用于维护卫星导航数据的完整性的方法、接收机和系统的制作方法

文档序号:5841991阅读:201来源:国知局
专利名称:用于维护卫星导航数据的完整性的方法、接收机和系统的制作方法
技术领域
本发明涉及一种用于后台解码广播卫星导航消息以维护全球导航卫星系统或其 它系统内使用的长期轨道信息的完整性的方法、接收机和系统。所述方法包括处理与至少 一个卫星相关的长期轨道信息以获得接收机的第一位置;获取从所述至少一个卫星发射的 广播星历的至少一部分;作为所述长期轨道信息的至少一部分的替代,处理所述至少一部 分广播星历以获得所述接收机的第二位置。此外,获取来自所述至少一个卫星的广播星历 包括在接收机处接收并解码由所述至少一个卫星广播的广播导航消息。 所述方法还包括将广播星历从接收机发送给服务器,其中处理广播星历以确定第 二位置的操作由服务器执行;在处理广播星历确定出第二位置后,除去长期轨道信息的至 少一部分;从服务器发送新的长期轨道信息给定位服务器;使用所述新的长期轨道信息补
5充至少一部分所述长期轨道信息。 根据本发明的一个方面,本发明提出一种方法,包括 处理与至少一个卫星相关的长期轨道信息以获得接收机的第一位置; 获得由所述至少一个卫星发射的至少一部分广播星历; 将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代(substitute)进行处理,从而获得所述接收机的第二位置。 优选地,所述第一位置包括接收机位置的多个过渡解(transitionalsolution);
其中,处理长期轨道信息包括处理所述长期轨道信息以获得所述多个过渡解;且其中,获得至少一部分广播星历包括获得足够量的广播星历以确定出所述第二位置。 优选地,处理所述至少一部分广播星历以确定出第二位置在获得所述第一位置后发生。 优选地,从所述至少一个卫星获得至少一部分广播星历包括从来自所述至少一个卫星的广播导航消息中获得所述至少一部分广播星历。 优选地,从广播导航消息中获得所述至少一部分广播星历发生在接收机处。
优选地,处理所述至少一部分广播星历在与所述长期轨道信息相关的有效期接近期满时发生。
优选地,所述方法进一步包括将所述至少一部分广播星历从所述接收机发送到
服务器,其中,处理所述至少一部分广播星历以确定第二位置由所述服务器执行。 优选地,所述方法进一步包括在所述服务器处处理所述至少一部分广播星历以
确定出所述第二位置。 优选地,所述方法进一步包括 作为所述至少一部分广播星历的函数,确定出所述长期轨道信息的至少第二部分是无效的; 将所述长期轨道信息的所述至少第二部分从所述长期轨道信息中除去;
用新的轨道信息补充所述长期轨道信息的所述至少第二部分。 优选地,所述方法进一步包括将所述广播星历从所述接收机发送给服务器,其中处理所述广播星历以确定第二位置由所述服务器执行。 优选地,所述方法进一步包括将所述新的长期轨道信息数据从所述服务器发送给所述接收机。 优选地,从所述至少一个卫星获得广播星历包括接收并解码来自所述至少一个
卫星的广播导航消息。 优选地,所述方法进一步包括 将所述广播星历从所述接收机发送给所述服务器,其中处理所述广播星历以确定第二位置由所述服务器执行; 在处理所述广播信息以确定出所述第二位置后,将所述长期轨道信息的至少一部分从所述长期轨道信息中除去; 将新的长期轨道信息从服务器发送给定位的接收机;
用新的长期轨道信息补充所述至少一部分长期轨道信息。 优选地,所述第一位置包括所述定位的接收机的至少一个过渡位置,且所述第二位置包括所述定位的接收机的至少一个最终位置。
根据本发明的一个方面,本发明提出一种接收机,包括 存储器,用于存储可执行指令以及与至少一个卫星相关的长期轨道信息; 处理器,用于从所述存储器获取长期轨道信息以及可执行指令并执行所述可执行
指令以执行如下操作 处理所述长期轨道信息以获得接收机的第一位置;
获得由所述至少一个卫星发射的至少一部分广播星历; 将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处理,从而获得所述接收机的第二位置。
优选地,用以处理所述至少一部分广播星历的可执行指令包括用以在与所述长
期轨道信息相关的有效期接近期满时处理至少一部分广播星历的可执行指令。 优选地,所述处理器进一步执行可执行指令以执行如下操作 在处理所述广播星历以确定出第二位置后,将所述长期轨道信息的至少一部分作废; 用新的长期轨道信息替换所述至少一部分长期轨道信息。 优选地,所述用以从至少一个卫星获得广播星历的可执行指令包括用以接收并解码来自所述至少一个卫星的广播导航消息的可执行指令。 优选地,所述第一位置包括所述定位的接收机的至少一个过渡位置,且所述第二位置包括所述接收机的至少一个最终位置。 优选地,所述接收机进一步包括收发器,用以从所述接收机发送新的长期轨道信息的请求,并在所述接收机处接收响应所述请求的新的长期轨道信息。
根据本发明的一个方面,本发明提供一种系统,包括
接收机,所述接收机包括 用于存储可执行指令以及与至少一个卫星相关的长期轨道信息的第一存储器;
第一处理器,用于从所述第一存储器获取长期轨道信息以及可执行指令并执行所述可执行指令以执行如下操作 处理所述长期轨道信息以获得接收机的第一位置;
获得由所述至少一个卫星发射的至少一部分广播星历; 将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处理,从而获得所述接收机的第二位置;
服务器,所述服务器包括 用于存储可执行指令和所述长期轨道信息的第二存储器; 第二处理器,用于从所述第二存储器获得可执行指令并执行所述可执行指令以向所述接收机提供长期轨道信息。 根据本发明的一个方面,本发明提供一种系统,包括
接收机,所述接收机包括 用于存储可执行指令以及与至少一个卫星相关的长期轨道信息的第一存储器;
第一处理器,用于从所述第一存储器获取长期轨道信息以及可执行指令,并执行所述可执行指令以处理所述长期轨道信息来获得接收机的第一位置;
服务器,所述服务器包括 用于存储可执行指令和所述长期轨道信息的第二存储器; 第二处理器,用于从所述第二存储器获得长期轨道信息和可执行指令,并执行所 述可执行指令以执行如下操作 获得由所述至少一个卫星发射的至少一部分广播星历; 将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处 理,从而获得所述接收机的第二位置。 根据本发明的一个方面,本发明提供一种系统,包括 接收机,所述接收机包括 用于存储可执行指令的第一存储器; 第一处理器,用于从所述第一存储器获得可执行指令,并执行所述可执行指令以
获取到多个卫星的伪距; 用于发射所述伪距的发射机; 服务器,所述服务器包括 用于存储可执行指令以及与所述多个卫星中至少一个卫星相关的长期轨道信息 的第二存储器; 第二处理器,从所述第二存储器中获得长期轨道信息和可执行指令,并执行所述 可执行指令以执行如下操作 处理所述伪距和长期轨道信息以获得所述接收机的第一位置;
获得由所述多个卫星中至少一个卫星发射的广播星历; 将所述广播星历的至少一部分作为所述长期轨道信息的至少一部分的替代进行 处理,从而获得所述接收机的第二位置。 优选地,所述第一位置包括所述接收机的位置的多个过渡解;且用于处理所述 长期轨道信息的可执行指令包括 用于处理所述长期轨道信息以获得所述多个过渡解的可执行指令; 所述用于获得至少一部分广播星历的可执行指令包括用于获得足够量的广播星
历以确定出第二位置的可执行指令。 优选地,所述用于处理至少一部分广播星历以确定第二位置的可执行指令可用于 在获得第一位置后处理所述至少一部分广播星历。 优选地,所述用于获得来自至少一个卫星的至少一部分广播星历的可执行指令包 括用于从来自所述至少一个卫星的广播导航消息中获得所述至少一部分广播星历的可执 行指令。 优选地,所述用于从广播导航消息中获得所述至少一部分广播星历的可执行指令 在所述接收机处获得所述至少一部分广播星历。 优选地,所述处理至少一部分广播星历的可执行指令在与所述长期轨道信息相关 的有效期接近期满时处理所述至少一部分广播星历。


下面将结合附图及实施例对本发明作进一步说明,附图中
图1是全球导航卫星系统的一个示例的框图; 图2是与全球导航卫星系统一起使用的接收机的一个示例的框图; 图3是与全球导航卫星系统一起使用的服务器的一个示例的框图; 图4是监控由全球导航卫星系统的一个或多个接收机所使用的辅助数据的完整
性的方法的流程图; 图5是识别不正常(unhealthy)卫星的示例方法的流程图; 图6是识别不正常卫星的另一示例方法的流程图; 图7是识别不正常卫星的再一示例方法的流程图; 图8是用于从服务器获得完整性数据和/或新的辅助数据的示例方法的流程图; 图9是识别不正常卫星的另一示例方法的流程图; 图10是获得并使用新的辅助数据的示例方法的流程图; 图11是获得并使用新的辅助数据的另一示例方法的流程图; 图12是精确地计算出GNSS接收机的位置的示例方法的流程图; 图13是精确地计算出GNSS接收机的位置的另一示例方法的流程图。
具体实施例方式
图1是全球导航卫星系统(GNSS) 100的示意框图。GNSS 100包括用于发射卫星 信号的多个卫星或卫星星群,图中表示为卫星105,还包括用于接收卫星信号的GNSS接收 机104以及服务器102。卫星105、 GNSS接收机104、服务器102、 GNSS IOO作为整体,其功 能、处理流程、组成部件和其它细节,适用于任何GNSS,包括全球定位系统(GPS) 、 GALILEO、 GLONASS、SBAS (空基增强系统)、QZSS (准天顶卫星系统)、LAAS (局域增强系统)或其各种 组合。 GNSS接收机104可通过通信链路与服务器102通信。该通信链路可通过通信耦合 一个或多个网络节点来形成,例如无线通信系统106 (例如蜂窝电话网络)和/或其它类型 的网络108,包括分组数据网络,如因特网、电路交换网络如PSTN、或这两种网络的结合。
为清楚起见,系统100中仅仅示出了一台GNSS接收机104和一台服务器102。但是 应该理解的是,系统100可包括和/或布置多个GNSS接收机和服务器,且附加的每个GNSS 接收机和服务器均可通过各自对应的通信链路与服务器102 (和/或其它服务器)进行通 信。 在GNSS100内,GNSS接收机102的位置可确定、计算或形成为从卫星105接收的 卫星信号的函数。例如,GNSS接收机104可获取由星群中的一个或多个卫星(统一表示为 "卫星105")广播的卫星信号,并可测量到一个或多个卫星105(—般为四个)的伪距,以便 定位其未知的位置("接收机位置")。对于GPS配置,GNSS接收机104可测量到GPS星群 内的多个GPS卫星的伪距。 为了辅助卫星信号的获取、接收机位置的计算或两者,GNSS接收机104可从服务 器102接收辅助数据,该辅助数据是根据卫星信号形成的、获得的、包含在其内的和/或与 卫星信号相关的。GNSS接收机104进而可(i)使用包括一个或多个预期的或预测的伪距 (以下称为"预测伪距")在内的辅助数据来辅助卫星信号的获取;(ii)从卫星信号中测得 实际伪距("测量伪距");和(iii)通过通信链路(例如无线通信系统106)将测量伪距发送给服务器102。 服务器102可使用测量伪距求解GNSS接收机104的未知位置(S卩"接收机位置")。 随后可通过通信链路将接收机位置发送给GNSS接收机104,或可通过其他方式例如通过因 特网供第三方请求者199使用。 另一方面,GNSS接收机104可使用测量伪距计算其自己的位置(即"接收机位 置"),而不需发射该伪距给服务器102。这种情况下,GNSS接收机104使用辅助数据来辅 助卫星信号的获取和/或接收机位置的计算。 为了生成辅助数据,服务器102使用各种与星群有关的广播测量值和信息,包括 广播星历、码相位测量值、载波相位测量值、多普勒测量值和类似信息。需要注意的是,广播 测量值和信息可从卫星信号中直接获得,和/或通过解码卫星105广播的一个或多个卫星 导航消息来获得。 或者,服务器102必须从外部源获取或接收各种广播测量值。该外部源可以是获 得并分发广播测量值和信息的任何设备并可嵌入为基准网络110,可以是卫星控制站112, 例如GPS内的主控制站(MCS),或者是其它的信息源,例如与因特网通信连接的数据存储 器。 参考网络110包括多个跟踪站,其中每个跟踪站具有卫星信号接收机(又称为基 准接收机)。所述多个跟踪站以一种或另一形式收集并分发来自星群内所有卫星的广播测 量值和信息。或者,基准网络110可包括一个或多个跟踪站,用以(i)从星群中所有卫星 的子集中或(ii)针对世界上的一个或多个特定区域收集并分发(以一种形式或另一种形 式)广播测量值和信息。前述的每个跟踪站一般处于已知的位置。用于分发广播测量值和 信息例如广播星历的系统的一个或多个示例的细节,在2002年6月25日公布的美国专利 6, 411, 982中已有描述,本申请将该专利全文引入作为参考。该专利公布的细节中还给出了 基准网络和对应的跟踪站的一个或多个示例。 服务器102生成的辅助信息包括(i)用以辅助卫星信号获取的获取辅助信息,例 如码相位测量值、载波相位测量值、多普勒测量值和类似信息;(ii) 一种或多种类型卫星 导航数据,包括广播星历和/或长期轨道和时钟模型(总称LTO信息);以及(iii)可用于 获取卫星信号和/或确定接收机位置的其它信息。 此外,卫星导航数据可包括预测伪距和/或该预测伪距的模型("伪距模型")中 的一个或多个。因此,服务器102可获得并分发预测伪距和/或伪距模型。用于分发和使 用预测伪距和/或伪距模型以获取卫星信号的系统的一个或多个示例的细节,在2002年9 月17日公布的美国专利6《453,237中已有介绍,本申请将该专利全文引入作为参考。
当辅助数据包含广播星历和/或LTO信息例如LTO模型时,服务器102和/或外 部源可从卫星105(直接地或间接地)获得广播星历,处理广播星历(若需要),并分发该 广播星历和/或LTO信息给GNSS接收机104。用于获得、处理、分发和/或使用广播星历 和LT0信息例如LT0模型的系统和方法的示例,在2006年1月17日申请的美国专利申请 11/333,787、2001年11月6日申请的美国专利申请09/993, 335以及前面提到的美国专利 6, 560, 534和6, 542, 820中已有描述,本申请将这些专利全文引用作为参考。
如上所述,辅助数据(不管类型如何)在其"有效期"内是有效的,该有效期可以 是很短、较短或较长的一段时间。获取辅助信息的有效期一般是几分钟。广播星历的有效期是几小时(即2-4小时)。LTO信息的有效期是比广播星历的有效期更长的任何时间段,
可以是几天、一周或更长的时间。辅助数据在其有效期内还会非预期地变成无效的。这种
情况通常在辅助数据有效期内调整了卫星轨道或卫星时钟的情况下发生。 不管辅助数据的类型、内容和/或格式如何,若(或当)当前版本的辅助数据所基
于的广播测量值和信息变成无效的时("无效的辅助数据"),GNSS接收机104使用该无效
的辅助数据便不能充分地获取卫星信号和/或计算接收机位置,进而接收机位置的精确度
可能被降低。为了检测和可能地补偿这种情况,服务器102和/或GNSS接收机104可对
GNSS接收机104所使用的辅助数据(当前辅助数据)的完整性进行监控和调节。 如下所述,服务器102可获得广播测量值和信息,并使用该广播测量值和信息生
成与辅助数据一起使用的完整性数据。另一方面,当GNSS接收机104确定当前辅助数据缺
乏完整性或不再有效时,GNSS接收机104可从服务器102获得(通常作为对GNSS接收机
104的一个或多个请求的响应)更多最近的或"新"的辅助数据,如下结合图8、10和11的
描述。尽管当前附属数据所基于的广播测量值和信息被认为是有效的,GNSS接收机104也
可以这样做。 —般,服务器102所获得的广播测量值和信息比当前辅助数据更新。服务器102 生成的完整性数据进而可反映出这一情况,并因此可发送给GNSS接收机104。
图2示出了用于GNSS的GNSS接收机200的一个示例。GNSS接收机200可用作图 1中的GNSS接收机104。 GNSS接收机200包括卫星信号接收器202、无线收发器204、处理 器206、存储器208和可选的调制解调器210(或其它通信端口或设备)。卫星信号接收器 202、无线收发器204和存储器208可容纳在一个移动终端内,例如蜂窝电话、寻呼机、笔记 本电脑、个人数字助理(PDA)和现有技术中已知的类似无线设备。 卫星信号接收器202包括有用于以已知的方式接收和处理卫星信号的电路。一 般,卫星信号接收器202包括耦合至基带处理器205的射频前端203。卫星信号接收器202 通过射频前端203获取卫星信号并使用基带处理器205来生成伪距测量值(即GNSS接收 机200和卫星105之间的时钟误差加上距离(clock error plus distance))。任何形式的 定位模块可用于这一角色。卫星信号接收器202的示例可从全球定位公司(Global Locate Inc.)的GL20000、 Hammerhead和Marlin系列产品或SiRF技术公司(SiRF Technology Holdingslnc.)的SIRFStarIII产品、以及结合美国专利6, 453, 237的发明使用的AGPS接 收器中找到。伪距测量值可通过处理器206发送给无线收发器204。 处理器206包括中央处理单元(CPU) 212、 I/O接口 214、支持电路216和至少一个 总线或串行通信链路218。 CPU 210可以是一种或多种已知的处理器或微处理器。支持电 路216包括已知的电路,用于促进CPU 212的操作。支持电路216可包含高速缓存、电源、 时钟电路和类似电路中至少一个。 总线或串行通信链路218用于在CPU 212、支持电路216、存储器208、1/0接口 214 和GNSS接收机200的其它部分(未示出)之间提供数据信息的传输,包括与确定接收机位 置有关的信息的传输。 1/0接口 214提供接口以控制进出GNSS接收机200的数字信息的传输。1/0接口 214可与一个或多个I/O设备连接,例如调制解调器210、键盘、触摸屏和/或其它设备。
收发器204可用于与无线通信网络106和/或其它类型的网络108进行通信。使
11用收发器204, GNSS收发机200可从外部源例如服务器102获得辅助信息以帮助获取和处 理卫星信号。 卫星信号接收器和收发器与辅助服务器的组合的示例,在美国专利6,411,892、 6, 429, 814、6, 587, 789、6, 590, 530、6, 703, 972、6, 704, 651和6, 813, 560以及2001年11月 6日提交的美国专利申请09/993, 335、2003年1月22日提交的美国专利申请10/349, 493、 2003年2月5日提交的美国专利申请10/359, 468、2003年10月23日提交的美国专利申请 10/692, 292、2003年11月21日提交的美国专利申请10/719, 890、2004年8月26日提交的 美国专利申请10/926, 792、2004年7月1日提交的美国专利申请10/884, 424、2004年8月 5日提交的美国专利申请10/912, 516、2004年9月1日提交的美国专利申请10/932, 557、 2004年10月19日提交的美国专利申请10/968, 345、2005年3月3日提交的美国专利申请 11/077, 380、2005年8月18日提交的美国专利申请11/206, 615、2005年10月28日提交的 美国专利申请11/261, 413以及2006年1月19日提交的美国临时专利申请60/760, 140中 已有介绍,以上专利申请均被引用于此作为参考。 无线收发器204可使用其天线220发送测量伪距以用于在服务器202处计算接收 机位置。或者,测量伪距可存储在存储器208内,并随后由GNSS接收机200用于计算接收 机位置。例如,GNSS接收机200可执行处理以使用卫星信号接收器202生成的伪距来计算 接收机位置。也即,GNSS接收机200可使用其处理器206来(i)从存储器208加载(或直 接从卫星信号接收器202获取)卫星信号接收器202生成的伪距,以及(ii)使用这些测量 伪距计算接收机位置,其中该处理器206还能够执行除计算接收机位置之外的其它功能。
存储器208可以是嵌入的随机访问存储器、只读存储器、可擦除可编程只读存储 器或其各种变形、内容可访问存储器及其各种变形、闪存存储器、磁盘驱动存储器、可移动 存储器、硬盘存储器等及其各种组合。存储器208可加载和存储有当前辅助数据222,用于 辅助卫星信号的获取或位置的计算或两者。当前辅助数据222可从服务器102处经由通信 链路使用无线收发器204或通过其它类型的计算机网络108使用调制解调器210(或将该 设备连接至计算机网络的其它通信端口或设备)来接收。 此外,存储器208可加载和存储有可执行指令或其它代码(例如软件),用于本申 请中描述的部分或所有的处理或功能。这些可执行指令包括用于执行图8、10和11中的处 理流程800、 1000和1100的一些或全部的辅助数据维护软件228。 现在参见图3,示出了用于GNSS的服务器300的原理框图。服务器300可用作图 1中的服务器102。所示的服务器300包括CPU 302、 I/O电路304、支持电路306、存储器 308和服务器时钟310。 服务器300可包括有或连接至设备数据库312。支持电路306包括有已知的电路 以用于促进CPU 302的操作,例如时钟电路、高速缓存、电源等。服务器时钟310可用于提 供时间标志以指出GNSS接收机(例如GNSS接收机104和/或200)发射的测量伪距的到 达时间。 存储器308可以是嵌入的随机访问存储器、只读存储器、可擦除可编程只读存储 器或其各种变形、内容可访问存储器及其各种变形、闪存存储器、磁盘驱动存储器、可移动 存储器、硬盘存储器等及其各种组合。存储器308可加载和存储有可执行指令或其它代码 (例如软件),用于本申请中描述的任何处理或功能。这些可执行指令包括用于执行图4所示的处理流程400的完整性监控软件320、用于执行图5、6、 7和9所示的处理流程500、600、 700和900的卫星正常监控软件322、用于执行图8所示的处理流程800的一些或全部的辅 助数据维护软件324。 服务器300通过其I/0电路304可从外部源(例如基准网络、卫星控制站、因特网) 接收广播测量值和信息(例如星历、码相位测量值、载波相位测量值、多普勒测量值等)。服 务器300可使用广播测量值和信息来生成或计算当前辅助数据和/或该辅助数据的一个或 多个之前或之后版本。 为了监控当前辅助数据的完整性,服务器300跟踪分发给多个远端接收机中每一 个接收机(未示出)的辅助数据的类型、当前辅助数据的传送时间、以及当前辅助数据的期 满时间。 一个实施例中,这一信息可存储在设备数据库312的表350内。表350具有由远 端设备ID、当前辅助数据被发送给表中列出的每个远端设备的日时、发送的辅助数据的类 型以及辅助数据的期满时间所定义的多个条目(例如,图中示出了三个条目)。
例如,条目352表明,(i)该获取辅助数据在时间tl发送给具有ID "1"的一个远 端设备,以及(ii)该获取辅助数据设置为自时间tl起10分钟后期满。条目354表明,(i) 广播星历在时间t2发送给具有ID "2"的一个远端设备,且(ii)该广播星历数据设置为自 时间t2起四小时后期满。条目356表明,(i)LTO信息在时间t3发送给具有ID "3"的一 个设备,且(ii)该LT0信息设置为自时间t3起两天后期满。 服务器300监控设备数据库312内的远端设备所使用的当前辅助数据的完整性, 并对应地生成完整性数据314。完整性数据314可存储在存储器308中并可发送给一个或 多个远端设备,如下所述。 图4是用于监控GNSS的一个或多个GNSS接收机所使用的当前辅助数据的完整性 的方法400的流程图。该方法400可由GNSS的服务器例如服务器300来执行,以监控GNSS 接收机所使用的当前辅助数据的完整性。 方法400开始于步骤402,在将GNSS接收机使用的当前辅助数据相关联的不正常 卫星识别出来。如后续示例所述,任一方法500、600、700和900都可以用于识别不正常卫星。 在可选的步骤403,为每个识别出的不正常卫星确定一中断期(outage)。例如,可 从卫星控制站生成的中断期通知数据中获得每个识别出的不正常卫星的中断期,这部分内 容在后续将结合图9的方法900给出描述。 在步骤404,生成完整性数据。该完整性数据包括每个不正常卫星的身份标识以及
在知道的情况下还包括对应的中断期。若中断期是未知的,则该完整性数据不包含中断期,
或者中断期被设定为预定的值或被设定为基于使用的特定类型辅助数据的值。 例如,在当前辅助数据是基于或使用广播星历时,中断期可被设定成两到四个小
时之间的任何时间。或者,在当前辅助数据是基于或使用LT0信息时,中断期可设定成大于
其有效期的时间。 接着完整性数据被发送给使用当前辅助数据的GNSS接收机。 一个实施例中,在步 骤406,可响应识别出不正常卫星,将完整性数据发送给受到影响的GNSS接收机。也就是 说,若任一卫星被识别为不正常卫星,则完整性数据将被发送给受这样的不正常卫星影响 的具有当前辅助数据的GNSS接收机。因此,完整性数据仅在识别出不正常卫星时发送,并且仅发送给受到该识别出的不正常卫星影响的GNSS接收机。另一实施例中,在步骤405,响 应识别出不正常卫星,该完整性数据被发送给一些或所有的GNSS接收机。
另一实施例中,在步骤408,依据预定的传输安排将完整性数据发送给GNSS接收 机。例如,该完整性数据可周期性地广播给使用当前辅助数据的一些或所有GNSS接收机, 而不管是否识别出不正常卫星。另一实施例中,在步骤410,响应来自 一个或多个GNSS接收 机的请求,将完整性数据发送给这些接收机。 图5是用于识别不正常卫星的方法500的流程图。方法500开始于步骤502,获得 一组当前的广播测量值和信息。这一组当前的广播测量值和信息可通过通信链路从基准网 络、卫星控制站和/或其它信息源接收到。 在步骤504,从该组当前的广播测量值和信息中提取出卫星轨道数据、卫星时钟数 据或两者(以下统称为"轨道/时钟数据")。在步骤506,将该轨道/时钟数据与GNSS接 收机正在使用的一组或多组当前辅助数据进行比较,以识别偏差(discr印ancy)。该偏差可 因从当前辅助数据生成时起发生的一个或多个卫星轨道的改变或一个或多个卫星时钟的 漂移而引起。这些偏差表明了从当前组测量值和信息中提取出的轨道/时钟数据和基于或 其它的当前辅助数据的轨道/时钟数据之间的差值。 在步骤508,判断任何识别出的偏差是否超出了预定的阈值。若一个或多个卫星轨 道的改变超出了对应的预定阈值,和/或若一个或多个卫星的时钟漂移超出了对应的预定 阈值,则方法500转至步骤510。否则,方法500在步骤512结束。在步骤510,与识别出的 偏差相关联的受到影响的卫星被标记为不正常卫星。 图6是识别不正常卫星的方法600的流程图。方法600开始于步骤602,获得一组 当前的广播测量值和信息。该组当前的广播测量值和信息可通过通信链路从基准网络、卫 星控制站和/或其它信息源接收到。 在步骤604,从该组当前的广播测量值和信息中提取出卫星正常数据。如上所述, 来自每个卫星的广播星历包含有该卫星的精确卫星轨道以及时间模型信息。此外,广播星 历可包含有卫星正常与否("健康状态(health status)")指示。 例如,在GPS内,星历的改变由MCS通过改变广播星历内的健康状态来宣布。在步 骤606,分析卫星健康状态数据以识别是否存在不正常的卫星。 图7是识别不正常卫星的方法700的流程图。方法700开始于步骤702,具有已知 位置的一个或多个跟踪站处接收到卫星信号。 在步骤704,使用GNSS接收机所使用的一组或多组当前辅助数据计算出每个跟踪 站的位置。在步骤706,将这些位置("计算位置")与跟踪站的已知位置进行比较。例如, 若用于计算一个或多个跟踪站的计算位置的特定组当前辅助数据因不正常卫星而无效时, 这些计算出的位置将出错(和/或被标识为具有偏差)。 这样的话,在步骤708,判断是否有任一计算位置超出了对应的已知位置一预定的 阈值。若超出,方法700转至步骤710。否则,方法700在步骤712结束。在步骤710,与识 别出偏差相关联的受影响的卫星被标记为不正常卫星。 图8是用于从服务器获得(例如,请求和接收)完整性数据和/或新的辅助数据 的方法800的流程图。方法800开始于步骤802,从GNSS接收机例如GNSS接收机104或 200和多个卫星中的一个或多个(一般为四个)之间分别测出测量伪距。
在步骤804,使用该测量伪距和当前辅助信息计算出GNSS接收机的计算位置。在 步骤806,估计该计算位置的有效性。 计算位置的有效性可通过多种方式来估计。例如,可使用后验残差(a-posterior residual),其可形成为测量伪距的函数。形成后,可分析这些后验残差以识别哪些测量伪 距是错误的。若有任意测量伪距被识别为错误的,则计算位置的有效性将被估计为是无效 的。 还可以使用其它技术来估计计算位置的有效性。例如,计算位置的有效性可估计 成计算位置与先验位置的函数。该先验位置可从当前辅助数据(包括任何广播星历和/或 LTO信息)中获得、形成和/或取得。 例如,若计算位置和先验位置之间的差值满足特定阈值,则有效性被估计成是无 效的。或者,若该差值不满足特定阈值,则将有效性估计成是有效的。 该特性阈值可以是适用于大量条件中的一种或多种的统计值,或者可以针对一种 或多种条件进行动态地调整,其中所述的条件包括GNSS接收机的实际位置、自从上次获得 当前辅助数据的时间、当前辅助数据的基本组成(basis)和/或类型(例如当前辅助数据 是否包含广播星历和/或LTO信息)等。该特性阈值可包括一个或多个阈值,并可应用为 该差值的一个或多个边界。所述边界用作一个或多个上限、一个或多个下限或其结合。
作为另一种实施例,计算位置的有效性可估计为一个或多个先验残差的函数。艮卩, 计算位置可估计为各个预测伪距和计算伪距之间的比较结果的函数。预测伪距是基于先验 位置和时间、和/或其它卫星跟踪数据的。先验位置和时间、和/或其它卫星跟踪数据可从 包含LTO信息在内的当前辅助数据中得到或是其一部分,或者可从卫星信号中得到的广播 星历中得到。 与上面一样,当一个或多个先验伪距残差满足对应的阈值时。有效性被估计成是
无效的。或者,当先验伪距残差不满足对应的阈值时,有效性被估计成是有效的。 每个上述特性阈值可以是适用于大量条件中的一种或多种的统计值,或者可以针
对一种或多种条件进行动态地调整,其中所述的条件包括GNSS接收机的实际位置、自从上
次获得当前辅助数据的时间、当前辅助数据的基础和/或类型(例如当前辅助数据是否包 含广播星历和/或LTO信息)等。每个特性阈值可包括一个或多个阈值,并可应用为该先 验伪距残差的一个或多个边界。所述边界用作一个或多个上限、一个或多个下限或其结合。
估计计算位置的有效性的其它实施例可使用前述方法的各种变型和/或组合,包 括例如比较计算的和预测的高度、时间等。 在步骤808,判断计算位置是否有效。该判断可以前述的估计计算位置的有效性 的函数做出。若计算位置是有效的,则方法800回到步骤802,处理方法800重复进行。否 则,当前辅助数据的至少一部分将被标记以避免使用、被移除、删除或从当前辅助数据中除 去("被除去的辅助数据"),并且接着方法800进入(i)步骤810或(ii)步骤814或(iii) 步骤818。被除去的辅助数据可以是与确定出测量伪距的卫星或多个卫星相关的当前辅助 数据。 在步骤810, GNSS接收机从服务器接收完整性数据,这通常是对一个多个请求的 响应。接收到后,GNSS接收机可使用完整性数据来判断处理的当前辅助数据是否仍然是有 效的,如步骤812所示。若当前辅助数据不是有效的,则GNSS接收机可使用该完整性数据
15来更新或补充当前辅助数据(包括替换或修改被除去的辅助数据)。或者,GNSS接收机可 跳至步骤814来获取新的辅助数据。另一方面,若当前辅助数据是有效的,方法800跳至步 骤802,指示方法800重复执行。 在步骤814, GNSS接收机从服务器接收新的辅助数据,这一般是对一个或多个请 求的响应。该新的辅助数据可以形成于并包括获取辅助信息("新获取辅助信息")和/或 卫星导航数据("新卫星导航数据"),这些信息比当前辅助数据内的获取辅助信息和/或 卫星导航数据更新。 新获取辅助信息包含有用于获取卫星的信息,其可包括从星群中的至少一个卫星 广播的一个或多个卫星导航消息中得出的码相位测量值、载波相位测量值、多普勒测量值 等中的至少一项。新卫星导航数据可包括广播星历、一个或多个预测伪距、伪距模型、LTO信 息等,均比当前辅助数据内的对应参数更新。 在获得新的辅助数据后,GNSS接收机可使用新辅助数据中的一些或全部来更新或 补充当前辅助数据(包括替换或修改被除去的辅助数据),如步骤816所示。例如,GNSS接 收机可用新辅助数据中的对应预测伪距来替换当前辅助数据中的一个或多个预测伪距。
例如,若当前辅助数据是从LTO信息(例如LTO模型)中形成的,则GNSS接收机 可用同样从LTO信息(例如LTO模型)中形成的新辅助数据中的对应预测伪距来替换当前 辅助数据中的一个或多个预测伪距。 或者另一实施例中,GNSS接收机可用新辅助数据中的一部分或全部来替换全部的 当前辅助数据。跟上面一样,若当前辅助数据是从LTO信息中形成的,则GNSS接收机可用 同样从LTO信息中形成的新辅助数据的一部分或全部来替换全部的当前辅助数据。GNSS接 收机可替换全部的当前辅助数据,尽管只有一部分(例如仅有一个预测伪距)被估计(步 骤808)或确定(步骤812)为无效的。 如前结合步骤808所介绍的,方法800另一种实施例中会从步骤808跳至步骤 818。在步骤818, GNSS接收机可解码并接着使用直接从包含在GNSS接收机接收的卫星信 号中的卫星导航消息中获得的广播星历,以更新或补充当前辅助数据(包括替换或修改被 除去的辅助数据)。GNSS接收机可在以下时候适当的进行上述操作(i)卫星信号的衰减 能够成功的解码出广播星历时;和/或(ii)GNSS接收机不能从服务器获得完整性数据和/ 或新的辅助数据时。对于后者,GNSS接收机不能获得完整性数据和/或新的辅助数据是因 为其缺乏与服务器的连接,不能保持与服务器的连接,或丢失了与服务器的连接。
在用新的辅助数据对当前辅助数据进行更新或补充之后,方法800跳至步骤802, 重复执行。方法800可以以连续的形式周期性的重复执行,或基于某条件的触发而重复执 行,例如检测到接收机位置或卫星位置内的错误。方法800也可因其它原因而重复执行。
此外,GNSS接收机可获得完整性数据和/或新的辅助数据而不需要做出请求。例 如,可从来自服务器的消息中获得完整性数据和/或新的辅助数据。 此外,方法800可从步骤812跳至步骤814。这发生在当前组广播测量值和信息以 及当前辅助数据两者均基于共用信息而卫星的实际位置在计算接收机位置的时间和获得 当前辅助数据的时间之间发生了改变的情况下。虽然这样的改变会反映在服务器处的新获 取辅助信息和/或新卫星导航数据中,发送给GNSS接收机或GNSS接收机处的完整性数据 不会反映出这样的改变。
此外,完整性数据可能不会反映出改变,或者用于触发替换的时间因当前辅助数 据是从LTO信息中形成的而不会到达。例如,因有效期尚未期满或未接近期满,服务器不会 为当前辅助数据检查和/或计算完整性数据。对此的其它可能性也是可能的。
图9是用于识别不正常卫星的另一示例方法900的流程图。方法900开始于步骤 902,接收到卫星控制站生成的中断期通知数据。例如,可直接从卫星控制站接收该中断期 通知数据,或通过其它源接收,例如通过因特网。例如,在GPS内,分布在世界各地的受主控 制站(MCS)控制的多个跟踪站监控卫星星群。MCS可根据对未来的计划宣布中断期,或者未 计划而立即宣布中断期,该中断期通知可通过经由因特网提供给Navstar用户(NANU)。
在步骤904,分解中断期数据以识别不正常卫星。在步骤906,确定出每个识别出 的不正常卫星的中断期。例如,可从NANU获得针对识别出的不正常卫星的中断期。通过使 用中断期通知数据,本发明确保GNSS接收机所使用的当前辅助数据总是反映出GPS星群的 最近完整性状态,不管对完整性的改变是对未来计划的,还是未计划而立即进行的。
图10是用于获取并使用新的辅助数据的方法1000的流程图。为方便起见,方法 1000是针对图1和图2所示的架构进行的描述。 GNSS接收机104 (i)从服务器102获得包含有LTO信息例如LTO模型的当前辅助 数据后,以及(ii)从一个或多个(一般为四个)卫星获取卫星信号之后,方法IOOO开始于 起始步骤1002。为方便起见,当前辅助信息在方法1000中被称为"当前LTO信息"。
起始步骤1002之后,方法1000进入步骤1004。在步骤1004中,使用当前LTO信 息来确定GNSS接收机104的预测位置("预测位置方位(predicted-position fix)")。 该预测位置方位可由GNSS接收机104和/或服务器102来确定。GNSS接收机104和/或 服务器102可通过如下操作来确定应用当前LTO信息和测量伪距给第一递归滤波器或其 它类型的滤波器,并检测来自第一滤波器的输出的预测位置方位。预测位置方位可包括一 个或多个对应的定位参数,包括纬度、经度、海拔高度和/或共模误差。
为了便于在服务器102处确定预测位置方位,服务器102可从GNSS接收机104获 得测量伪距和当前LTO信息。或者,服务器102可使用从GNSS接收机104获得的测量伪距 以及服务器102已知的由GNSS接收机使用的LTO信息来确定预测位置方位。步骤1004之 后,方法1000进入步骤1006。 在步骤1006,使用从卫星信号获得的广播星历来确定GNSS接收机104的测量位 置("测量位置方位")。该测量位置方位可由GNSS接收机104和/或基准网络110的一 个或多个跟踪站来确定。GNSS接收机104和/或一个或多个跟踪站可通过如下操作来确 定将从卫星信号获得的广播星历(直接从卫星或间接从服务器102得到的)和测量伪距 应用给第二递归滤波器或其它类型的滤波器,并检测来自第二滤波器的输出的测量位置方 位。测量位置方位与第一位置方位一样,包括一个或多个对应的定位参数,例如纬度、经度、 海拔高度和/或共模误差。步骤1006后,方法1000进入步骤1008。 在步骤1008,将至少一个预测定位参数的有效性确定为该预测定位参数("第一 定位参数")和相应的一个测量定位参数("第二定位参数")的函数。该有效性可由例如 GNSS接收机104和/或服务器102来确定。GNSS接收机104和/或服务器102可通过如 下操作来确定形成第一和第二定位参数之间的差值,并判断该差值是否满足给定的阈值。 若该差值满足给定阈值,则第一定位参数的有效性被视为是有效的,否则,第一定位参数的有效性被视为是无效的。 该给定的阈值可以是适用于大量条件中的一种或多种的统计值,或者可以针对一 种或多种条件进行动态地调整,其中所述的条件包括GNSS接收机104的实际位置、自从上 次获得当前LT0信息的时间、当前LT0信息的基本组成和/或类型等。该特性阈值可包括 一个或多个阈值,并可应用为该差值的边界。所述边界用作一个或多个上限、一个或多个下 限或其结合。 若需要的话,可以对剩余的一个或多个预测定位参数执行相同的函数。或者,可以
对每个剩余的预测定位参数执行相同的函数,除非其中之一被视为无效。 为了便于在服务器102处确定该有效性,服务器102必须从GNSS接收机104获得
预测位置方位。使用该预测位置方位,服务器102可获得第一定位参数。类似地,根据由谁
来确定出测量位置方位,服务器102必须从GNSS接收机104或跟踪站获得测量位置方位。
使用测量位置方位,服务器102可获得第二定位参数。 为了便于在GNSS接收机104处确定该有效性,GNSS接收机104必须从服务器102 获得预测位置方位。使用该预测位置方位,GNSS接收机104可获得第一定位参数。如步骤 1010所示,若GNSS接收机104和/或服务器102确定预测定位参数是有效的,则该处理流 程返回到起始步骤1002,在需要时重复方法1000。 另一方面,若任何预测定位参数被视为是无效的,则GNSS接收机104将从当前LT0 信息中除去(例如,标记以防止使用、移除、删除等)至少一部分当前LTO信息("被除去的 LTO信息")。该被除去的LTO信息可以是与确定出测量伪距的卫星相关的当前LTO信息。
此外,GNSS接收机104可从服务器102获得新的辅助数据或"新LTO信息",如步 骤1012所示。GNSS接收机104可请求或不请求的情况下从服务器102获得该新LTO信息。
获得新LTO信息之后,如前结合图8所述的,GNSS接收机104可用新LTO信息更 新或补充当前LTO信息的一些或全部,如步骤1014所示。这一操作包括替换一个或多个预 测定位参数。如上所述,GNSS接收机104可用新LT0信息替换或补充一部分或全部的当前 LTO信息,而不管该一部分或全部的当前LTO信息(及其定位参数)被估计或确定为是无效 的。 步骤1014之后,方法1000跳至结束步骤1016,表明方法流程1000结束。或者,方 法1000可以持续的形式周期性地重复执行,或基于某一条件被触发执行,例如接收机或卫 星位置出现错误。 图11是用于获得并使用新辅助数据的示例方法1100的流程图。为方便起见,方 法1100是针对图1和图2所示的架构进行的描述。 GNSS接收机104 (i)从服务器102获得包含有LTO信息例如LTO模型的当前辅助 数据后,以及(ii)从一个或多个(一般为四个)卫星获取卫星信号之后,方法iioo开始于 起始步骤1102。为方便起见,当前辅助信息在方法1100中被称为"当前LTO信息"。
起始步骤1102之后,方法1100进入步骤1104。在步骤1104中,使用从卫星信号 获得的广播星历来确定GNSS接收机104的测量位置("测量位置方位(measured-position fix)")。该测量位置方位可由GNSS接收机104和/或基准网络110的一个或多个跟踪站 来确定。GNSS接收机104和/或跟踪站可通过如下操作来确定应用广播星历(直接从卫 星得到或间接从服务器102获得的)和测量伪距给第二递归滤波器或其它类型的滤波器,并检测来自第二滤波器的输出的测量位置方位。该测量位置方位可包括一个或多个对应的 定位参数,包括纬度、经度、海拔高度和/或共模误差。 在步骤1106,使用当前LT0信息来为每个定位参数生成相应的参数阈值。这些参 数阈值可由GNSS接收机104和/或服务器102来生成。为了便于生成参数阈值,GNSS接 收机104和/或服务器102必须从另一方获得测量位置方位。 该参数阈值可以是适用于大量条件中的一种或多种的统计值,或者可以针对一种 或多种条件进行动态地调整,其中所述的条件包括GNSS接收机104的实际位置、自从上次 获得当前LTO信息的时间、当前LTO信息的基本组成和/或类型等。该参数阈值可包括一 个或多个阈值,并可应用为该定位参数的边界。所述边界用作一个或多个上限、一个或多个 下限或其结合。 步骤1106后,方法1100进入步骤1108。在步骤1108,将当前辅助数据的有效性 确定为从参数阈值和相应的一个测量定位参数至少其一的函数。当前辅助数据的有效性可 由例如GNSS接收机104和/或服务器102来确定。GNSS接收机104和/或服务器102可 通过确定该测量定位参数是否满足其对应的参数阈值来确定有效性。若测量定位参数满足 其相应的参数阈值,则测量定位参数的有效性被视为是有效的,否则,被视为是无效的。
若需要的话,步骤1108可以对剩余的一个或多个测量定位参数执行相同的函数。 或者,可以对每个剩余的测量定位参数执行相同的函数,除非其中之一被视为无效。为了便 于确定当前LTO信息的有效性,GNSS接收机104和服务器102必须从另一方获得对应的参 数阈值和测量定位参数,具体取决于谁维护该参数阈值和测量定位参数。
在判断步骤1110中,若GNSS接收机104确定测量定位参数是有效的,则该处理流 程返回到起始步骤1102,在需要时重复方法1100。另一方面,若任何测量定位参数被视为 是无效的,则GNSS接收机104将从当前LT0信息中除去(例如,标记以防止使用、移除、删 除等)至少一部分当前LTO信息("被除去的LTO信息")。该被除去的LTO信息可以是与 确定出测量伪距的卫星相关的当前LTO信息。 此外,GNSS接收机104可从服务器102获得新的辅助数据或"新LTO信息",如步 骤1102所示。GNSS接收机104可请求或不请求的情况下从服务器102获得该新LTO信息。
获得新LTO信息之后,如前结合图8所述的,GNSS接收机104可用新LTO信息更 新或补充当前LTO信息的一些或全部,如步骤1104所示。这一操作包括替换一个或多个测 量定位参数。如上所述,GNSS接收机104可用新LT0信息替换或补充一部分或全部的当前 LTO信息,而不管该一部分或全部的当前LTO信息(及其定位参数)被估计或确定为是无效 的。 步骤1104之后,方法1100跳至结束步骤1116,表明方法流程1100结束。或者,方 法1100可以持续的形式周期性地重复执行,或基于某一条件被触发执行,例如接收机或卫 星位置出现错误。 图12是用于计算GNSS接收机的位置的方法1200的流程图。方法1200允许(i) 在广播星历对于GNSS接收机104来说不可访问时(例如,在正在从卫星导航消息中解码广 播星历时)使用辅助数据计算GNSS接收机的第一位置,以及(ii)使用广播星历或其一部 分作为至少一部分长期轨道信息的替换品来计算GNSS接收机104的第二或随后位置。
为方便起见,方法1200以下是结合图1和图2的架构给出的,特别是结合GNSS接收机104给出的。GNSS接收机104可使用分时机制(time-sharingmechanism)来执行方法 1200的处理流程。 例如,GNSS接收机104可使用分时机制来执行与处理步骤1204相关的功能,同时 还执行与步骤1202-1210相关的功能。因此,该分时机制可使得GNSS接收机104能够(i) 以前台方式以主优先级或(ii)以后台方式以次优先级执行与方法1200相关的一些功能。 除了结合图1和图2的架构进行描述之外,以下描述了 GNSS接收机104以后台方式执行与 步骤1204相关的功能,并以前台的方式执行与步骤1206-1210相关的功能。
GNSS接收机104 (i)从服务器102获得与一个或多个卫星( 一般是四个)相关的 当前辅助信息和(ii)从该一个或多个卫星获取卫星信号之后,方法1200开始于起始步骤 1202。为方便起见,包含有LTO信息例如LTO模型的当前辅助信息在方法1200中被称为 "当前LTO数据"。 起始步骤1202之后,方法1200进入步骤1204、 1206以使GNSS接收机104分别以 后台和前台的方式执行相关的功能。即,GNSS接收机104在相应的时间期间内执行与步骤 1204、 1206相关的功能,其中每个时间期间菌包含有GNSS接收机104正在执行步骤1204、 1206两者的功能的一段时间(公共时间)。此外,GNSS接收机104可在相同的时间点开始 执行步骤1204、 1206 (例如同步执行),或者GNSS接收机104可在不同的时间点执行(例如 异步执行)。 在步骤1204,GNSS接收机104从卫星发射的卫星导航消息中获得一些或全部的广 播星历。为此,GNSS接收机104接收并解码(统称为"提取")来自卫星导航消息的广播星 历,并且如上所述,卫星导航消息的接收单独地需要花去一段不少于且一般长于18秒的时 间来完成。在获得一些(足以计算出位置的量)或全部的广播星历后,方法1200跳至步骤 1212,这部分在后续介绍。 在步骤1206,GNSS接收机104处理当前LTO信息以及从获取的卫星信号得到的信 息,以确定出GNSS接收机104的一个或多个位置。假设GNSS接收机104具有当前LTO数 据,便可以在GNSS接收机104接收到从获取的卫星信号得到的信息之后立即确定每一个位 置;并且不像使用广播星历需要花费一段时间以在确定出位置之前从卫星导航消息中提取 出星历,使用当前LTO数据确定每个位置一般不会因为缺失做出决定的信息而被延迟。
所述每个位置可以是GNSS接收机104的过渡解或"过渡位置方位"。GNSS接收机 104可以通过应用当前LTO数据和测量伪距给第一递归或其它类型滤波器并检测第一滤波 器输出中的对应过渡位置方位来确定每个过渡位置方位。每个过渡位置方位可包括一个或 多个相应的定位参数,包括纬度、经度、海拔高度和/或共模误差。 又或者,最后一个位置(若不止一个的话)可以是GNSS接收机104的最终解或 "最终位置方位"。步骤1206后,方法1200跳至判断步骤1208。 在判断步骤1208, GNSS接收机104判断是否一些或全部的广播星历不可访问。例 如,GNSS接收机104可判断出广播星历因其正在从卫星导航消息中解码出的原因而不可访 问,并且任何部分解码出的广播星历以这样的部分的形式是不可用的。或者,GNSS接收机 104可判断出因解码的广播星历(部分的或其它)以其当前形式是不可用的原因或因卫星 信号衰减而不能从卫星导航消息中提取出广播星历的原因,该广播星历是不可访问的。
在做出了肯定的判断之后,方法1200跳至结束步骤1212,步骤1206中确定的最终
20位置方位可用作最后解,然后方法1200结束。或者,方法1200可以持续的形式周期性地重 复执行,或基于某一条件被触发执行,例如启动、接收机或卫星位置出现错误、或响应GNSS 接收机104的操作者(人或机器)的输入。 另一方面,若在步骤1208中做出否定的判断,方法1200跳至步骤1210。在步骤 1210,GNSS接收机104将一些或全部的广播星历作为一些或全部的当前LT0数据的替代进 行处理,以确定出GNSS接收机104的一个或多个额外的位置。这些额外的位置中的最近一 个位置便是GNSS接收机104的最终解或"最终位置方位"。其它的额外位置是过渡解,可通 过处理广播星历来增强("星历增强位置方位")这些过渡解。 GNSS接收机104可通过如下方式确定出最后和星历增强位置方位中的每一个将 一些或全部的广播星历、一些或全部的当前LTO数据、测量伪距以及一个或多个过渡位置 方位应用给第二递归或者其它类型滤波器,接着检测该滤波器输出中的对应最终和星历增 强位置方位。最终位置方位和星历增强位置方位中的每一者均包括有一个或多个相应的定 位参数,包括纬度、经度、海拔高度和/或共模误差。 步骤1210之后,方法1200跳至结束步骤1212,在此方法1200结束。或者,方法
1200可以持续的形式周期性地重复执行,或基于前述的某一条件被触发执行。 尽管前面描述的方法1200中,GNSS接收机104执行与步骤1204-1212相关的大
部分功能,方法1200的一部分也可由服务器102和/或远端设备来执行,例如基准网络110
内的一个卫星信号接收机,使用GNSS接收机104的MS-辅助配置。 再次参见图12,GNSS接收机104可向服务器102发送从获取的卫星信号中得到的 信息。之后,服务器102在步骤1206中处理由GNSS接收机104将其与从获取的卫星信息 中得到的信息一起处理的当前LTO数据的副本,以便确定出GNSS接收机104的一个或多个 位置。假定服务器102具有该当前LTO数据的副本的情况下,确定每个位置可在服务器102 接后到从获取的卫星信号中得到的信息之后立即执行;并且不像使用广播星历需要花费一 段时间以在确定出位置之前从卫星导航消息中提取出星历,使用当前LTO数据的副本确定 每个位置一般不会因为缺失做出决定的信息而被延迟。 服务器102确定的每个位置可以是针对GNSS接收机104的一个过渡位置方位,其 可以在如前所述的步骤1206中形成。此外,服务器102在判断步骤1208中可判断某些或 全部的广播星历是否是可访问的。同上面一样,当服务器102做出肯定的判断时,方法1200 跳至结束步骤1212,在步骤1206中确定的最终位置方位可用作最终解,方法1200结束。
但是,若服务器102做出否定的判断,则方法1200跳至步骤1210。服务器102确 定出广播星历是不可访问的,因为其可发送从一个或多个基准接收机或GNSS接收机104获 得的(例如从卫星导航消息中解码出的)广播星历(部分的或其它)给GNSS接收机104。 如上所述,方法1200在获得一些或全部的广播星历后跳至步骤1210。 在步骤1210,服务器102将该一些或全部的广播星历作为一些或全部的当前LTO 信息的替代来进行处理,以确定出GNSS接收机104的一个或多个额外位置。这些额外的位 置中的最近一个位置便是GNSS接收机104的最终解或"最终位置方位"。其它的额外位置 是星历增强位置方位。 最后和星历增强位置方位中的每一个可通过如上结合步骤1210的描述来形成。 为了便于实现,服务器102可从GNSS接收机104或从一个或多个基准接收机获得测量伪距(其可针对GNSS接收机104和基准接收机之间定位上的偏差进行了调整)。在确定出最后 和星历增强位置方位中的每一者后,服务器102将该位置发送给GNSS接收机104以供其使 用。 步骤1210之后,方法1200跳至结束步骤1212,在此方法1200结束。或者,方法 1200可以持续的形式周期性地重复执行,或基于前述的某一条件被触发执行,例如启动、接 收机或卫星位置出现错误、或响应服务器102和/或GNSS接收机104的操作者(人或机 器)的输入。 与GNSS接收机104 —样,服务器102可使用分时机制来执行方法1200的处理流 程。服务器102可使用分时机制来执行与步骤1204相关的功能,同时执行与步骤1206-1210 相关的功能。因此,该分时机制使得服务器102能够(i)以前台方式以主优先级或(ii)以 后台方式以次优先级执行与方法1200相关的一些功能。 作为另一种实施例,GNSS接收机104和服务器102分担职责以执行方法1200的 处理流程。例如,服务器102可接收来自GNSS接收机104的请求或中断GNSS接收机104 来发起并执行与步骤1204相关的功能,而GNSS接收机104可发起并执行与步骤1206-1208 相关的功能。当方法1200跳至步骤1210,服务器102发送一些或全部的广播星历给GNSS 接收机104。这使得GNSS接收机104能够确定出最后的和星历增强的位置方位。GNSS接 收机104和服务器102也可以其它的方式来分担职责以执行方法1200。
图13是用于精确地计算GNSS接收机的位置的方法1300的流程图。方法1300能 够(i)在广播星历对于GNSS接收机104来说可访问时使用广播星历精确计算该GNSS接收 机的第一位置;(ii)在广播星历对于GNSS接收机104来说不可访问时(例如在广播星历 正在从卫星导航消息中解码时)使用辅助数据精确计算第二位置;(iii)使用广播星历或 其一部分作为至少一部分长期轨道信息的替代来精确计算GNSS接收机104的第三或随后 位置。 为方便起见,方法1300是结合图1和图2的架构给出的。方法1300除以下的描 述外,与方法1200相同。 GNSS接收机104 (i)从服务器102获得包含LTO信息例如LTO模型的当前辅助信 息,以及(ii)从一个或多个卫星(一般为四个)获取卫星信号之后,方法1300开始于起始 步骤1302。为方便起见,包含有LTO信息例如LTO模型的当前辅助信息在方法1300中被称 为"当前LTO数据"。 起始步骤1302之后,方法1300跳至判断步骤1304。在判断步骤1304,GNSS接收 机104判断是否一些或全部的广播星历不可访问。例如,GNSS接收机104可判断出广播星 历因其正在从卫星导航消息中解码出的原因而不可访问,并且任何部分解码出的广播星历 以这样的部分的形式是不可用的。或者,GNSS接收机104可判断出因解码的广播星历(部 分的或其它)以其当前形式是不可用的原因或因卫星信号衰减而不能从卫星导航消息中 提取出广播星历的原因,该广播星历是不可访问的。 在做出了否定的判断之后,方法1300跳至结束步骤1305。在步骤1305, GNSS接收 机104处理一些或全部的广播星历以及从获取的卫星信号中得到的信息以确定出GNSS接 收机104的一个或多个位置。这些位置中的最后一个位置(若不止一个)便是GNSS接收 机104的最终解或"最终位置方位"。
22
步骤1305之后,方法1300跳至结束步骤1312结束方法1300。或者,方法1300可 以持续的形式周期性地重复执行,或基于某一条件被触发执行,例如启动、接收机或卫星位 置出现错误、或响应GNSS接收机104的操作者(人或机器)的输入。 另一方面,若在步骤1304中做出了肯定的判断,例如(i)当广播星历变成无效的、 不准确的或不可靠的时;(ii)GNSS接收机104初始启动之后;(iii)当前LTO数据提供比广 播星历更精确的解时;(iv)等等其它情况下,步骤1304中会做出肯定的判断,方法1300跳 转并执行图12中的方法1200。 步骤1210之后(如结合入方法1300中的),方法1300跳至结束步骤1312结束 方法1300。或者,方法1300可以持续的形式周期性地重复执行,或基于某一条件被触发执 行,例如启动、接收机或卫星位置出现错误、或响应GNSS接收机104的操作者(人或机器) 的输入。 尽管前面描述的方法1300中,GNSS接收机104执行与步骤1304-1312相关的大 部分功能,方法1300的一部分也可由服务器102和/或远端设备来执行,例如基准网络110 内的一个卫星信号接收机(基准接收机),使用GNSS接收机104的MS-辅助配置。
再次参见图13,服务器102在判断步骤1304中做出一些或全部的广播星历是否可 用的判断。同上面一样,当服务器102做出否定的判断时,方法1300跳至步骤1305。在步 骤1305,服务器102处理一些或全部的广播星历以及从获取的卫星信号中得到的信息以确 定出GNSS接收机104的一个或多个位置。 为此,服务器102获取一些或全部的广播星历。为了获得广播星历,服务器102可 从GNSS接收机104或一个或多个基准接收机接收从卫星导航消息中解码出的该广播星历。 或者,服务器102可从基准接收机或GNSS接收机104接收卫星导航消息并接着解码该卫星 导航消息以获得广播星历。最后一个位置(若不止一个)便是GNSS接收机104的最终解 或"最终位置方位"。确定出每个位置后,服务器102发送该一个或多个位置(例如最终解) 给GNSS接收机104以供其使用。 步骤1305之后,方法1300跳至结束步骤1312结束方法1300。但是,服务器102 做出了否定的判断,方法1300跳至执行图12的方法1200。 步骤1210之后(如结合入方法1300中的),方法1300跳至结束步骤1312结束 方法1300。或者,方法1300可以持续的形式周期性地重复执行,或基于某一条件被触发执 行,例如启动、接收机或卫星位置出现错误、或响应GNSS接收机104的操作者(人或机器) 的输入。 与GNSS接收机104 —样,服务器102可使用分时机制来执行方法1300的处理流 程。服务器102可使用分时机制来执行与步骤1304-1305相关的功能,同时执行与方法1200 相关的功能。因此,该分时机制使得服务器102能够(i)以前台方式以主优先级或(ii)以 后台方式以次优先级执行与方法1300相关的一些功能。 作为另一种实施例,GNSS接收机104和服务器102分担职责以执行方法1300的处 理流程。例如,服务器102可接收来自GNSS接收机104的请求或中断GNSS接收机104来发 起并执行与步骤1304-1305相关的功能,而GNSS接收机104可发起并执行与方法1200 (结 合入方法1300中)相关的功能。当方法1300跳至步骤1314,服务器102发送一些或全部 的广播星历给GNSS接收机104,使得GNSS接收机104能够确定出最终和星历增强位置方
23位。GNSS接收机104和服务器102也可以其它的方式来分担职责以执行方法1300。
尽管前述内容是结合GPS卫星给出的,很显然,本发明的教导同样适用于使用伪 卫星或卫星和伪卫星的结合的定位系统。伪卫星是基于地面的发射器,其广播被调制在 L-带载波信号上的PN码(类似于GPS信号),一般与GPS时间同步。本申请中所使用的术 语"卫星"包括伪卫星及其等效形式,"GPS信号"包括来自伪卫星或其等效形式的类似GPS 信号。 此外,前述描述中,本发明结合美国全球定位系统上应用给出了介绍,显然,这些 方法同样适用于类似的卫星系统,并特别适用于俄罗斯Glonass系统、欧洲伽利略系统。 本申请中使用的术语"GPS"包括那些可替换的全球导航卫星系统(GNSS),包括俄罗斯 Glonass系统和欧洲伽利略系统 尽管上述内容对本发明的实施例进行了描述,本发明还可以推出各种其它实施例 而不超出本发明的范围。
权利要求
一种方法,其特征在于,包括处理与至少一个卫星相关的长期轨道信息以获得接收机的第一位置;获得由所述至少一个卫星发射的至少一部分广播星历;将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处理,从而获得所述接收机的第二位置。
2. 根据权利要求l所述的方法,其特征在于,所述第一位置包括接收机位置的多个过 渡解;其中,处理长期轨道信息包括处理所述长期轨道信息以获得所< >述多个过渡解;且其 中,获得至少一部分广播星历包括获得足够量的广播星历以确定出所述第二位置。
3. 根据权利要求1所述的方法,其特征在于,处理所述至少一部分广播星历以确定出 第二位置在获得所述第一位置后发生。
4. 根据权利要求1所述的方法,其特征在于,从所述至少一个卫星获得至少一部分广 播星历包括从来自所述至少一个卫星的广播导航消息中获得所述至少一部分广播星历。
5. —种接收机,其特征在于,包括存储器,用于存储可执行指令以及与至少一个卫星相关的长期轨道信息; 处理器,用于从所述存储器获取长期轨道信息以及可执行指令并执行所述可执行指令 以执行如下操作处理所述长期轨道信息以获得接收机的第一位置; 获得由所述至少一个卫星发射的至少一部分广播星历;将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处理,从 而获得所述接收机的第二位置。
6. 根据权利要求5所述的接收机,其特征在于,用以处理所述至少一部分广播星历的 可执行指令包括用以在与所述长期轨道信息相关的有效期接近期满时处理至少一部分广 播星历的可执行指令。
7. —种系统,其特征在于,包括 接收机,所述接收机包括用于存储可执行指令以及与至少一个卫星相关的长期轨道信息的第一存储器; 第一处理器,用于从所述第一存储器获取长期轨道信息以及可执行指令并执行所述可 执行指令以执行如下操作处理所述长期轨道信息以获得接收机的第一位置; 获得由所述至少一个卫星发射的至少一部分广播星历;将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处理,从 而获得所述接收机的第二位置; 服务器,所述服务器包括用于存储可执行指令和所述长期轨道信息的第二存储器;第二处理器,用于从所述第二存储器获得可执行指令并执行所述可执行指令以向所述 接收机提供长期轨道信息。
8. —种系统,其特征在于,包括 接收机,所述接收机包括用于存储可执行指令以及与至少一个卫星相关的长期轨道信息的第一存储器;第一处理器,用于从所述第一存储器获取长期轨道信息以及可执行指令,并执行所述 可执行指令以处理所述长期轨道信息来获得接收机的第一位置; 服务器,所述服务器包括用于存储可执行指令和所述长期轨道信息的第二存储器;第二处理器,用于从所述第二存储器获得长期轨道信息和可执行指令,并执行所述可 执行指令以执行如下操作获得由所述至少一个卫星发射的至少一部分广播星历;将所述至少一部分广播星历作为所述长期轨道信息的至少一部分的替代进行处理,从 而获得所述接收机的第二位置。
9. 一种系统,其特征在于,包括 接收机,所述接收机包括 用于存储可执行指令的第一存储器;第一处理器,用于从所述第一存储器获得可执行指令,并执行所述可执行指令以获取 到多个卫星的伪距;用于发射所述伪距的发射机; 服务器,所述服务器包括用于存储可执行指令以及与所述多个卫星中至少一个卫星相关的长期轨道信息的第 二存储器;第二处理器,从所述第二存储器中获得长期轨道信息和可执行指令,并执行所述可执 行指令以执行如下操作处理所述伪距和长期轨道信息以获得所述接收机的第一位置; 获得由所述多个卫星中至少一个卫星发射的广播星历;将所述广播星历的至少一部分作为所述长期轨道信息的至少一部分的替代进行处理, 从而获得所述接收机的第二位置。
10. 根据权利要求9所述的系统,其特征在于,所述第一位置包括所述接收机的位置 的多个过渡解;且用于处理所述长期轨道信息的可执行指令包括用于处理所述长期轨道信 息以获得所述多个过渡解的可执行指令;所述用于获得至少一部分广播星历的可执行指令 包括用于获得足够量的广播星历以确定出第二位置的可执行指令。
全文摘要
本发明涉及一种用于后台解码广播卫星导航消息以维护全球导航卫星系统或其它系统内使用的长期轨道信息的完整性的方法、接收机和系统。所述方法包括处理与至少一个卫星相关的长期轨道信息以获得接收机的第一位置;获取从所述至少一个卫星发射的广播星历的至少一部分;作为所述长期轨道信息的至少一部分的替代,处理所述至少一部分广播星历以获得所述接收机的第二位置。
文档编号G01S19/05GK101750601SQ200810175989
公开日2010年6月23日 申请日期2008年10月31日 优先权日2007年10月31日
发明者弗兰克·范迪格伦, 马太·里本 申请人:全球定位有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1