为30°ronchi格栅可以形成节距p为0.5mm投射格栅。这种节距相当于在物体30表面上约1mm的高度变化。
很明显,投射格栅的节距随格栅24的节距变化。
应当注意到,该系统10在照相机46和物体30之间不需要格栅。这种优点下面说明。
或者格栅投射组件11可以作成能够投射取代格栅24的包含特有设计半透明板的任何其它图案。
像获取装置12包括具有像元阵列的摄像机46,该摄像机最好为彩色CCD(电荷耦合器件)摄像机,该摄像机被作成为对投射格栅的波长敏感。这种摄像机中的各种摄像机可以提供例如1300×1024个像元的分辨率。
该像获取装置12可以包括远心透镜48,该透镜48最好通过可选择性伸缩管50装在摄像机46上。
该像获取装置12的结构以及在该装置12和物体30之间的距离决定该像获取装置12的视场。或可以通过使摄像机46与物体30分开适当的距离达到要求的视场,而不用伸缩管50。
像获取装置12允许同时摄取投射在物体30上的许多相移投射格栅的像。
应当注意到,系统10包括调节支承装置(未示出),以便使像获取装置12和格栅投射组件11彼此相对定位和相对于定位物体30定位。或可以采用其它的准直装置,这不超出本发明的特征和精神。
现在参考图5,说明3D摄取装置17的第二实施例。因为在第二和第一实施例之间的唯一差别是像获取组件,为了简明起见,下面只说明这种差别。
该像获取装置12′包括三个摄像机46,每一个均为CCD摄像机。
应用半透明的反射镜和滤光器52~56可使物体在θ角反射的光变向,射到三个CCD摄像机46中的一个摄像机。该滤光器可以分别对待对应于三个投射格栅的波长。
具体是,第一半透明反射镜52被结构成可以反射预定投射在第一摄像机46上的第一波长,而使其余的包含第二和第三波长的光穿过它。第二波长的光由第二半透明反射镜反射到第二摄像机46上,该第二半透明反射镜被选择为可以让第三波长的光通过它。第三反射镜56将具有第三波长的光反射到第三摄像机46上。
这些CCD摄像机46中各种摄像机最好包括允许获得上述结果的滤光器。
还应当注意到,在两种像获取装置12和12′中该CCD摄像机可以用CMoS(互补金属-氧化物-硅)装置代替。
虽然像获取装置12和12′已经说明为作为可以分别对待单色光,但是可以认为,改变这些装置来分别对待具有预定带宽的光是在技术人员可以想出的范围内。
下面参考图6,说明获得相移像的系统19的第三实施例。因为在第三和第二实施例的唯一区别是投射组件,为简明起见,下面更详细说明这些唯一的差别。
投射组件11′包含三个格栅投射装置,各个投射装置包括具有格栅24的光源以及类似于图3或图5组件的投射器28,差别在于光源34′、34″和34不是白光光源,而是发射具有彼此不同预定波长光线的光源。
光源产生的各个光线沿入射方向(虚线42′、42″和42)入射,然后用反射装置使入射线改变到沿着入射路径42,该反射装置包括反射镜58和62以及半透明的反射镜60和64。因为这种反射镜装置被认为是技术人员可以想到的,所以下面不详细说明。
为了使各个投影格栅的节距p保持恒定,可以改变各个图案投射装置与物体的纵向距离。或当不能保持这种恒定节距p时,在应用得到的像来计算物体的凹凸度时,必须考虑列入射线的程差。
很明显,投射组件11′和像获取装置12可以组合成本发明3D摄取装置21的第四实施例(见图7)。如上述头三个实施例的情况那样,该系统21仍可以将三个相移图案同时投射在物体上,然后可以同时摄取这三个投射图案的像。
虽然系统15、17、19和21被说明为作成可以同时投射三个图案,但是本发明的3D摄取装置可以作成和用来同时投射两个以上任何数目的图案。
应当注意到,即使图6和7例示出三个图案投射装置,但是可以认为,改变本发明的3D摄取装置使其可以同时投射超过两个的任何数目图案是技术人员可以想出的。
下面参照附图的图8,详细说明用于测量物体凹凸度的本发明实施例的方法。
一般说来,用以下的步骤来测量物体30的凹凸度100-同时将至少三个相移的格栅投射到基准物体上;102-同时摄取在基准物体上各个相移格栅的像,以收集像的各个像元的强度值;104-用这些强度值计算基准像各个像元的相位;106-用待测物体30取代基准物体,然后重复步骤100~104;108-利用每个像元的相应相位对各个像元计算物体30和基准物体之间的高度差;110-用在各个像元的高度差确定各个像元的物体的凹凸度。
下面参照第一例子进一步说明这些一般步骤,在该第一例子中待测的物体是结合于板上的铅球。然而,还应当注意到,本发明实施例的测量物体凹凸度的方法可以测量其它三维物体的凹凸度。
由于选择平滑的板作基准物体,所以在物体和基准物体之间的高度差别将是该铅球的高度。物体62和基准物体的共同部件在此例子中是板。
在步骤100中,可利用系统10同时将三个相移的格栅投射到平滑的板上。如上面说明的,该系统10包括使格栅(或多个)24和摄像机(或多个)46相对于基准物体(以及随后的物体)对准和固定的装置。
还可以应用系统10同时摄取在基准物体上的三个相移格栅的各个像(步骤102)。
各个像包括像的各个像元的强度值。计算机14储存用于将来处理要用的三个强度值。
应当注意到,由系统10得到的相移像的最小数目是三个,因为公式(1)包括三个未知数即A、B和Δφ,因此需要各个像元的三个强度值I1、I2和I3来计算相位变化Δφ。
用系统10特别是3D摄取装置15(或17、或19、或21)可以获得投射在物体上的相移格栅的像,该像类似于在每次摄像之间平移格栅所成功获得的像。
这样便产生摄像机46像元阵列各个像元的三个类似于方程(1)的方程In=A+B·cos(Δφ+Δφn) (2)其中n=1,3解方程组(2)可以得到Δφ的值,三个投射格栅的波长被选择为最好提供不同的Δφ1、Δφ2和Δφ3。
在步骤104中,相位用各个像元的三个强度值通过解方程(2)进行计算。利用常规的例如数值方法可以解此方程。解这种方程组的数值方法可以认为在这种技术中是周知的,因此不再详细说明。
因为图8所示的方法需要至少三个像来测量物体的凹凸度,所以得到三个以上的像则允许在每个像元的四个可利用值之中选出三个最好值来计算相位。实际上,大多数计算物体凹凸度的方法需要四个值,但在可利用四个像和其中一个是最大的或有噪音时,则没有机会选择最佳值。
当用图8的方法来检测一系列的物体时,最好在检测之前对基准物体只执行一次100~104的步骤。这样可以提高检测速度。
可以在对物体进行任何测量之前首先摄取基准物体的像。
用待测物体取代基准物体后重复步骤100~104(步骤106)。
因为用物体和基准物体时执行步骤100~104没有差别,为清楚起见,下面不再针对物体说明这些步骤。
或可以应用计算物体和/或基准物体相位的其它方法,这不违背本发明的精神,这些可替代的方法被认为在这种技术中是周知的,因此不再进一步说明。
在步骤108中,对于如步骤104中得到对每个像元计算物体30和基准物体之间高度的差别,方法是从已受检物体的相位减去基准物体的相位,如从步骤104得到的相位。
还应当注意到,在步骤104中计算的物体和基准物体相位相当于想象投影面的表面相位。
当进行格栅(或多个)24的非平行投射时,这种想象的投影面变得稍微弯曲。但是,这对测量物体凹凸度的本发明的方法无害,因为物体和基准物体的两种像是用同样系统10摄取的。
因为物体和基准物体在各个像元的相位对应于物体(或基准物体)和同一想象投影平面之间的高度差(因为采用具有同样光学装置的同样系统),所以这种相位相减便产生物体和基准物体之间高度的差别。这样便允许在不同的照明条件下获取物体和基准物体的像。
在选择性步骤110中,可以利用物体和基准物体之间每个像元的高度差以及根据基准物体的尺寸来确定各个像元的物体的凹凸度即其高度。
对于普通技术人员可以明显看出,可以利用本发明实施例的方法来测量两个物体(一个是基准物体)之间的高度差。在这种情况下,可以明显地不执行步骤110。
在某些应用中,最好在测量期间用放置待测物体的平表面作基准物体。
在某些应用中,最好提供具有准直系统的系统10,以便有助于将物体和基准物体相对于摄像机定位到已知的位置。实际上,因为对每个像元进行物体和基准物体之间的比较,所以准直系统可以确保比较相应的点。
这种准直系统可以为各种形式,包括在平表面、支柱上的标记,或在计算机中执行的软件程序。
还应当注意到,可以首先摄取像,然后在未来的时间进行处理,这不违背本发明的精神。
阅读本发明可以明显看出,本发明实施例的方法可以用白光测量物体的凹凸度。
虽然已通过测量球形物体的例子说明本发明,但是本发明可以用于检测和测量具有其它形状的物体。
当用系统10来研究物体凹凸度随时间变化时,同一物体也可用作基准物体。
或者可以利用物体的计算模式,例如用计算机辅助设计(CAD)产生的计算模型取代基准物体,该计算机辅助设计实际上已按照系统10的组合进行配置。
虽然上面已通过其优选实施例说明本发明,但是该实施例可以修改而不超出如所附权利要求书确定的本发明的精神和特征。
权利要求
1.一种三维图象摄取装置,包括用于将至少两个相移图案同时投射到物体上的图案投射组件;各个上述投射图案的特征在于预定的带宽;以及一种像获取装置,该获取装置对于上述预定带宽是敏感的,用于同时摄取投射在物体上各个上述投射图案的像。
2.如权利要求1所述的三维图象摄取装置,其特征在于,至少一个上述预定带宽包括单一波长。
3.如权利要求1所述的三维图象摄取装置,其特征在于,上述图案投射组件包括含有由照明组件照明的图案的半透明板、配置在上述板和上述照明组件之间的光谱分离器以及用于将上述照明板投射到上述物体上的投影器;上述照明组件包括白光光源,该光源配置成光可投射通过上述板。
4.如权利要求3所述的三维图象摄取装置,其特征在于,上述照明组件还包括用于将上述白光光源的光聚光到上述板上的光导纤维和聚光镜。
5.如权利要求3所述的三维图象摄取装置,其特征在于,上述半透明板是格栅。
6.如权利要求1所述的三维图象摄取装置,其特征在于,上述图案投射组件包括至少两个图案投射装置和反射装置;各个上述图案投射装置结构成可以投射具有预定带宽的光通过图案;上述反射装置结构成可以使上述投射图案变相向到沿着共同的入射方向。
7.如权利要求6所述的三维图象摄取装置,其特征在于,至少一个上述图案投射装置包括半透明板和投射器,前者包括由照明组件照明的图案,后者用于将上述照明的板投射到上述反射装置上;上述照明装置包括光源,该光源具有预定的带宽,并配置成可以投射通过上述板。
8.如权利要求6所述的三维图象摄取装置,其特征在于,上述投射装置包括上述反射镜和上述半透明反射镜中的至少一种反射镜。
9.如权利要求6所述的三维图象摄取装置,其特征在于,上述板是格栅。
10.如权利要求6所述的三维图象摄取装置,其特征在于,上述图案投射装置彼此相对配置,使得各个装置从上述相应板到物体具有相同距离。
11.如权利要求1所述的三维图象摄取装置,其特征在于,上述像获取装置包括至少一个对上述预定带宽敏感的照相机。
12.如权利要求11所述的三维图象摄取装置,其特征在于,上述像获取装置包括远心透镜。
13.如权利要求1所述的三维图象摄取装置,其特征在于,上述像获取装置包括至少两个照相机,各个照相机对于上述预定带宽中的至少一个带宽是敏感的。
14.如权利要求11所述的三维图象摄取装置,其特征在于,上述照相机是从一组摄像机中选出的,这组摄像机由电荷耦合器件(CCD)摄像机和互补金属-氧化物-硅(CMOS)器件摄像机组成。
15.一种测量物体凹凸度的系统,上述系统包括用于同时将至少三个相移图案投射到物体上的图案投射组件;各个上述投射图案的特征在于预定带宽;像获取装置,该装置对于上述预定带宽是敏感的,用于摄取在物体上的上述至少三个相移投射图案中各个图案的像;各个上述像包括许多具有强度值的像元;以及控制器,该控制器构成为a)从像获取装置接收上述至少三个投射到物体上的投射图案的像;b)用相应像元的该至少三个物体强度值计算各个像元的物体相位;c)采用对应像元位置的上述物体相位计算在各个像元位置的物体的凹凸度。
16.如权利要求15所述的系统,其特征在于,上述图案投射组件包括由照明组件照明的格栅、配置在上述格栅和上述照明组件之间的光谱分离器以及用于将上述照明格栅投射到上述物体上的投影器;上述照明组件包括白光光源,该光源配置成光可以投射通过上述格栅。
17.如权利要求15所述的系统,其特征在于,上述图案投射组件包括至少两个图案投射装置和反射装置;各个上述图案投射装置被结构成可以投射具有预定带宽的光通过图案;上述反射装置配置成可以使上述已投射图案沿共同的入射方向投射。
18.如权利要求15所述的系统,其特征在于,上述像获取装置包括至少一个对上述预定带宽敏感的照相机。
19.如权利要求15所述的系统,其特征在于,上述计算机包括用于在像处理期间贮存上述像的储存器装置。
20.如权利要求15所述的系统,其特征在于,上述计算机包括至少一个储存装置、输入装置和输出装置。
21.采用如权利要求15所述的系统来检测铅锤的共面性。
22.一种用于测量物体凹凸度的方法,该方法包括以下步骤a)同时将至少三个相移图案投射到物体上;b)摄取投射到物体上的上述至少三个相移图案中各个图案的像,以采集上述像上像元位置的强度值;c)用相应像元的至少三个物体强度值计算各个上述像元位置的物体相位;以及d)用在相应像元位置的上述物体相位计算在各个像元位置的物体的凹凸度。
23.如权利要求22所述的方法,其特征在于,可以同时摄取上述至少三个像。
24.一种三维图象摄取装置,包括用于将至少两个相移图案同时投射到物体上的装置;各个上述投射图案的特征在于预定宽度;以及用于同时摄取投射到物体上的上述投射图案中各个图案像的装置;上述像摄取装置对于上述预定带宽是敏感的。
全文摘要
本发明说明了一种三维图象摄取装置,该装置可以将多相移图案同时投射到物体上,并可以同时获取这些相移图案的像。该三维图象摄取装置包括图案投射组件和像获取组件。该图案投射组件包括例如用于在不同单色光的条件下同时投射许多图案的光谱分离器或许多光源以及格栅和投射器。该像获取组件包括例如对不同单色光敏感的CCD摄像机或许多具有滤光器的CCD摄像机,以便采集从物体射来的入射光,该物体由许多相移图案同时照明。本文还公开了用上述方法测量物体凹凸度的方法和系统。
文档编号G01BGK1419647SQ01807117
公开日2003年5月21日 申请日期2001年3月20日 优先权日2000年3月24日
发明者阿兰·库隆布, 米歇尔·坎廷, 亚历山大·尼基廷 申请人:索尔维森公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1