一种测定导热系数的方法及装置的制作方法

文档序号:5955246阅读:357来源:国知局
专利名称:一种测定导热系数的方法及装置的制作方法
技术领域
本发明涉及测定导热系数领域,具体涉及一种测定导热系数的方法,同时涉及一种可用于准确测定固、液、气三态物质导热系数的装置。
背景技术
导热系数是物质最基本的热物理性质之一,在能源、化工、制冷等行业有着广泛的应用。导热系数的测定有多种方法,从原理上来分大致可分为稳态法和非稳态法。所谓稳态法,就是对待测物质给一个恒定的温度差,然后再测量在给定温差下形成的热流,通过傅立叶(Fourier)导热定律即可求得该物质的导热系数;所谓非稳态法,一般采用一个瞬态的热源进行加热,然后测量待测物质的动态温度响应,通过分析温度变化速率与导热系数之间的关系从而求得该物质的导热系数。通常所用到的水平平板法属于稳态法,热线法属于非稳态法。
通常稳态法测定导热系数为了形成一个恒定可测量的温度差,通常需要加热较长的时间,这样会导致物体的温度发生显著的改变,使得测量得到的导热系数不是指定温度下的导热系数,另外对于液态或气态物质来说,明显的温度改变会形成对流传热,违背了稳态法的根本出发点,因此稳态法一般用于固态物质导热系数的测定,而不适用于测定液态,气态物质的导热系数。稳态法测定中,稳态热流是一个非常重要的测量参量,将直接影响到导热系数的准确程度,但是稳态热流通常不易准确测定,而且稳态法中为了保证测定的准确度通常需要较大的样品用量,每次需提供较多的样品才能进行一次测定。对于非稳态测定方法,目前热线法应用广泛,热线法可用于对液态物质导热系数的测定,但是热线法直接对热线通电加热,对于自身能导电的液态物质,为保证通过的电能完全转变为热能,必须对热线做绝缘处理,这通常比较麻烦并且会导致实验条件偏离热线法成立的数学物理模型,另外热线法中为保证测定的准确度对热线的直径及有效长度等参数的测量要求较高,这些因素增加了热线法在实际应用中的难度。
热导式热量计被广泛的应用于化学、化工、冶金、生物等众多领域。热导式热量计采用热电堆作为检测元件,其工作原理可用田式方程(Tian’s Equation)描述P=ϵ(U+τdUdt)]]>上式中P热导式热量计的量热池中产生的热功率ε热导式热量计的仪器常数U热导式热量计的输出电压信号τ热导式热量计的时间常数热导式热量计量热池中所产生的热量,可通过两条途径传给环境1.通过热电堆传导至恒温块。2.由量热池的其它部件传递出去。热导式热量计工作的原理也就是基于第一条途径,通过热电堆的热流使热电堆产生输出的电压信号。对于热导式热量计来说,为了准确的测定热效应的大小,就要尽可能避免热量由插在量热池的介质中的构件导出,因此对组成这些构件的材料选择通常要注意绝热。正是由于这些插入量热池中的构件所引起的热传导使得当量热池中放入不同种类的待测物,测定的热导式热量计的仪器常数会存在差别。

发明内容
本发明的目的在于提供一种测定导热系数的方法,方法简单,操作方便。
本发明的另一个目的在于提供一种测定导热系数的装置,该装置结构简单,样品需要量少,测定方便,准确。
为了实现上述任务,本发明采用以下技术措施如果利用沿不同方向的热传导,有目的的增加由热电堆之外所引起的热传导,那么就可以得到准确测定导热系数的一种方法。目前热电堆可检测的最小热功率可小至微瓦的数量级,可检测的最小温差可小至10-6K,所需要的样品用量可少至1cm3以下。由于热电堆极高的测温灵敏度,所以测定过程中样品的温差非常小,以致完全可以忽略自然对流的影响。这种测定方法具有准确度高、样品用量少等优点。并且这种测定方法完全不受待测物质是否导电的影响,另外在这种测定方法中产生的温升相当小,所以可认为测得的导热系数即为在指定温度下的数据。高性能的热电堆检测元件与本发明相结合可以提供一种准确测定固态,液态,气态物质导热系数的装置。
用于实现本发明的装置包括测定导热系数的装置中,量热池的的上方有一个上盖,上盖中紧密穿过一根导热棒;量热池的下面有一个底座,量热池固定在底座上;导热棒的一端与恒温块紧密接触,导热棒的另一端伸入量热池中;量热池内有若干挡板,挡板的下部与量热池的内底面紧密接触,挡板的上部与上盖紧密接触,将量热池分隔为若干互不相连的部分;量热池内有一个电加热器;量热池的外表面除与底座接触的地方之外均被热电堆包围;热电堆的一端与量热池的外部接触,另一端与恒温块接触。
为实现测定导热系数的目的,具体步骤如下1.向量热池中加入一个已知导热系数的物质,然后让整个装置恒温到一个指定的温度,要测定待测物质在某一温度下的导热系数,那么就把测定导热系数的装置恒温到该温度,例如恒温到26℃;2.开启量热池中的电加热器,以恒定功率进行电能加热(加热功率的大小在保证热电堆输出的电压信号可以被准确检测的条件下应该尽可能小),记录热电堆输出的电压信号,直到热电堆输出电压信号变得稳定后,停止加热;3.采用峰高法标定测定导热系数的装置的仪器常数,即用恒定加热功率除以达到稳态时热电堆的输出电压得到该装置的仪器常数,温度为26℃;4.然后向量热池中分别加入几个已知导热系数的物质,按照以上1、2、3的步骤测定在26℃下该装置的仪器常数;5.用这些测定得到的该装置的仪器常数与相对应的那些物质的导热系数求算出导热系数与仪器常数之间的单调函数关系,ϵ=M+N1λ]]>(ε为仪器常数,λ为导热系数,M,N在每一次标定单调函数关系后为常数);6.再把待测物质加入到量热池中,按照以上1、2、3的步骤测定该装置的仪器常数,将得到的仪器常数代入已经标定得到的单调函数关系中就可以求出待测物质的导热系数。
对于液态和气态待测物质可以直接加入量热池中。对于固态待测物质可以加工成与量热池对应的形状后放入量热池中,此时可以不使用挡板。对于已知导热系数物质的选择采取相似原则,即对液态待测物质也选用液态的已知导热系数的物质。该测定导热系数的装置的仪器常数可以采用峰高法或面积法求算。对于不同种类的待测物质为得到最优的测定结果可以选用不同形状和材质的导热棒。
同现有技术相比较,本发明具有如下优点1.可用于准确测定固、液、气态物质的导热系数;2.对待测物质是否导电没有要求;3.样品用量少;4.测定过程的温升小,可认为测定的导热系数为指定温度下的导热系数。


图1为一种测定导热系数的装置的结构示意图。
具体实施例方式
下面结合附图对本发明作进一步详细描述根据图1可知,量热池7内有一个电加热器8,量热池7的上方有一个上盖3,量热池7的下面有一个底座9,量热池7固定在底座9上,量热池7内有挡板5,待测物质4放入量热池7内;挡板5位于量热池7中,档板5的下部与量热池7的内底面紧密接触,挡板5的上部与上盖3紧密接触,挡板5将量热池7分隔为若干互不相连的部分;导热棒2紧密穿过上盖3并与上盖3固定;导热棒2的一端与恒温块1紧密接触,导热棒2的另一端穿过上盖3伸入到量热池7中;上盖3的上方为恒温块1;底座9固定在恒温块1上;量热池7的外表面除与底座9接触的地方外被热电堆6包围,热电堆6的一端与量热池7的外壁紧密接触,另一端与恒温块1紧密接触;恒温块1把热电堆6、导热棒2、上盖3、底座9包围,恒温块1与热电堆6、导热棒2、上盖3、底座9接触。
电加热器的作用是作为热源给待测物质施加一个非常小的温升,给热电堆提供温差信号;量热池中的挡板将量热池分隔为互不相连的几个部分,其作用是在测定液态,气态物质时进一步抑制对流的形成;导热棒是用来给量热池中的待测物质提供除热电堆之外的另一条热传导通路;热电堆的作用除提供一条热传导通路外,热电堆感应温差所产生的电压信号还用来标定该测定导热系数的装置的仪器常数;恒温块的作用是给热电堆提供一个参考端温度,同时恒温块还为整个测定装置提供一个稳定的测定温度;上盖为绝热材料构成,将量热池上口密封,避免通过量热池上口与周围环境之间进行物质和热量的交换;底座由绝热材料构成,避免量热池与恒温块之间形成直接的热传导。
具体测定方法是以四氯化碳、甘油、水(前两种物质均为分析纯化学试剂,水为二次蒸馏水)作为已知导热系数的物质标定测定导热系数的装置,然后测定待测物质氯仿(分析纯化学试剂)的导热系数,测定按以下步骤进行,1.将四氯化碳加入到量热池7中,四氯化碳与导热棒2接触,将整个装置恒温至26℃;2.开启电加热器8,用恒定功率加热(恒定加热功率在热电堆输出电压信号可以被检测出的条件下尽可能的减小,尽量避免温升引起的对流),并记录热电堆6的输出电压信号,当输出电压信号达到稳态时停止加热;3.用峰高法求算出此时该测定导热系数的装置的仪器常数,即用恒定加热功率除以达到稳态时热电堆的输出电压得到该装置的仪器常数;4.然后按照1、2、3的步骤在26℃下分别测定加入甘油和水时该测定导热系数的装置的仪器常数;5.根据测定得到的仪器常数和四氯化碳、甘油、水在26℃时的导热系数(表1),求出导热系数与仪器常数之间的单调函数关系。
6.按照1、2、3的步骤测定量热池中加入氯仿后该测定导热系数的装置在26℃时的仪器常数,并用前三种物质标定得到的单调函数关系计算可求得氯仿在26℃时的导热系数。
最后测定得到氯仿在26℃时的导热系数为0.11458W·m-1·K-1,与文献值相比相对误差仅为2.1%(若采用最佳测定条件,可以大大减少测定误差)。
表1为四种液态物质在26℃时的导热系数

在本测定条件下,量热池中物质的最大温升约为0.01℃,以水为例,在此条件下瑞利数Ra远小于1000,因此可以完全忽略对流传热的影响,认为测定过程中只存在热传导。
权利要求
1.一种测定导热系数的方法,它包括下列步骤A、向量热池中加入已知导热系数的物质,然后让装置恒温到26℃;B、开启量热池中的电加热器,以恒定功率进行电能加热,记录热电堆输出的电压信号,直到热电堆输出电压信号变得稳定后,停止加热;C、采用峰高法标定测定导热系数的装置的仪器常数,用恒定加热功率除以达到稳态时热电堆的输出电压得到该装置的仪器常数,温度为26℃;D、然后向量热池中分别加入已知导热系数的物质,按照步骤A、B、C测定在26℃下该装置的仪器常数;E、用测定得到的该装置的仪器常数与相对应的物质的导热系数求算出导热系数与仪器常数之间的单调函数关系;F、再把待测物质加入到量热池中,按照步骤A、B、C测定该装置的仪器常数,将得到的仪器常数代入已经标定得到的单调函数关系中求出待测物质的导热系数。
2.一种实现权利要求1所述的测定导热系数方法的装置,其特征在于量热池(7)内有一个电加热器(8),量热池(7)的上方有一个上盖(3),量热池(7)的下面有一个底座(9),量热池(7)固定在底座(9)上,量热池(7)内有挡板(5);挡板(5)位于量热池(7)中,挡板(5)的下部与量热池(7)的内底面紧密接触,挡板(5)的上部与上盖(3)紧密接触;导热棒(2)穿过上盖(3)并与上盖(3)固定,导热棒(2)的一端与恒温块(1)接触,导热棒(2)的另一端穿过上盖(3)伸入到量热池(7)中;上盖(3)的上方为恒温块(1),底座(9)固定在恒温块(1)上。
3.根据权利要求2所述的一种测定导热系数的装置,其特征在于量热池(7)的外表面除与底座(9)接触的地方之外均被热电堆(6)包围,热电堆(6)的一端与量热池(7)的外壁紧密接触,另一端与恒温块(1)紧密接触。
4.根据权利要求2所述的一种测定导热系数的装置,其特征在于恒温块(1)把热电堆(6)、导热棒(2)、上盖(3)、底座(9)包围,恒温块(1)与热电堆(6)、导热棒(2)、上盖(3)、底座(9)接触。
全文摘要
本发明公开了一种测定导热系数的方法及装置,其步骤是A.向量热池中加入已知导热系数的物质;B.开启电加热器,记录电压信号,稳定后停止加热;C.标定测定导热系数的装置的仪器常数;D.向量热池中加入其他已知导热系数的物质,按照上述步骤测定该装置的仪器常数;E.用仪器常数与导热系数求算出单调函数关系;F.把待测物质加入到量热池中,按照以上述步骤测定该装置的仪器常数。用于测定导热系数的装置由一个上盖、量热池、热电堆、导热棒、底座、电加热器、挡板、绝热层、恒温块组成。本发明方法简单,操作方便,结构简单,样品需要量少,测定方便,准确。
文档编号G01N25/18GK1601262SQ20041006095
公开日2005年3月30日 申请日期2004年10月14日 优先权日2004年10月14日
发明者汪存信, 张恒, 屈松生 申请人:武汉大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1