多天线传输方法和装置的制作方法

文档序号:6081666阅读:157来源:国知局
专利名称:多天线传输方法和装置的制作方法
技术领域
本发明总的来说涉及通信系统,尤其涉及通信系统内多天线传输的方法和装置。
背景技术
图1示出在正交频分多路复用(OFDM)系统中实施的现有技术的多入多出(MIMO)传输方案。在图1的系统中,发射设备102采用多个天线104以通过多个OFDM副载波将多个数据流发射到一个或多个接收设备101。该多个数据流表示为si(k),其中下标i表示流编号(1≤i≤Ns),索引k表示副载波(1≤k≤N),N是副载波的数量,Ns≥1是每一副载波的数据流的数量。馈送给Mtx个发射天线104中每一个的信号通过快速傅立叶反变换(IFFT)108、循环字首插入设备107和并行串行变换器106产生。OFDM传输技术将占用的频带宽度分成N个正交副载波,其中每个到IFFT的输入对应一个副载波,被馈送给IFFT的每个输入的信号被认为是占用相应的副载波。到每个IFFT的N个输入称为副载波,在现有技术的单发射天线OFDM系统中,通常将一个编码调制(即QAM或PSK)码元馈送给IFFT的副载波输入,每副载波一个码元,或者相当地,每副载波一个数据码元流。然而,在图1所示现有技术MIMO-OFDM系统中,在给定副载波(也就是说k)上,则是首先将用于多个流的Ns个码元馈送给多流发射波束生成器105,波束生成器105具有Ns个输入和Mtx个输出(其中Mtx是发射天线的数量)。然后将每个波束生成器105的Mtx个输出(被表示为xm(k)(1≤m≤Mtx,1≤k≤N))馈送给它们在Mtx个IFFT 108上的各自的副载波输入。在现有技术MIMO-OFDM发射设备102的一个实施例中,流的数量Ns等于发射天线的数量Mtx,并且在每个副载波(也就是说k)上,第k个副载波的第i个数据流被馈送给第i个发射天线的第k个副载波输入,并且没有使用多流发射波束生成器105。然而,如果在IFFT副载波输入之前使用波束生成器105,则往往能够获得更好的性能。
图2更详细地示出了现有技术的多流发射波束生成器105,该波束生成器105在发射设备102的Mtx个IFFT 108上的每个副载波输入之前使用。如图2所示,发射设备102的每个多流发射波束生成器105采用由Mtx×Ns矩阵V(k)=(v1(k),v2(k),...,vNs(k))表示的发射天线阵列加权,其中,Mtx是发射天线的数量,Ns是在第k个副载波上递送的数据流的数量,V(k)的第i列用Mtx×1列向量vi(k)来表示,它包含在第k个副载波上的第i个数据流的Mtx个加权系数。为了计算V(k)的适当的值,发射设备102通常需要一些关于在发射天线104和接收设备101上的一个或多个接收天线之间的信道响应的信息。
回到图1,接收设备101测量下行信道响应并负责发送回要由发射设备102使用的信息,以计算应用到每个副载波数据流的发射天线阵列加权(V(k)=(v1(k),v2(k),...,vNs(k)),其中k是副载波,Ns是每一副载波的数量流的数量)。典型地,该被发送回的信息包括发射加权向量或是对于可能加权向量的密码本中的索引,或基于类似技术的其他信息。然后将Ns个数据流乘以加权向量V(k=1)到V(k=N),以便有效地将多个流递送到接收机101。
显然,这种系统需要发射机102知道在发射和接收阵列之间的矩阵频率响应,这在快速变化的频率选择宽带信道方面造成了困难,例如在采用OFDM的移动通信系统中遇到的信道类型。更具体而言,在例如图1所示出的基于反馈的发射阵列系统中,发射加权向量需要馈送回发射机102并更新,以跟踪为了最佳性能而跨越时间和频率发生的信道变化。遗憾的是,允许完全跟踪信道响应的机制可能需要接收设备和发射设备之间的禁止级的反馈。因此,需要一种用于通信系统内多天线传输的方法和装置,其在发送回要由发射设备使用的信道信息时不需要禁止级的反馈。


图1是使用适应性反馈和多载波发射波束生成器的通信系统的框图。
图2是在图1的通信系统中使用的多流发射波束生成器的框图。
图3是根据本发明优选实施例的图1的接收机的框图。
图4是在图3的接收机中使用的多流接收合成器的框图。
图5是根据本发明优选实施例的图1的通信系统操作在反馈模式时的操作流程图。
图6是根据本发明优选实施例的图1的通信系统的操作流程图。
具体实施例方式
为了满足上述需要,在此提供一种用于传输的方法和装置。根据本发明的优选实施例,减少数目的发射加权向量被反馈给发射机。然后将每个发射加权向量应用到多个副载波。因为每个加权向量被应用到一个以上的副载波,所以大大减少了反馈给发射机的加权向量的数量。
为了获得要应用到多个副载波的发射加权向量,将频带宽度分成一组副载波块。根据在发射阵列和接收设备上一个或多个天线之间的矩阵信道频率响应上的估计为每个副载波块计算一组最佳发射加权向量。可以根据反馈信道的可用性在发射设备或接收设备上执行最佳发射加权向量的计算。
如果反馈信道可用,则接收设备可以测量在发射设备和接收设备之间的信道响应,并且然后能够为每个副载波块(而不是为跨该频带的每个副载波)计算该组最佳发射加权向量。然后通过反馈信道将每个副载波块(而非跨该频带的每个副载波)的这些加权向量发送回发射设备。作为替换,可以将允许发射设备计算或推断该组发射加权的信息发送回发射设备,其中所述发射加权应该应用到每个副载波块。然后在发射阵列采用那些发射加权或那些发射加权的某个函数的情况下将数据从发射设备发射到接收设备。
如果反馈信道不可用,则发射设备测量在接收设备和发射设备之间的信道(上行信道)的频率响应,并且根据在载该接收设备和发射设备之间测量的信道响应来确定该发射设备和接收设备之间的信道响应。然后发射设备为每个副载波块(而不是为跨该频带的每个副载波)计算一组发射加权向量,与必须为跨该频带的每个副载波计算一组发射加权向量的技术相比,其产生计算上的节省。然后在发射阵列采用那些发射加权或那些发射加权的某个函数的情况下将数据从发射设备发射到接收设备。
与简单地为跨该频带的每个副载波发送回一组加权向量的方法相比,上述方法能够在需要的反馈方面产生大量节省。
本发明包括用于多天线传输的方法。该方法包括步骤在接收机处接收多个副载波,从发射机发射所述多个副载波,将所述副载波分组为多个副载波块,每个副载波块包括K个副载波,为每个副载波块计算一个加权Mtx×Ns矩阵Vc。然后将副载波块的加权向量发送到发射机。
本发明还包括用于多天线传输的方法。该方法包括步骤接收多个副载波,将所述多个副载波分组为多个副载波块,每个副载波块包括K个副载波,为所述多个副载波块的每一个计算一个加权Mtx×Ns矩阵Vc。在副载波块内的所有副载波的加权为Vc。
本发明还包括一种装置,该装置包括自适应加权控制器,该自适应加权控制器具有作为输入的多个副载波并输出多个Mtx×Ns加权矩阵Vc,其中为包括K个副载波的副载波块计算一个加权向量。
本发明的优选实施例使用与图1所述类似的OFDM系统。通信系统100使用OFDM通信系统协议,然而,在本发明的替代实施例中,也可以采用其他系统协议。这类其他系统协议包括(但不限于)具有循环字首的频域均衡单载波系统(称为循环字首单载波)、具有循环字首的码分多址系统(称为循环字首CDMA)、多载波CDMA系统、扩展OFDM系统。因此,本发明在OFDM系统、CP单载波系统、CP-CDMA系统和任何其他类似或混合系统中可用并有效。
本领域的技术人员会认识到,OFDM系统将可用带宽分成许多窄频带(副载波),在副载波上并行发射数据。每个副载波使用所占用频带的不同部分。在具有多个发射天线的OFDM系统中,要在副载波上发射的信号被馈送给快速傅立叶反变换(IFFT)框108的输入。在框107,将循环字首添加到IFFT框108的输出,然后将得到的信号在框106从并行转换成串行。在图1的MIMO系统中,采用多流发射波束生成,由此将要在一个OFDM码元间隔(或波特间隔)中递送的数据分成Ns个码元流乘N个副载波的矩阵,由此在N个副载波的每一个上发射Ns个码元。要在每一个给定副载波上发射的Ns个码元首先被发送到多流发射表述生成器105,在此对它们进行加权处理并求和,然后在该副载波上通过多个天线发射。
图2示出了多流发射波束生成器的框图,该多流发射波束生成器对要在副载波上发射的Ns个码元进行加权和求和。如图2中所示,要在第k个副载波上发射的Ns≥1个数据流表示为s1(k),s2(k),...,sNs(k),其中1≤k≤N。要在副载波k上通过多个发射天线发射的经过加权和求和的信号表示为x1(k),x2(k),...,xMtx(k),其中1≤k≤N。尤其是,每个数据流/天线组合具有与它相关的特定加权。在第k个副载波上,这种波束生成处理用数学式表示为X(k)=V(k)S(k) (1)其中X(k)=[x1(k),x2(k),...,xMtx(k)]T(其中T是转置算子)是馈送给IFFT的第k个副载波输入的信号的Mtx×1向量,V(k)是由V(k)=[v1(k),v2(k),...,vNs(k)]给出的加权系数的Mtx×Ns矩阵,其中V(k)的第i列由Mtx×1列向量vi(k)来表示,vi(k)包含在第k个副载波上的第i个数据流的Mtx个加权系数(即vi(k)=[vli(k),...,vMtxi(k)]T)。Ns×1向量S(k)由S(k)=[s1(k),s2(k),...,sNs(k)]T给出,为了清楚起见,系统的时间相关性(即OFDM码元间隔)没有示出。
图3示出了包括一个或多个接收天线304的接收设备300的框图。在每个接收天线上接收的信号首先被转换成基带采样信号流(这种向基带的转换没有示出,但它是本领域中公知的),然后将该信号流从串行转换为并行(306)。在框307,去除循环字首,在框308利用快速傅立叶变换(FFT)将余下的采样转换到频域中。在第i个接收天线之后,在FFT 308的第k个副载波输出上的信号表示为yi(k),1≤i≤Mrx并且1≤k≤N,其中Mrx是接收天线304的数目,N是副载波的数目。然后在第k个副载波(1≤k≤N)上的信号被馈送给多流接收组合器310,组合器310具有Mrx个输入和Ns个输出,其中Ns个输出的每一个,z1(k),...,zNs(k),意图恢复在第k个副载波上的Ns个发射数据流中的一个。
图4示出了在每个副载波k上使用的多流接收组合器310的框图。如图4所示,通过对从Mrx个接收天线接收的Mrx个信号进行加权和求和来形成多流接收组合器的每个输出。第k个副载波的第i个接收天线的第j个流的加权系数表示为wij(k)。在副载波k上的多流组合器的第j个输出表示为zj(k),1≤j≤Ns并且1≤k≤N。
在数学上,在第k个副载波上的接收机的操作如下。
z(k)=WH(k)Y(k) (2)其中,H是共轭转置算子,z(k)=[z1(k),z2(k),...,zNs(k)]T是在副载波k上的组合器输出的Ns×1向量,Y(k)=[y1(k),y2(k),...,YMrx(k)]T是在副载波k上接收的信号的Mrx×1向量,W(k)是加权系数的Mrx×Ns矩阵,其中W(k)=[w1(k),w2(k),...,wNs(k)],其中W(k)的第i列由Mrx×1列向量wi(k)来表示,wi(k)包含用于接收在第k个副载波上的第i个数据流的Mrx个加权系数(即,wi(k)=[wli(k),...,wMrxi(k)]T)。接收的信号向量Y(k)满足Y(k)=H(k)X(k)+N(k) (3)其中,H(k)是在副载波k上的Mrx×Mtx信道矩阵,N(k)是在副载波k上接收机噪声的MR×1向量,X(k)是在副载波k上的Mtx×1个发射的信号向量。在这种分析中,为了清楚起见,忽略了(3)中的时间相关性。
以下描述给出了一种数学说明,说明当用在OFDM系统的下行链路中时,如何能够为上述传输方案计算Mtx×Ns个发射加权系数V(k)和Mrx×Ns个接收加权系数W(k)。这些文字首先论及一个发射流(Ns=1)的情形,其称为最大比率传输(MRT)方案或发射自适应阵列(TXAA)方案。然后在后面描述多个流(Ns>1)的情形。
在用于OFDM下行链路的频域单流MRT/TXAA方案中,根据X(k)=V(k)s(k)在每个副载波上“波束生成”数据码元流,其中V(k)是第k个副载波的Mtx×1波束生成向量,s(k)是第k个副载波的单位平均功率(unit-average-power)数据码元(即PSK/QAM)。在这种系统中,在基站处的发射阵列通常需要知道在发射阵列和接收阵列之间的Mrx×Mtx矩阵信道响应H(k),用户到基站反馈技术可以用来向基站提供有助于基站推断信道响应H(k)或在其他情况下直接是Mtx×1发射向量V(k)的信息。在用户到基站反馈方案中,接收设备(用户)101将测量跨OFDM带宽的矩阵信道响应,并且该用户负责将适当的信息组传送回基站(发射设备102),所述信息组允许基站计算其频域发射波束生成加权。
对于单流策略,在副载波k上接收的数据由下式给出Y(k)=H(k)X(k)+N(k)=H(k)V(k)s(k)+N(k) (4)
对于线性接收矩阵组合,接收机计算在每个副载波上的以下信号z(k)=WH(k)Y(k)(5)可以如下选择发射加权向量和接收加权向量。在副载波k上,Mrx×Mtx信道矩阵的奇异值分解为H(k)=UH(k)SH(k)ZHH(k)---(6)]]>其中,Mrx×MrxUH(k)和Mtx×MtxZH(k)是单式矩阵,Mrx×MtxSH(k)是除左上rH×rH部分外都为零的矩阵,所述rH×rH部分由diag(SH,1,...,SH,rH)给出,其中rH是H(k)的秩(rank)(rH≤min(Mtx,Mrx))。寻找在接收阵列输出的第k个副载波上的SNR的最大值包括根据下式来选择Mtx×1发射加权向量V(k)V(k)=ZH1(k), (7)其中,ZH1(k)是ZH(k)的第一列。然后根据下式来选择接收加权向量W(k)=αH(k)V(k) (8)其中,α是标量常数,它不影响后接收组合(post receivecombining)信噪比(SNR)。可以选择常数α来提供对于接收加权向量的MMSE方案,其结果为W(k)=H(k)V(k)VH(k)HH(k)H(k)V(k)+σ2σS2---(9)]]>其中,σ2是接收机噪声方差,σs2是发射的码元群中的功率(假定为一)。上述描述暗示必须选择发射和接收加权向量来跟踪信道矩阵H(k)中的任何副载波相关变量。
在一个接收天线的情况下(H(k)是1×Mtx),在第k个副载波上的最大SNR可表示为SNR_TXAA(MtxTx,1Rx)=H(k)HH(k)/σ2(10)
注意,对于两个发射天线和一个接收天线的情况,这个量是(12)的值的两倍,这使得TXAA优于本领域中公知的Alamouti方法(参见下段中的参考资料)3dB。通常,TXAA的SNR为SNR_TXAA(MtxTx,MrxRx)=λ1/σ2(11)其中λ1是HH(k)H(k)的最大本征值。
与上述传输方案相比,S.M.Alamouti描述的传输方案“A simpletransmit diversity technique for wireless communications”,IEEE Journalon Select Areas in Communications,vol.16,no.8,Oct.1998,易于通过对跨两个OFDM码元间隔和一个副载波的两个频域码元进行Alamouti编码,而扩展到OFDM。假定一个静态信道,单位功率发射的码元,Mtx=2个发射天线以及Mrx=1个接收天线,对于Alamouti方案,在第k个副载波上预期的SNR由下式给出SNR_Alamouti(2Tx,1Rx)=H(k)HH(k)/(2σ2) (12)其中H(k)是在副载波k上的Mrx×Mtx信道矩阵。注意,对于两个发射天线和一个接收天线的情况,这个量是(10)的值的一半,其导致Alamouti比TXAA差3dB。在两个或更多接收天线的情况下,SNR表示为SNR_Alamouti(2Tx,MrxRx)=(λ1+λ2)/(2σ2) (13)其中λ1和λ2是HH(k)H(k)的两个本征值。
注意,在2×MrxTXAA方案中,每副载波SNR与HH(k)H(k)的最大本征值成比例,而从(13)可知,在2×MrxAlamouti方案中,SNR与HH(k)H(k)的两个本征值的平均值成比例。因此,在发射机和接收机都具有理想的信道知识的2×Mrx配置中,Alamouti方案的SNR无论如何都比TXAA差0到3dB,实际差值由HH(k)H(k)的本征值来确定。
对于多流情况(即,Ns>1),另称为MIMO或空间多路复用策略,(1)(2)和(3)的关系限定了发射和接收数据之间的关系。对接收加权矩阵的MMSE方案可以根据以下方程式关于任意Mtx×Ns发射加权矩阵V(k)得到W(k)={H(k)V(k)RsVH(k)HH(k)+σ2I}-1H(k)V(k)Rs(14)其中,Rs是发射流的协方差矩阵Rs=E[S(k)SH(k)],其对于独立流是对角矩阵,流的功率沿对角线排列。一种选择发射和接收加权的方法如下。
利用(6)中的关系,可以选择Mtx×Ns发射加权矩阵V(k)等于右奇异矩阵ZH(k),然后可以选择接收加权矩阵等于UH(k)SH-1(k),在该情况下,多流接收组合器输出向量Z(k)由Z(k)=S(k)+SH-1(k)UH(k)N(k)给出。因此,该信道有效地“对角化”为在发射阵列的输入和接收阵列的输入之间的并行无干扰空间信道,多流接收机组合器输出向量等于Ns×1发射的多流码元向量S(k)加上噪声。可以实现在这种对角化信道的基本思想之上的其他方差以及指定的其他方差,例如使所有流的输出均方差相等。
如前面的分析总所显示的,发射和接收加权矩阵与跨副载波k的信道矩阵H(k)的瞬时值相关(其中为清楚起见,在分析中没有考虑H(k)的时间相关性)。如上所述,发射机自适应加权控制器103可以根据从接收机101发回的信息为每个副载波k计算Mtx×Ns加权矩阵V(k)。典型地,该被发回的信息包括发射加权矩阵或到可能的加权矩阵的密码本中的索引,或基于类似技术的其他信息。
如上所述,允许完全跟踪信道响应的反馈机制可能需要来自接收设备101的禁止级的反馈。为了解决该问题,在本发明的优选实施例中,多个副载波k=1,2,...,N被分成多个块,其中与每个块相关的多流发射波束生成处理意图对在该块中的每个副载波采用相同的Mtx×Ns加权矩阵Vc。从接收机101反馈的信息包括每个副载波块的信息,而不是所有N个副载波的信息,从而大大减少了需要反馈到发射机102的数据量。例如,包括N个副载波的现有技术系统需要为要反馈的全部N个副载波发射加权矩阵,以便能够为每个副载波/天线组合采用适当的加权。为了避免必须为N个OFDM副载波的每一个反馈不同的Mtx×Ns加权矩阵V(k),将频域分成多个块,每个块包括K个副载波。对于每一个包括K个副载波的块,仅向发射阵列提供一个要跨该块的K个副载波使用的Mtx×Ns发射加权矩阵Vc。当使用反馈信道时,接收机101仅为每个块反馈一个Mtx×Ns发射加权矩阵,大大减少了反馈量。
上面的说明详细描述了将副载波分成副载波块以大大减少反馈给发射机102的信息。以下说明详细描述用于计算单个Mtx×Ns发射加权矩阵(或当Ns=1时向量)的方法,其中该发射加权矩阵跨频率选择信道中的OFDM副载波块应用,只有一个数据流在副载波上发射(即Ns=1)。然后在口面描述扩展到多流的情形(Ns>1)。
基于发射协方差矩阵的频域本征波束生成如上所述,希望避免必须为每一个OFDM副载波k反馈不同的V(k)。在本发明的优选实施例中,将频域分成多个块(B块),每个块包括K个副载波(其中,如果B个块在频域中不重叠,B=N/K,其他的重叠块分配是可能的)。对于每个包括K个副载波的块,仅向发射阵列提供一个要跨K个副载波使用的Mtx×1(即Ns=1)发射加权向量。随即产生的一个问题是如何最佳计算应该跨给定块的K个副载波应用的发射加权向量。在该例中,在对于给定块的k=1...K的接收阵列接收的数据是Y(k)=H(k)X(k)+N(k)=H(k)Vcs(k)+N(k)(15)其中,Vc是在该块的副载波1至K之间应用的Mtx×1发射加权向量。一个简单的方法是在副载波块的中点根据信道矩阵计算发射加权向量,所述发射加权向量跨该副载波块的所有副载波应用。然而,在本发明的优选实施例中,选择发射加权向量以最大化跨K个副载波子块的平均的低噪声接收信号功率,所述子块受该发射加权向量上的单位功率限制。目标是选择Vc以最大化Py=E{1KΣk=1KYH(k)Y(k)}---(16)]]>
其中,Y(k)是接收的信号,E是期望算子(在信号和噪声上的期望),K是在特定副载波块内的副载波的数量。应该注意,该期望是在(15)的Y(k)的表达式中的信号项上。将(15)替换到(16)中,并求得该期望,结果为Py=VcH{1KΣk=1KHH(k)H(k)}Vc+MRσ2---(17)]]>选择单位范数(unit-norm)以最大化(17)中的表达式包括选择Mtx×l发射加权向量Vc为对应下列量的最大本征值的本征向量RHK=1KΣk=1KHH(k)H(k)---(18)]]>其服从限制条件VcH=Vc=1.]]>Mtx×Mtx矩阵RHK是什么实质上是在K副载波带宽上平均的发射信道协方差矩阵的估计。注意,尽管接收机噪声功率没有进入这个Vc的方案,但该方案还最大化了跨该频率副载波块的平均的后接收组合SNR。然后可以根据(14)选择接收加权向量(在对于特定副载波块内的所有k用Vc替换V(k)之后),其中必须向接收机提供信道矩阵H(k)的估计和在该频率块的每个副载波上的发射加权向量(或相当地,它们乘积的值H(k)Vc,或更一般地H(k)V(k))。
通过选择Ns个发射加权向量为对应信道(例如(18))的发射机协方差矩阵的Ns个最大本征值的Ns个本征向量(用加权矩阵Vc表示),还可以将该本征波束生成方法扩展到多流(MIMO)策略。更一般地,可以选择Ns个发射加权向量为对应信道(例如(18))的发射机协方差矩阵的Ns个最大本征值的Ns个本征向量的函数,其中该函数可以是线性变换或某种其他适当的变换。然后可以根据(14)来选择接收加权矩阵,其中最终必须向接收机提供信道矩阵H(k)的估计和在该频率块的每个副载波上的发射加权矩阵V(k)(或相当地,它们乘积的值H(k)Vc,或更一般地H(k)V(k))。也可以采用基于(18)的发射协方差矩阵的估计的其他传输策略。
图3是根据本发明优选实施例的图l的接收机101的框图。如上所述,接收机101用接收加权向量W(k)=(w1(k),w2(k),...,wMrx(k))操作,所述接收加权向量应用到由Mrx个天线接收的N个副载波的每一个。在导频训练序列中,自适应加权控制器303接收所有N个副载波Y(k=1),Y(k=2),...,Y(k=N)的无线电传输。如上所述,对于每个副载波k,Y(k)=H(k)x(k)+N(k)。因为导频序列是先验的,因此X(k)是已知的。知道Y(k)和X(的k)自适应加权控制器303为每一个副载波k计算H(k)。知道每一个副载波的H(k),然后自适应加权控制器303为每一个包含K个副载波的块计算发射协方差矩阵RHK(方程式(18)),其中,发射设备102和接收设备101都知道将N个副载波分成多个块且每个块包含K个副载波的实际情况。接收设备101然后为副载波块的每一个选择一个值Vc,作为对应以下量的最大本征值的本征向量RHK=1KΣk=1KHH(k)H(k)---(19)]]>其服从约束条件VcHVc=1.]]>Mtx×Mtx矩阵RHK是什么实质上是在K副载波带宽上平均的发射信道协方差矩阵的估计。注意,尽管接收机噪声功率没有进入这个Vc的方案,但该方案还最大化了跨该频率块平均的后接收组合SNR。
图5示出了一个流程图,说明在反馈操作模式中本发明的操作,其中发射设备102是基站,接收设备101是用户设备或移动设备。(该处理也适用于发射设备是用户设备、接收设备是基站的情况)。
处理开始于框504,基站从所有的发射天线向用户设备发射导频信号。在框506,用户接收导频信号(由信道掺杂),用户使用对发射的导频信号的先验知识估计跨所有副载波k的Mrx×Mtx信道矩阵H(k)的矩阵频率响应。(其他信道估计技术也是可以的,甚至是不使用导频信号的技术)。在框508,用户计算在多个副载波块的每一个上的Mtx×Mtx下行空间协方差矩阵RHK(每个块具有K个副载波,其中为每个副载波块计算一个RHK)。在框510,用户为每个副载波块计算每一个下行空间协方差矩阵的本征分解,以为每个副载波块产生一组Ns个发射加权向量。在框512,用户在反馈信道上将B×Ns组Mtx×1加权向量(用个Mtx发射天线为B个副载波块的每一个发射Ns个加权向量)发送回基站。以允许基站确定应该应用到每个副载波块上的实际的Ns个加权向量的方式,将这些加权向量编码,用于跨该反馈信道传输。在框514,基站对反馈传输解码并进行处理,为每个副载波块产生Ns个加权向量,通过该副载波将它们传送到基站。在本发明的一个实施例中,对于每个频率载波块,基站简单地将该副载波块的Ns个加权向量应用到该副载波块内的所有副载波(在流程图的框516中示出)。在另一个实施例中,在框514,基站还通过跨所有副载波内插加权向量来处理这B×Ns个加权向量,以便为跨可用频带的N个副载波的每一个产生N×Ns个发射加权向量(不是仅仅每副载波块一个)。在每一个实施例中,在框516,基站根据计算的发射加权向量在N个副载波的每一个上发射Ns个数据数据流(跨N个副载波每副载波Ns个数据流)。
在替代操作模式中,以和上面所述稍有不同的方式,框508为B个块的每一个计算下行空间协方差矩阵。使用在副载波块中的一个副载波(比如说副载波k)(优选该块的中间副载波)上的信道响应或在该块上平均的信道的平均值,计算下行空间协方差矩阵为RHK=H(k)HH(k)(而不是根据(18),其涉及更多的计算),在框510计算该空间协方差矩阵的本征分解,以便为副载波块产生Ns个加权向量。在框512,如前面所述以编码的形式将B×Ns个加权向量反馈到基站,在框514,基站对反馈信息解码以产生B×Ns个加权向量。如上所述,然后基站可选地能够内插这B×Ns个加权向量以便为跨可用频带的N个副载波中的每一个产生N×Ns个内插发射加权向量(不是仅仅每副载波块一个)。在另一个实施例中,在框512,用户仅将在该块的中间副载波的信道(或作为替换,该块上的中间信道)返回给基站。然后在框514,基站计算本征分解RHK=H(k)HH(k)以确定发射加权向量。因为在该实施例中基站计算加权向量,所以降低了在用户处的计算复杂性(并因此节省了电池能量)。
图6示出了一个流程图,说明在反馈信道不可用或完全不用的操作模式中本发明的操作。在图6中,发射设备102是基站,接收设备101是用户设备或移动设备,但该处理也适用于发射设备是用户设备、接收设备是基站的情况。处理开始于框604,基站从用户接收导频信号,并在框606根据接收的导频信号计算上行(用户到基站)矩阵信道响应。(其他信道估计技术也是可以的,甚至是不需要导频信号的技术)。然后基站从用户到基站的信道响应确定从基站到用户设备的信道增益(基于发射和接收硬件的知识通过相互性假设或其他类似假设)。该确定将为每个副载波k产生Mtx×Mrx信道矩阵H(k)(在基站和用户之间)的估计。接下来,在框608,基站根据方程式(18)为B个副载波块的每一个计算发射空间协方差矩阵,其中每个副载波块包括K个副载波(一般地,根据在副载波块内的副载波k的信道矩阵H(k)的值为不同的副载波块计算不同的空间协方差矩阵)。接下来,在框610,基站为在框608中计算的B个空间协方差矩阵的每一个计算本征分解,以产生B×Ns个发射加权向量(B个副载波块中的每一个为Ns个发射加权向量)。在框612,对于每个副载波块,基站为该副载波块内的每个副载波计算实际的发射加权向量,作为该块的Ns个发射加权向量,如通过从框610中的本征分解计算的。(换言之,Ns个发射加权向量固定跨越副载波块的多个副载波)。在另一个实施例(类似于在图5中描述的)中,从框610中的本征分解产生的Ns个发射加权向量跨该频带的所有副载波内插,以便为跨可用频带的N个副载波中的每一个产生N×Ns内插发射加权向量(不是仅仅每副载波块一个)。
在替代操作模式中,以和上面所述稍有不同的方式,框610为B个块中的每一个计算下行空间协方差矩阵。使用在副载波块中的一个副载波(比如说副载波k)(优选该块的中间副载波)上的信道响应或在该块的所有副载波上平均的信道的平均值,计算下行空间协方差矩阵为RHK=H(k)HH(k)(而不是根据(18),其涉及更多的计算),在框510计算该空间协方差矩阵的本征分解,以便为副载波块产生Ns个加权向量。然后跨该带宽内插这B块中每一块的Ns个加权向量,以便为跨可用频带的N个副载波中的每一个产生N×Ns个发射加权向量(不是仅仅每副载波块一个)。
尽管参照特定实施例具体示出并描述了本发明,但本领域技术人员会理解,可以作出各种形式和细节上的改变,而不脱离本发明的要旨和范围。例如,以上说明详细描述了每个副载波块包含相同数量(K个)副载波的情况。在替代实施例中,每个副载波块可以包含不同数量的副载波,该数量由Kb指定(b=1,...B,其中B是副载波块的总数量),其中Kb≥1并且至少一个Kb严格大于1。而且,上述说明详细描述了每个副载波块包含不同副载波的情况(即,副载波块不重叠)。在替代实施例中,副载波块可以彼此部分重叠。意图将这些改变都包括在所附权利要求的范围中。
权利要求
1.一种用于多天线传输的方法,该方法包括以下步骤在接收机接收多个副载波,所述多个副载波是从发射机发射的;将所述副载波分组为多个副载波块,每个副载波块包括K个副载波;以及为每个副载波块计算单个加权矩阵Vc。
2.如权利要求1所述的方法,还包括步骤将副载波块的加权矩阵发送到所述发射机。
3.如权利要求1所述的方法,其中,所述计算Vc的步骤包括步骤选择Vc以最大化Py=E{1KΣk=1KYH(k)Y(k)}]]>其中,Y(k)=H(k)Vcs(k)+N(k),H(k)是在所述发射机和接收机之间的矩阵信道响应,N(k)是接收的噪声,以及E是期望算子。
4.如权利要求1所述的方法,其中,所述计算Vc的步骤包括步骤选择Vc作为以下量的本征向量的函数RHK=1KΣk=1KHH(k)H(k)]]>其中,H(k)是在所述发射机和接收机之间的矩阵信道响应,并且Y(k)=H(k)VcS(k)+N(k)。
5.如权利要求1所述的方法,其中,将加权矩阵发送到发射机的步骤包括步骤将所述加权矩阵发送到所述发射机,使所述发射机用所述加权矩阵对所述副载波块中的所有副载波进行加权处理。
6.如权利要求1所述的方法,还包括步骤由所述发射机接收所述加权矩阵;以及用所述加权矩阵对副载波块中的所有副载波进行加权处理。
7.一种装置,其包括自适应加权控制器,自适应加权控制器具有作为输入的多个副载波并输出多个加权矩阵Vc,其中为包括K个副载波的副载波块计算单个加权矩阵。
8.如权利要求7所述的装置,其中,所述自适应加权控制器选择Vc以最大化Py=E{1KΣk=1KYH(k)Y(k)}]]>其中,Y(k)=H(k)Vcs(k)+N(k),H(k)是在所述发射机和接收机之间的矩阵信道响应,N(k)是接收的噪声,以及E是期望算子。
9.如权利要求7所述的装置,其中,所述自适应加权控制器选择Vc,以使Vc为对应以下量的最大本征值的本征向量RHK=1KΣk=1KHH(k)H(k)]]>其中,H(k)是在发射机和接收机之间的矩阵信道响应。
10.如权利要求7所述的装置,其中,所述多个副载波中的每一个在不同的频率上发射。
全文摘要
在多入多出(MIMO)通信系统中,一种用于多天线传输的方法和装置。根据本发明的优选实施例,将减少数量的发射加权矩阵反馈到发射机。然后将每个发射加权矩阵应用到多个副载波。因为每个发射加权矩阵被应用到一个以上的副载波,因此大大减少了反馈到发射机的加权矩阵的量。
文档编号G01S3/28GK1813375SQ200480006798
公开日2006年8月2日 申请日期2004年3月11日 优先权日2003年3月13日
发明者弗雷德里克·W·沃克, 蒂莫西·A·托马斯, 庄向阳 申请人:摩托罗拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1