波强度一维纵深测距方法及装置的制作方法

文档序号:5878033阅读:179来源:国知局
专利名称:波强度一维纵深测距方法及装置的制作方法
技术领域
本发明属于一维纵深测距领域,特别涉及对物体或发射源进行一维纵深测距的方法及装置。
二.
背景技术
在现行的工业自动控制装置、机器人、车用防撞雷达及倒车雷达、自动相机、测绘领域等装置中的距离传感器,激光测距仪、红外线测距仪等测距设备,都是利用各种波,如无线电波(长波、短波、超短波、微波、毫米波等)、机械波(声波、超声波等)、光波(激光、红外线、可见光等)、射线(X射线、γ射线、中微子等),对物体进行纵深测距,其方法分为飞行时间差法和几何测距法两大类。
飞行时间差法在单端纵深测距领域的应用分为脉冲式和相位式,脉冲式测距方法利用周期性脉冲的周期或单个脉冲间的时间间隔来测距;相位式用一定的频率调制波源产生一定的波尺,这样发出的调制波再经反射接收,其相位差包含了往返距离,经过位相测量电路显示距离值。飞行时间差测距法需要精确测量时间间隔或位相差,必须知道波发出和接收的时间或位相,才能求出时间间隔或位相差。因此,飞行时间差测距法一般用于物体的测距,对波发射源测距时要求波发射源必须配合,对不配合的波发射源不能测距;同时,由于波的传播速度很快,时间间隔很小,特别是短距离测量时,对器件的要求高,实现难度大,制作的设备成本高,这就使得飞行时间差测距法在短距离测量设备上的应用很少。
几何测距法的种类很多,常见的有三角测距法、视差测距法、象点轴上偏移光焦点法和象点轴外偏移的象偏移法,此类方法可以用于波发射源和物体的测距。几何测距法不是严格意义上的一维测距;几何测距法制作的短距离测量设备虽然成本低,但是由于三角函数的高度非线性关系,其工作距离很短,一般用几何测距法制作的短距离测量设备的作用范围在几十米以内,应用范围窄,并在整个测距范围内的精度分布不均匀,近距离精度高,远距离精度低,不适宜作线性传感器。
三.

发明内容
本发明的目的是提供一种波强度一维纵深测距方法及装置,不用几何测距法和飞行时间差法,而是利用波强度的变化对物体或发射源(统称测距目标)进行一维纵深测距,同时具有作用范围广,在整个测距范围内的精度分布均匀,适宜作线性传感器;对器件的要求低,易于实现,制作的设备成本低,工程应用范围广。
本发明的目的是这样实现的一种波强度一维纵深测距方法及装置,其测距装置主要包括静止两站测距装置或主要包括发射器和静止两站测距装置;或者主要包括运动单站测距装置或主要包括发射器和运动单站测距装置。静止两站测距装置主要包括两个波强度接收器和一个信号处理器等,两个波强度接收器在两个位置测量,信号处理器设置在两个波强度接收器的附近或者在任一波强度接收器处。运动单站测距装置主要包括一个波强度接收器、一个信号处理器和一个运动设备等,波强度接收器和信号处理器设置在运动设备上,在运动设备的运动轨迹上的两个不同点上分时测量;或者主要包括一个波强度接收器、一个信号处理器和一个波变速器等,波变速器(如对光波而言即为克尔盒等)设置在波强度接收器与测距目标之间,测距目标、波变速器、波强度接收器应在同一条波线上,信号处理器设置在波强度接收器的附近或者在波强度接收器处。发射器主要是发射波照射测距目标的专用设备。波强度接收器主要是测定测距目标的直射波或反射波的强度。信号处理器主要是自动计算两个波强度信号的比值或差值,来确定目标的距离。信号处理器主要有全硬件部分,全硬件部分主要包括加法、减法、乘法、除法、对数、指数、放大器、及采样保持等电路或器件,或者主要有硬件部分和软件部分等,硬件部分主要包括加法、减法、乘法、除法、对数、指数、放大器、采样保持等电路或器件,及模数转换器等,软件部分主要由模数转换器控制模块、测距方程计算模块、输出模块等组成。其方法步骤下第一步选择测距装置1.选择静止两站测距装置主要由两个波强度接收器组成的一维测距装置,两个波强度接收器和测距目标在同一条波线(对光波而言就是光线)上,两个波强度接收器与测距目标的波程(对光波而言就是光程)不同,两个波强度接收器与测距目标的波程差(对光波而言就是光程差)如为L,波程差L的大小一般取最大测量距离的1/10至1/10000。
2.选择运动单站测距装置将波强度接收器设置在运动设备上,在运动设备运动轨迹的两个点上分时测量,两个测量点和测距目标在同一条波线上,两个测量点与测距目标的波程(对光波而言就是光程)不同,两个测量点与测距目标的波程差(对光波而言就是光程差)如为L,波程差L的大小一般取最大测量距离的1/10至1/10000;或者在波强度接收器与测距目标之间设立一个波变速器(对光波而言即为克尔盒),测距目标、波变速器、波强度接收器应在同一条波线上,波变速器可改变波的传播速度,在波传播速度变化过程中的两个不同时刻分时测量,产生波程差如为L,波程差L的大小一般取最大测量距离的1/10至1/10000。
第二步选择发射器
1.当测距目标为发射源自身发射波时,无需选择发射器,波强度接收器直接测量测距目标发射的直射波。
2.当测距目标为物体自身不发射波时,可以选择发射大角度宽波束的专用发射器或者借用其他发射波源(如调频广播电台或电视台发射的无线电波,或太阳光的光波或月亮的反射光波等)照射测距目标,以供波强度接收器测量测距目标的反射波进行测距;也可以选择发射小角度窄波束或发射平行波束的专用发射器,发射器发射的小角度窄波束或平行波束直接照射测距目标,以便波强度接收器测量测距目标的反射波进行测距。
发射器和静止两站测距装置或运动单站测距装置可以制作成一体,也可以将发射器和静止两站测距装置或运动单站测距装置分离。
第三步选择波强度接收器1.选择波强度接收器的类型根据选择的发射器发射的波的类型或借用的发射波源的波的类型,选择相应的波强度接收器,即无线电波(如长波、短波、超短波、微波、毫米波等)波强度接收器或光波(如激光、红外线、可见光等)波强度接收器或机械波(如声波、超声波等)波强度接收器或射线(如X射线、γ射线、中微子等)波强度接收器等。
2.选择波强度接收器的接收范围当测距目标为发射源自身发射波时,不必选用发射器,可以选择小接收范围的波强度接收器,也可以选择大接收范围的波强度接收器。
当测距目标为物体自身不发射波时,应选择发射器或借用其他发射波源。当选择的发射器或借用的发射波源发射大角度宽波束时,对测距目标无背景物体时,可以选用大接收范围的波强度接收器,发射器或借用的发射波源发射的大角度宽波束应该与大接收范围的波强度接收器的接收范围相配合,同时覆盖整个工作区域,对工作区域出现的测距目标进行快速测距;对测距目标有背景物体时,只能选用小接收范围的波强度接收器,小接收范围的波强度接收器的接收范围应在发射器或借用的发射波源发射的大角度宽波束中,波强度接收器的接收范围应在测距目标上。当选择的发射器或借用的发射波源发射小角度窄波束或发射平行波束时,测距目标有无背景物体时均选用大接收范围的波强度接收器,确保发射器或借用的发射波源发射的小角度窄波束或发射的平行波束在波强度接收器的大接收范围中,对发射器发射的小角度窄波束或发射的平行波束照射的区域进行测距。
波强度接收器主要包括波接收天线、波电转换元件等。对无线电波而言波接收天线和波电转换元件就是各种无线电接收天线;对光波而言波接收天线是由光学元件组成的光学系统,波电转换元件包括光敏二极管、光敏电阻、光敏三极光等;对声波而言波接收天线包括抛物面反射天线、共鸣腔等,波电转换元件包括压敏晶体、压敏陶瓷、磁伸缩元件、动圈话筒、电容话筒等;对射线而言波接收天线包括由光澜、光栅等组成的光路,波电转换元件包括离子管探测器、晶体探测器和半导体探测器等。波强度接收器可以是由波接收天线、波电转换元件等制作的组件或部件,也可以是由波接收天线、波电转换元件等制作的元件,如突头的光敏二极管。
波接收天线有一定接收范围(如对光波而言就是光学系统的视场),波强度接收器的接收范围由波接收天线的接收范围确定,因此要求所有波强度接收器的接收范围必须与发射器或借用的发射波源进行如前所述匹配。
波强度接收器主要工作过程是波接收天线接收测距目标的直射波或反射波的强度信号,并输入到波电转换元件,波电转换元件将波强度信号转换成电信号,输出表征测距目标发射或反射的波强度的电信号。波强度接收器输出的电信号可以是电压信号或电流信号或频率信号或脉冲宽度信号或交流电幅值信号等。
第四步测量数据在进行数据测量前,首先在选定的测距装置中,任选一波强度接收器所在位置或运动设备的运动轨迹上的任一个测量点或在波传播速度变化过程中的任一时刻为原点位置,另一个波强度接收器所在位置或运动设备的运动轨迹上的另一个测量点或在波传播速度变化过程中的另一时刻为测量位置。
在原点位置测量测距目标的直射波或反射波强度信号,并输出表征波强度的电信号(如电压信号V0),并将其数据(如V0)传输到信号处理器。
在测量位置测量测距目标的直射波或反射波强度信号,并输出表征波强度的电信号(如电压信号V1)及测量位置和原点位置与测距目标的波程差(如L),并将其数据(如L、V1)传输到信号处理器。
第五步 建立波强度方程组,求解并输出结果在信号处理器中,用原点位置输送来的数据(如V0)和测量位置输送来的数据(如L、V1),根据以下波强度比或波强度差测距基本公式,建立波强度测距方程,并自动求解测距目标的距离W=V0V1=K(1+LS)2]]>或V0-V1=K0S2-K1(S+L)2]]>方程中W为波强度比,K、K0、K1为波强度接收器的差异常数,S为测距目标至原点位置的距离,L为测量位置和原点位置至测距目标的波程差,V0为原点位置测量测距目标的波强度电信号,V1为测量位置测量测测距目标的波强度电信号。
特别当L<<S时,波强度比方程可以简化为S=2LlogW]]>用信号处理器自动求解波强度测距方程,并输出测距结果。信号处理器可以主要由全硬件构成,全硬件构成的信号处理器主要包括加法、减法、乘法、除法、对数、指数、放大器及采样保持等电路或器件;信号处理器也可以主要由硬件部分和软件部分构成,其硬件部分主要包括加法、减法、乘法、除法、对数、指数、放大器、采样保持等电路或器件及模数转换器和可编程系统等,可编程系统指计算机或单片机或DSP等,硬件部分的功能是将波强度接收器输出的表征波强度的电信号转换成数字信号,同时提供软件部分的运行载体;软件部分主要由模数转换器控制模块、测距方程计算模块、输出模块等组成,软件部分的主要功能是控制模数转换器将两个波强度接收器输出的表征波强度的电信号转换成数字信号,自动求解测距方程,并输出测距结果。
由全硬件构成的信号处理器有两种较好的组成1.对静止两站测距装置,可以采用由两个对数放大器、一个减法放大器、一个倒数放大器组成的信号处理器。两个波强度接收器输出的波强度信号,分别经过两个对数放大器放大,输出的两个电压信号送入一个减法放大器作减法运算,输出的电压信号经过倒数放大器放大后输出结果。
2.对运动单站测距装置,可以采用由一个对数放大器、两个采样保持电路、一个减法放大器、一个倒数放大器组成的信号处理器。波强度接收器在原点位置输出的波强度信号,经过对数放大器放大,由一个采样保持电路保持,接收器在测量位置输出的波强度信号,经过同一个对数放大器放大,由另一个采样保持电路保持,两个采样保持电路输出的两个电压信号,送入一个减法放大器作减法运算,输出的电压信号经过倒数放大器放大后输出结果。
本发明用波强度接收器测量测距目标的直射波或反射波强度,信号处理器根据波强度基本公式建立波强度比或波强度差测距方程测距,自动求解并输出结果,具有以下特点1.解决了发射源在严格意义上的一维单端纵深测距难题,这是利用飞行时间差法和几何测距法无法完成的任务。
2.应用范围广,可以用于短、中、长距离的测距。
3.在整个测距范围内的精度分布较均匀,适宜作测距线性传感器和测距仪。
4.对器件的要求低,易于实现,制作的设备成本低,工程应用前景广泛。
5.特别是能够利用自然光测距,无需发射器,消除了波的污染,满足环保要求。
由于以上的特点,本发明可广泛应用于工业自动控制装置、机器人、车用防撞雷达及倒车雷达、自动相机、测绘领域等装置中的各类距离传感器,以及激光测距仪、红外线测距仪等测距设备中。
四.


图1一维测距示意图;图2光波波强度接收器示意框图;图3测定一维直线运动的点光源距离系统示意框图;图4测距传感器测距系统示意框图;图5测距传感器电路示意图。
图中1、2、13、14为光波波强度接收器,3为点光源,4为凸透镜,5光电二极管,6线性放大器,7、8为对数放大器,9为可调的电压源,10为减法放大器,11为倒数放大器,12、15为信号处理器,16为物体,17为光栏,18为凸头光电二极管,19为电位器,20为半反射镜,21为全反射镜,22为光线。
五.
具体实施例方式
下面结合实施例,进一步说明本发明。
实施方式一测定一维直线运动的无背景物体点光源距离的测距仪,输出与距离成正比的电压信号。
如附图1至附图3所示,本测距系统由静止两站测距装置构成,静止两站测距装置主要包括两个光波波强度接收器1、2和一个信号处理器12构成的一维直线测距系统,工作时两个光波波强度接收器1、2测量点光源3直射的光波,各输出一路表征光波强度的电压信号,通过信号处理器12建立波强度比测距方程组,并自动求解后输出点光源3的距离。测距的方法步骤下第一步选择测距装置选择两个波强度接收器组成的静止两站测距装置,两个波强度接收器与点光源3的波程差为L,并固定在点光源3的光线的同一侧,波程差L取最大测量距离的1/1000。
第二步选择发射器由于点光源3自身发射光波,无需使用发射器,故不选择发射器,用波强度接收器直接测量点光源3发射的直射光波。
第三步选择接收器根据点光源3发射的是光波,故选择与其相应的光波波强度接收器1、2。
又由于点光源3无背景物体,故光波波强度接收器1、2的接收范围可大可小,本实施例选择的为大接收范围,点光源3在光波波强度接收器1、2的接收范围内。
光波波强度接收器主要包括凸透镜4(光波接收天线)、光电二极管5(波电转换元件)、线性放大器6等环节。其工作过程是凸透镜4接收点光源3发射的光波,聚焦在光电二极管5上,经过光电二极管5转换为线性电流信号,由线性放大器6放大并转换为线性电压信号,输出一路表征光波强度的电压信。,光波波强度接收器示意框图如附图2所示。
第四步测量数据在进行数据测量前,首先在选定的测距装置中,选择光波波强度接收器1所在位置为原点位置,光波波强度接收器2所在位置为测量位置。
在原点位置测量光源3的直射波强度信号,并输出表征其波强度的电信号V0,并将数据V0传输到信号处理器12。
在测量位置测量点光源3的直射波强度信号,并输出表征其波强度的电信号V1及测量位置和原点位置至测距目标的波程差L,并将其数据(如L、V1)传输到信号处理器12。
第五步 建立波强度方程组,求解并输出结果在信号处理器12中,用原点位置输送来的数据V0和测量位置输送来的数据L、V1,根据波强度比测距基本公式,两边取对数后的方程为logW=logK0+2×log(1+LS)]]>当L远远小于S时,log(1+L/S)趋于L/S,于是有logW=logK0+2×log(1+LS)≈logK0+2LS]]>即S=2LlogW-logK0]]>用一个可调电压源V0,消除波强度接收器的差异常数logK0后,有S=2LlogW]]>根据该波强度方程的特点,选择由两个对数放大器7和8、一个减法放大器10、一个倒数放大器11和一个可调电压源9组成的全硬件信号处理器,自动求解方程并输出结果。整个点光源测距装置的工作过程为两个光波波强度接收器1和2输出的强度电压信号V1和V2,分别经过两个对数放大器7和8放大,输出的两个电压信号和一个可调的电压源9输出的电压信号,一同送入一个减法放大器10,作减法运算后,输出的电压信号经过倒数放大器11放大后输出。
这个测距仪解决了发射源在严格意义上的一维单端纵深测距难题,这是利用飞行时间差法和几何测距法无法完成的任务,同时应用范围广,可以用于短、中、长距离的测距,在整个测距范围内的精度分布较均匀,适宜作测距传感器和测距仪,对器件的要求低,易于实现,制作的设备成本低,工程应用前景广泛。通过更换接收器的种类,可以应用于放射源(如钴60)的测距,声波发射源(如海豚)的测距,红外线发射源(如人体)的测距等。实施方式二利用自然光测定物体距离的测距传感器,输出与距离成反比的差动电压信号。
如附图4,5所示,本测距系统主要由静止两站测距装置构成,发射器为借用太阳,静止两站测距装置主要包括两个光波波强度接收器13、14、和一个信号处理器15,工作时物体反射的太阳光经过半反射镜20分成两路,一路进入光波波强度接收器13,另一路经过全反射镜21进入光波波强度接收器14,两个光波波强度接收器13、14测量物体16反射的太阳光波,输出表征光波波强度接收器所在位置的光波强度的对数电压信号,通过信号处理器15建立波强度比测距方程,并自动求解后输出物体16的距离。测距的方法步骤下第一步选择测距装置选择两个波强度接收器组成的静止两站测距装置,两个波强度接收器与物体16的波程差为L,并与物体16在同一条光线22上,两个波强度接收器在物体的同一侧。
第二步选择发射器由于物体16自身不发射波,必须选用发射器或借用其他波源。本实施例借用太阳发射的光波照射物体16,两个波强度接收器测量物体16反射的太阳光波。
第三步选择接收器根据借用的波源为太阳,发射的是光波,故选择与其相应的光波波强度接收器13、14。
由于物体16有背景物体,同时借用的太阳发射的是大角度宽波束光波,故光波波强度接收器13、14的接收范围为小接收范围,光波波强度接收器13、14的接收范围应在物体16上。
光波波强度接收器主要包括光栏17、凸头光电二极管18(光栏17和凸头光电二极管18的凸头构成光波接收天线,凸头光电二极管18的光电二极管构成波电转换元件),其工作过程是太阳光照射物体16,光栏17选择物体16上的一定区域的反射光波,由凸头光电二极管18接收,并转换为对数电压信号输出。第四步测量数据在进行数据测量前,首先在选定的静止两站测距装置中,选择光波波强度接收器13所在位置为原点位置,光波波强度接收器14所在位置为测量位置。
在原点位置测量物体16的反射波强度信号,并输出表征其波强度的对数电压信号V0,并将数据V0传输到信号处理器15。
在测量位置测量物体16的反射波强度信号,并输出表征其波强度的对数电压V1及测量位置和原点位置至测距目标的波程差L,并将其数据(如L、V1)传输到信号处理器15。
第五步 建立波强度方程,求解并输出结果在信号处理器15中,用原点位置输送来的数据V0和测量位置输送来的数据L、V1,根据波强度比测距基本公式,两边取对数后的方程为logW=logK0+2×log(1+LS)]]>当L远远小于S时,log(1+L/S)趋于L/S,于是有logW=logK0+2×log(1+LS)≈logK0+2LS]]>即S=2LlogW-logK0]]>用一个电位器19,消除两个光波波强度接收器的差异常数logK0后,有1S=logW2L]]>根据该波强度方程的特点,同时注意到光波波强度接收器输出的是对数电压信号,选择由一个电位器19组成的全硬件信号处理器,自动求解方程并输出结果,如附图5所示。
整个测距传感器的工作过程为借用太阳光照射物体16,光栏17选择物体16上的一定区域的反射光波,由凸头光电二极管18接收,并转换为对数电压信号输出,输出的两个对数电压信号经过一个电位器19,消除两个光波波强度接收器的差异后,输出与距离成反比的差动电压信号。
这种测距传感器结构简单,对器件的要求低,易于实现,制作的设备成本低,工程应用前景广泛,在整个测距范围内的精度分布较均匀,可以用于短、中、长距离的测距,无需发射器,消除了波的污染,满足环保要求,同时没有大功率的发射器,整个测距传感器节能效果特佳。
权利要求
1.一种波强度一维纵深测距方法及装置,其特征在于测距装置主要包括静止两站测距装置或主要包括发射器和静止两站测距装置,或者主要包括运动单站测距装置或主要包括发射器和运动单站测距装置,静止两站测距装置主要由两个波强度接收器和信号处理器构成,信号处理器设置在两个波强度接收器附近或任一波强度接收器处,运动单站测距装置主要由波强度接收器、信号处理器和运动设备构成,波强度接收器和信号处理器设置在运动设备上,或者主要包括一个波强度接收器、一个信号处理器和一个波变速器,波变速器设置在波强度接收器与测距目标之间,信号处理器设置在波强度接收器的附近或者在波强度接收器处。
2.一种波强度一维纵深测距方法及装置,其特征在于测距方法步骤如下第一步选择定位装置(1)选择静止两站测距装置主要由两个波强度接收器组成的一维直线测距装置,两个波强度接收器在两个位置测量,两个波强度接收器和测距目标应在同一条波线上,并位于测距目标同侧且不重合于一点;(2)选择运动单站装置将波强度接收器设置在运动设备上,在运动设备的运动轨迹上的两个点上分时测量,两个测量点和测距目标应在同一条波线上,并位于测距目标同侧且不重合于一点,或者在波强度接收器与测距目标之间设立一个波变速器,测距目标、波变速器、波强度接收器应在同一条波线上,在波传播速度变化过程中的两个不同时刻分时测量。第二步选择发射器当测距目标为物体自身不发射波时,才选择发射器或借用其他发射波源;第三步选择接收器根据测距目标自身发射的波的种类,或者所选择的发射器或借用的发射波源所发射的波的种类,选择相应的波强度接收器;第四步测量数据首先在选定的测距装置中,任选一波强度接收器所在位置或运动设备的运动轨迹上的任一个测量点或在波传播速度变化过程中的任一时刻为原点位置,另一个波强度接收器所在位置或运动设备的运动轨迹上的另一个测量点或在波传播速度变化过程中的另一时刻为测量位置,在原点位置测量测距目标的直射波或反射波的强度信号,并输出表征波强度的电信号传输到信号处理器,在测量位置测量测距目标的直射波或反射波的强度信号及测量位置和原点位置至测距目标的波程差,并输出表征波强度的电信号传输到信号处理器;第五步建立波强度方程组,求解并输出结果在信号处理器中,用原点位置和测量位置输送来的数据,根据波强度比或波强度差建立测距方程,再利用信号处理器自动求解,并输出测距目标的距离。
3.按照权利要求1所述的波强度一维纵深测距方法及装置,其特征在于所述的发射器主要包括发射大角度宽波束的发射器或发射小角度窄波束的发射器或发射平行波束的发射器;发射器与测距装置可形成一整体,也可分离设置。
4.按照权利要求1所述的波强度一维纵深测距方法及装置,其特征在于所述的波强度接收器主要包括波接收天线、波电转换元件;波强度接收器的波接收天线及波电转换元件可以制作成组件或部件,或可以制作成元件。
5.按照权利要求1、4所述的波强度一维纵深测距方法及装置,其特征在于所述的波强度接收器为无线电波波强度接收器或光波波强度接收器或机械波波强度接收器或射线波强度接收器。
6.按照权利要求1所述的波强度一维纵深测距方法及装置,其特征在于信号处理器主要为全硬件信号处理器,或主要由硬件部分和软件部分构成的信号处理器。
7.按照权利要求1、6所述的波强度一维纵深测距方法及装置,其特征在于全硬件信号处理器主要包括加法、减法、乘法、除法、对数、指数、放大器及采样保持电路或器件;全硬件信号处理器主要由两个对数放大器、一个减法放大器及一个倒数放大器构成;或者主要由一个对数放大器、两个采样保持电路、一个减法放大器、一个倒数放大器构成。
8.按照权利要求1、6所述的波强度一维纵深测距方法及装置,其特征在于由硬件部分和软件部分构成的信号处理器的硬件部分主要包括加法、减法、乘法、除法、对数、指数、放大器、采样保持电路或器件及模数转换器和可编程系统;软件部分主要包括模数转换器控制模块、测距方程计算模块、输出模块。
全文摘要
一种波强度一维纵深测距方法及装置,属于一维纵深测距领域,特别涉及对物体或发射源进行一维纵深测距的方法及装置。波强度接收器测量直射波或反射波强度,用由纯硬件或硬件加软件构成的信号处理器,自动求解根据波强度比或波强度差建立的测距方程,并输出结果,这不但解决了物体和发射源一维纵深测距难题,而且测距速度快、精度高、抗干扰能力强,特别是能够利用自然光测距,无需发射器,消除了波的污染,满足环保要求,本发明可广泛应用于工业自动控制装置、机器人、车用防撞雷达及倒车雷达、自动相机、测绘领域等装置中的各类距离传感器,以及激光测距仪、红外线测距仪等测距设备中。
文档编号G01S17/00GK1484043SQ03117628
公开日2004年3月24日 申请日期2003年4月5日 优先权日2003年4月5日
发明者封先河 申请人:封先河
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1