一种利用红外成像技术检测密封腔体泄漏的装置及方法

文档序号:6149963阅读:197来源:国知局
专利名称:一种利用红外成像技术检测密封腔体泄漏的装置及方法
技术领域
本发明涉及密封腔内气体泄漏的检测方法,特别是一种利用红外 成像技术检测密封腔体泄漏的装置及方法。
(二)
背景技术
密封腔体泄漏检测的方法多种多样,例如在被测腔体中充入一定 压力的气体(使用空气作为介质),然后通过压力计观察压力降检查 是否有泄漏,其优点是方法简单,但由于采用直压检测压力降,分辨 率较低,泄漏量较小时不易检测,且检测结果受环境温度影响较大和 不能确定泄漏点的具体位置。还有一种是差压检漏法,即将两个完全 相同的被测腔体(其中一个没有泄漏)接在差压压力计两端,然后往 两个被测腔体同时充入一定压力的气体,观察差压压力计两端压力差 变化,其优点是可以抵消环境温度对被测腔体的影响,但是需要一个 没有泄漏的被测物,同时也不能确定泄漏点的具体位置。另外一种方 法是将被测腔体浸入水中通过观察气泡检查是否有泄漏,其优点是方 法也较简单且能知道泄漏点的具体位置,但不易精确计算泄漏量。其 他的检测方法还有氦质谱检漏和氢气检漏,即通过将氦气或氢气以一 定压力充入被测腔体中,然后利用对氦气或氢气的敏感器件检测是否 有氦气或氢气从被测腔体中漏出,其优点是检测精度高,但需要充入 特殊的气体且成本较高、工艺复杂。
(三)

发明内容
本发明的目的是针对上述存在问题,提供一种方法简单、成本较 低、检测误差小、能迅速准确测定泄漏点和泄漏量的利用红外成像技 术检测密封腔体泄漏的装置及方法。
本发明的技术方案
一种利用红外成像技术检测密封腔体泄漏的装置,由气源、过滤 器、调压阀、电磁阔、压力传感器、被测腔体、温度传感器A、温度 传感器B、红外热像仪和控制系统组成,被测腔体有漏孔,气源、过 滤器、调压阀、电磁阀和被测腔体通过管道串联连接,压力传感器设 置于电磁阀与被测腔体之间的管路上,被测腔体和控制系统分别设有用于测量被测腔体腔内温度的温度传感器A和测量环境温度的温度
传感器B,压力传感器、温度传感器A、温度传感器B和红外热像仪 通过导线分别与控制系统连接。
所述利用红外成像技术检测密封腔体泄漏的方法为充气后使被
检测装置达到热力学平衡状态,即单位时间内漏孔周围材料释放给气 流的热量与其向周围大气吸收的热量相等,则泄漏点即可通过红外热
像仪检测到的温度下降的位置来确定;而泄漏量的测量和确定按以下 步骤进行
1) 根据被测物的耐压范围,通过气源、过滤器和调压阀向被测
腔体内充入压縮空气;
2) 根据所成像大小的要求调整红外热像仪和被测漏孔之间的距 离,为30 50cm;
3) 等待压力传感器、温度传感器A、 B示数以及红外热像仪上所 显示漏孔周围因温度降低所形成的黑斑区域形状稳定;
4) 由红外热像仪向控制系统传输沿着黑斑径向的温度分布测量 数据;
5) 控制系统根据上述温度分布测量数据进行计算来确定其泄漏 量并显示结果。
本发明的工作原理当被测腔体中充入一定压力的气体后,如果 被测腔体有泄漏,由于漏出气体膨胀吸收了漏点周围的热量,使被测 腔体泄漏点周围的温度降低,且泄漏量越大则吸收热量越多,温度下 降越大;由于红外成像技术能够感知到温度的微小变化,因此可以容
易地测得泄漏点位置,颜色梯度转化为温度梯度后可以准确地得出该 区域的温度场。从另外一条独立的途径,泄漏过程的热模型可以根据 相关理论建立,根据这一模型,只要输入工艺参数(被测腔体的厚度、 材料的热物性参数、测试压力的大小、充入被测腔体的气体介质的种 类以及热物性参数、材料和周围环境温度),便可以计算出该区域的 温度场,通过对测量的温度场和计算的温度场进行比较可以确定气体 泄漏量。
泄漏量确定的计算分析
一、泄漏量理论值的计算方法1)控制方程
漏孔深即被测腔体的壁厚设为L、孔径设为r,、温度影响半径设
为^、气体出口的体积漏量为&、温度为z;、周围大气温度为 ;、被 测腔体初始温度为 ;、设定漏孔深方向为z向、径向为r向。 以漏孔为控制体,根据热力学第一定律-
G+w+a//+m: = o (l)
^巾
2 = 2;zr! Jf Wr",力—rg(z))cfe (2)
『=^l20。"。—p0"0) (3) = ^1、/70"0 (r。 - r0) (4)
a£" = 0.5;^2/70"0(1^-《) (5)
2_单位时间内被测腔体释放给控制体内气体的热量
『一 外界对控制体内气体做功功率
a// —单位时间控制体内因对流进入的净热量
a^—单位时间控制体内气体动能的改变量;
由连续性方程和气体状态方程
A)"o = PA (6) A"。灯。 (7) A"o灯o (8) 角标a的p, u, T, p分别为控制体入口气体的压力、流速、温度和密度; 角标0的p, u, T, p分别为控制体出口气体的压力、流速、温度和密度; ^为气体定压热容。
出口流速w。与泄漏量^的关系为
《v-;r7fwo (9) 由于漏孔深度小,假设气体温度沿着孔深呈线性变化
,=1-^^ (10)
考虑到材料内部无热源,传热方程为竹 isr竹 n ,u、
2)边界条件
与被测腔体内气体(左边界〉、泄漏气体(上边界)、外界大气相 邻(右边界)的被测腔体边界都设为对流换热边界,表面传热系数分
别为&, a, &,大气温度为 ;,温度影响半径处(下边界)设为恒温 边界,温度为7;,材料热传导率为;i。艮P:
—"r/3"l左,右-^(r左,右-7;) (12) 一;L3773"l上-; !(r上—r。) (13) V=r , (14)
其中"代表边界面外法向。 二、泄漏量的计算
在与测量相同的工艺参数下,只要有一个出口漏量^值就可以根
据以上数学模型得到一条漏孔出口壁上的径向温度理论分布曲线;每
条理论曲线和测量点线都产生一个误差《,所有的误差中最小值y所
对应的漏量^'值就是该条件下的漏量,艮P:
<formula>formula see original document page 6</formula>
计算值和测量值的误差规定如下
<formula>formula see original document page 6</formula>
其中rc-温度计算值、re-温度测量值、m-曲线条数、每条 曲线上的节点数、节点序号、广曲线序号。
本发明的优点是该检测装置结构简单、操作容易且成本较低, 检测方法实用且检测误差小,能够迅速准确测定被测腔体的泄漏点和 泄漏量,该检测装置及方法适用性强,有广阔的应用前景。

图1为利用红外成像技术检测密封腔体泄漏的装置示意图。 图中l.气源 2.过滤器 3.调压阀4.电磁阀5.压力传感器 6.被测腔体 7.温度传感器A 8.温度传感器B 9.红外热像仪IO.控制系统 11.漏孔
其中实线为空气管路,虚线为电路。
图2为漏孔漏气及边界条件示意图。
图3为漏孔剖面温度场三维示意图。
图4为泄漏量的确定示意图。 具体实施例方式
实施例
一种利用红外成像技术检测密封腔体泄漏的装置,由气源l、过
滤器2、调压阀3、电磁阀4、压力传感器5、被测腔体6、温度传感 器A7、温度传感器B8、红外热像仪9和控制系统10组成,被测腔 体6有漏孔11;气源l、过滤器2、调压阀3、电磁阀4和被测腔体 6通过管道串联连接,压力传感器5设置于电磁阀4与被测腔体6之 间的管路上,被测腔体6和控制系统10分别设有温度传感器A 7和 温度传感器B 8,压力传感器5、温度传感器A 7、温度传感器B 8 和红外热像仪9通过导线分别与控制系统10连接。
利用红外成像技术检测密封腔体泄漏的方法为充入空气一段时 间以后,使被检测装置达到热力学平衡状态,即单位时间内漏孔周围 材料释放给气流的热量与其向周围大气吸收的热量相等,则泄漏点即 可通过红外热像仪检测到的温度下降的位置来确定;而泄漏量的测量 按以下步骤进行
1) 根据被测物的耐压范围,通过气源、过滤器和调压阀向被测 腔体内充入压縮空气;
2) 根据所成像大小的要求调整红外热像仪和被测漏孔之间的距 离,为30 50cm;
3) 等待压力传感器、温度传感器A、 B示数以及红外热像仪上所 显示漏孔周围因温度降低所形成的黑斑区域形状稳定;
4) 由红外热像仪向控制系统传输沿着黑斑径向的温度分布测量 数据;
5) 控制系统根据上述温度分布测量数据进行计算来确定其泄漏 量并显示结果。在该实施例中,参照图2、 3、 4,计算情况如下 计算参数为
rm = ra = 293K
& =250『/(m2iO A = 14.9『/(m
r2 = l附附 丄=2m附 /70 =101325/^ / 。 = 303975尸a
在以上工艺参数、不同气体漏量下,靠近泄漏点的材料表面径向 温度分布的理论数据和测量数据为
径向距离
(mm) 对应曲
\ 0.5 0.6 0.7 0.8 0.9 1.0 线编号
(ml/min)
2.0 292.983292.984292.987292.991292.995 293 Tl
2. 1 292.956292.967292.976292.985292.992 293
T2
2.2 292.921292.941292.959292.974292.987 293
T3
2.3 292.883292.914292.940292.962292.982 293
T4
2.4 292.847292.888292.922292.952292.977 293 T5
2.5 292.822292.872292.912292.945292.974 293
T6
未知 292.89 292.92 292.93 292.恥 292.98 292.99 点线在上表中,取泄漏量从2. 0 2. 5ml/min下的材料表面径向温度 分布理论计算值,其中"未知"所在行表示待测漏量下的温度分布测 量值。计算结果表明漏量越大,温度分布值越低,并且漏量和温度分 布是一一对应的 一个漏量对应着唯一一个温度分布,反过来, 一个 温度分布对应着唯一一个漏量,这是实现红外测漏量功能的重要依 据。下面根据(15)、 (16)式确定漏量,计算每一个漏量下,温度分布 计算值与测量值的误差(即图4曲线T1 T6与测量点线间的误差):《=(|292.983 - 292.89 |+ |292.984 - 292.92|+|292.987 - 292.93|+ !292.991 - 292.96| + |292.995 - 292.98 |+ |293 - 292.99|)/6=0.045<52=(|292.956 - 292.89 |+ |292.967 - 292.92|+| 292.976- 292.93|+ |292.985 - 292.96| + I 292.992- 292.98 |+ |293 - 292.99|)/6=0.034292.921-292.89 |+ | 292.941-292.92|+| 292.959- 292.93|+ | 292.974-292.96| + |292.987-292.98 |+ |293 - 292.99|)/6=0.019&=(|292.883 - 292.89 |+ | 292.914 - 292.92|+| 292.940 - 292.93|+ |292.962 - 292.96| + |292.982-292.98 |+ |293 - 292.99|)/6=0.006《=(| 292.847-292.89 |+ | 292.888-292.92|+|292.922-292.93|+ |292.952-292.96| + |292.977國292.98 |+ |293 - 292.99|)/6=0.017292.822- 292.89 |+ | 292.872- 292.92|+|292.912- 292.93|+ !292.945- 292.96| + |292.974- 292.98 |+ |293 - 292.99|)/6=0.028由上述计算可知《最小(对应地,由图4可知T4和测量点线最为接 近),因此可以确定该泄漏量为2.3ml/min。9
权利要求
1.一种利用红外成像技术检测密封腔体泄漏的装置,其特征在于由气源、过滤器、调压阀、电磁阀、压力传感器、被测腔体、温度传感器A、温度传感器B、红外热像仪和控制系统组成,被测腔体有漏孔,气源、过滤器、调压阀、电磁阀和被测腔体通过管道串联连接,压力传感器设置于电磁阀与被测腔体之间的管路上,被测腔体和控制系统分别设有用于测量被测腔体腔内温度的温度传感器A和测量环境温度的温度传感器B,压力传感器、温度传感器A、温度传感器B和红外热像仪通过导线分别与控制系统连接。
2. —种如权利要求1所述利用红外成像技术检测密封腔体泄漏 的装置的检测方法,其特征在于充气后使被检测装置达到热力学平 衡状态,即单位时间内漏孔周围材料释放给气流的热量与其向周围大 气吸收的热量相等,则泄漏点即可通过红外热像仪检测到的温度下降 的位置来确定;而泄漏量的测量和确定按以下步骤进行1) 根据被测物的耐压范围,通过气源、过滤器和调压阀向被测 腔体内充入压縮空气;2) 根据所成像大小的要求调整红外热像仪和被测漏孔之间的距 离,为30 50cm;3) 等待压力传感器、温度传感器A、 B示数以及红外热像仪上所 显示漏孔周围因温度降低所形成的黑斑区域形状稳定;4) 由红外热像仪向控制系统传输沿着黑斑径向的温度分布测量、K r-iTT数据;5) 控制系统根据上述温度分布测量数据进行计算来确定其泄漏 量并显示结果。
全文摘要
一种利用红外成像技术检测密封腔体泄漏的装置,由气源、过滤器、调压阀、电磁阀、压力传感器、温度传感器、红外热像仪和控制系统组成,压力传感器、温度传感器和红外热像仪通过导线分别与控制系统连接。利用该装置检测密封腔体泄漏的方法充气后使被检测装置达到热力学平衡状态,即单位时间内漏孔周围材料释放给气流的热量与其向周围大气吸收的热量相等,则泄漏点即可通过红外热像仪检测到的温度下降的位置来确定;而泄漏量则通过控制系统内的计算机计算确定。本发明的优点是该检测装置结构简单、操作容易且成本较低,检测方法实用且检测误差小,能够迅速准确测定被测腔体的泄漏点和泄漏量,该检测装置及方法适用性强,有广阔的应用前景。
文档编号G01M3/04GK101592544SQ20091006945
公开日2009年12月2日 申请日期2009年6月26日 优先权日2009年6月26日
发明者陈乃克 申请人:博益(天津)气动技术研究所有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1