全自动大气偏振模式图像获取系统及系统控制方式的制作方法

文档序号:6153436阅读:393来源:国知局
专利名称:全自动大气偏振模式图像获取系统及系统控制方式的制作方法
技术领域
本发明属于智能信息获取和仿生机器人导航技术领域,特别涉及仿生偏振光导航中的一 种大气偏振模式图像获取系统及系统控制方式。
背景技术
地球表面被一层大气所包围,大气对太阳光的散射是十分重要的光学现象,是光与物质 相互作用的结果,散射会产生偏振光。太阳光作为一种横电磁波的自然光源,在进入大气之 前是没有偏振的。太阳光在传输过程中被大气层中的空气分子、气溶胶粒子散射和吸收,从 而产生了偏振光,由不同的散射光形成的特定的偏振态分布就构成了大气偏振模式。 一种生 活在沙漠中的沙蚁能够利用眼部特殊的感光结构感受天空的偏振模式信息,利用偏振模式在 觅食和迁徙中进行导航。这种特殊的导航方法,对研究仿生机器人的导航具有深远的指导意 义和十分重要的应用前景,对大气偏振模式的研究是这种导航方式研究的关键部分。另外, 大气偏振信息的测量在大气光学和偏振遥感探测等研究中有着广泛的应用。大气偏振特性的 时空分布信息为反演大气的光学和物理参数、建立大气散射辐射偏振特性模型提供了必不可 少的素材。因此,大气偏振模式检测技术和方法是仿生偏振光导航和大气偏振探测中的关键 技术。
Kenneth J. Voss和Yi Liu于1997年提出了基于RADS-II电子光学鱼眼相机辐射分布系统的 偏振辐射分布相机系统。该系统由鱼眼镜头、滤波转换器和CCD照相系统组成。滤波转换器 由中性密度滤波圆盘、偏振片、干涉滤波器和几组镜头组成。通过旋转中性密度滤波圆盘, 可以获得不同的偏振角度。该系统主要实现对整个天空区域近乎180。范围内的偏振测量。 该系统的测量原理是利用鱼眼镜头对全天空区域进行成像,光线经过几组光学镜头过渡后, 依次转动三个不同偏振角度的偏振片,光线经过一个干涉滤波片后到达彩色数字CCD相机, 在CCD上成合适的圆形图像,把这些图像经由数模转换器数字化,而后存储到计算机中,这 样就得到一组包含大气偏振信息的图片。对这些图片利用斯托克斯矢量法处理得到整个天空 的大气偏振模式信息。
该系统在具体实现上存在以下不足,不能简单方便地实现大气偏振信息的检测。
1、 系统构成复杂,整个系统需要一整套精密光学过渡器件,特别是光学成像系统精度 要求高,造价昂贵,增加了实现和误差控制的难度。
2、 系统采用了鱼眼镜头作为光学系统的成像镜头,虽然提高了测量速度,大角度光线 入射时,会给系统带来很大的附加偏振度,带来较大的误差,全天域的测量结果不能很好的反映实际模式的分布情况。
3、系统采用的是普通偏振片,在拍摄过程中需要依靠步进电机实现三次不同偏振片的 旋转,转动过程需要花费较长的时间而且精度不高,容易产生角度误差。另外,步进电机的 机械转动不可避免地带来机械振动,而由于机械振动导致的拍摄区域的任何变化都会直接导 致实验的失败。

发明内容
本发明针对上述现有技术所存在的不足,提出一种简单易行、测量结果准确易校准、无 需机械旋转偏振片的全自动大气偏振模式图像获取系统及系统控制方式。 本发明解决技术问题采用如下技术方案
本发明全自动大气偏振模式图像获取系统的结构特点是系统构成包括偏振成像模块、 机械运动模块、亮度采集模块以及系统控制与处理中心;
所述偏振成像模块为筒状体,在所述偏振成像模块的筒体内,沿射入光轴线同轴依次设 置干涉滤光片、可调节相位延迟器、偏振片、短焦镜头及彩色数字CCD相机;对所述可调节 相位延迟器的波片施加对应于不同延迟量的交流电压,获取不同的延迟量;
所述机械运动模块具有可在水平面上360度旋转的基座,呈筒状体的偏振成像模块设置 在基座上,偏振成像模块是以其筒体底部在基座上以销轴铰接;在基座上设置可升降的蜗杆, 以所述蜗杆对偏振成像模块的筒体形成三角支撑;
所述亮度采集模块由光强检测器构成,所述光强检测器固定设置在基座上,由所述光强 检测器获取的光强信息在系统控制与处理中心中得到记录;
所述系统控制与处理中心通过控制器分别控制所述机械运动模块中基座的旋转角度和 蜗杆的举升高度;并对由所述光强检测器获取的光强信息,由所述偏振成像模块在CCD相机 中获取的天空区域的偏振图像在所述系统控制与处理中心中进行记录和信息处理。
本发明全自动大气偏振模式图像获取系统控制方式的特点是如下过程进行
a、 系统上电启动;
b、 由控制器控制机械运动模块中基座的旋转和蜗杆的举升,使偏振成像模块调整到测 量区域方位并测量;所述测量区域方位为偏振成像模块在其轴线呈水平的位置上,以及其轴 线与水平呈45度夹角的位置上,分别以正北为O度,从O度开始旋转,每转过60度所达到的朝 向,包括天顶方位,共13个测量区域方位,在每一次测量中,同时记录由亮度采集模块获取 的亮度信息。
c、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为(U,由偏振成像模块对应得到一组包含天空大气偏振信息的偏振强度图像/(0);
d、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为^,由偏振 成像模块对应得到另一组包含天空大气偏振信息的偏振强度图像/(^);
e、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为^,由偏振
成像模块对应得到又一组包含天空大气偏振信息的偏振强度图像/(^);
f、 入射光的偏振状态由四个斯托克斯参数I、 Q、 U、 V来完全描述,其中I为总光强度, Q为O度方向直线偏振光分量,U为45度方向直线偏振光分量,V为右旋圆偏振光分量,右旋 圆偏振光分量在测量中忽略;入射光的I、 Q、 U与检测得到包含天空大气偏振信息的偏振强 度图像关系如下
<formula>formula see original document page 6</formula>(1 )
令偏振度为尸、偏振椭圆方位角为^,则有
<formula>formula see original document page 6</formula>(2)
偏振椭圆方位角
<formula>formula see original document page 6</formula> (3)
完成对一个天空区域偏振模式的获取;
g、 重复步骤b至f直至检测出所有13块待测天空区域;
h、 对得到13块天空区域的偏振度、偏振椭圆方位角图片,按照13块天空区域所在实际 方位进行拼接,得到完整的大气偏振模式信息。
与现有技术相比,本发明的有益效果体现在
1、 本发明系统构成简单,光学器件容易采购,价格适中,可复制性好,器件出厂已由 生产厂商作标定,大大降低误差控制的难度。
2、 本发明系统采用可调节相位延迟器,只需要控制可调节相位延迟器的端电压来改变 可调节相位延迟器的延迟量就可以在较短时间内对某一天空区域实现偏振测量,无需机械旋 转偏振片或波片,大大縮短了拍摄时间,克服了由于旋转偏振片或波片带来的机械振动以及 由于机械振动造成的拍摄区域的改变。3、 本发明系统采用了普通广角镜头作为光学系统的成像镜头,虽然在一定程度上降低 视角范围,但是避免了鱼眼镜头在测量中大角度光线入射给系统带来的很大的附加偏振度。
4、 本发明系统中设置亮度采集模块用于测量拍摄时的天光亮度信息,系统保存天光亮 度信息用于后期分析比较,为不同天气不同时间获取的偏振图片之间的比较提供一个基准, 使得后续结果分析更加准确。


图l为本发明系统总体结构框图2为本发明系统中偏振成像模块与机械运动模块的机械结构示意图3为本发明系统工作流程图4为本发明是偏振成像模块的光路图。
以下通过具体实施方式
,并结合附图对本发明作进一步的说明。
具体实施例方式
参见图l,本实施例系统构成包括偏振成像模块、机械运动模块、亮度采集模块以及系 统控制与处理中心。
系统控制与处理中心是通过控制器分别控制机械运动模块中基座201的旋转角度和蜗杆 202的举升高度;由光强检测器获取的光强信息,以及由偏振成像模块在CCD相机203中获取 的天空区域的偏振图像都在系统控制与处理中心中得到记录和信息处理。
系统控制与处理中心负责整个系统的控制和数据的采集处理及存储。主要实现
1、 通过控制器控制机械运动模块的二维方向的运动;
2、 控制亮度采集模块光强信息的采集和记录;
3、 控制偏振成像模块获取天空区域的偏振图像;
4、 存储并处理分析由偏振成像模块获取的偏振图像。
图2所示,机械运动模块具可在水平面上实现0-360度旋转的基座201、呈筒状体的偏振 成像模块设置在基座201上,偏振成像模块是以其筒体底部在基座201上以销轴铰接;在基座 201上设置可升降的蜗杆202,以蜗杆202对偏振成像模块的筒体形成三角支撑,蜗杆202的升 降可以使偏振成像模块的筒体获得与基座201之间0-90度的可调角度;亮度釆集模块由光强 检测器构成,光强检测器固定设置在基座201上,由光强检测器获取的实际拍摄过程中的天 空光强信息在系统控制与处理中心得到记录,用于后期分析比较。
图2和图4所示,偏振成像模块为筒状体,在偏振成像模块的筒体内,沿射入光轴线同轴 依次设置干涉滤光片207、可调节相位延迟器206、偏振片205、短焦镜头204及彩色数字CCD 相机203;对可调节相位延迟器206的波片施加对应于不同延迟量的交流电压,获取不同的延具体实施中,如图4所示,偏振片205、可调节相位延迟器206和干涉滤光片207的光学中 心均与短焦镜头204的光学中心在一条直线上。短焦镜头204安装在彩色数字CCD相机203的 镜头接口中。偏振片205安装在偏振镜架内,位于短焦镜头204的前端,可调节相位延迟器206 位于偏振片205的前端,干涉滤光片207位于可调节相位延迟器206的前端。入射光I进入偏 振成像模块时,依次经过干涉滤光片207、可变相位延迟器206、偏振片205、短焦镜头204, 最后由彩色数字CCD相机203成像。
可调节相位延迟器是一种实时、连续可调的、由双折射液晶材料制成的波片,波片中的 长条型液晶分子的长轴在自然状态下互相平行,将这个方向定义为可调节相位延迟器的慢 轴,与之垂直的轴定义为快轴,快轴和慢轴均平行于波片表面。在波片两面加上交流的电压, 液晶分子便向着电场的方向转动,这样双折射材料的折射度将改变,从而使通过可调节相位 延迟器的光线平行于慢轴的电矢量延迟不同的相位,这个相位的延迟值随电压幅值呈平滑关 系,所以在一定范围内可以输出任意的相位延迟,两端施加不同的电压可以获取不同大小的 相位延迟。对于特定的波长X,标定可调节相位延迟器对应V4延迟,V2延迟的特殊电压值, 实际测量过程中对可调节相位延迟器波片两面施加对应不同延迟量的交流电压,获取不同延 迟量,延迟量即为图4所示p。
参见图3,图3所示是大气偏振模式图像获取系统的系统控制方式软件流程图,工作流程 如下
a、 系统上电启动;
b、 由控制器控制机械运动模块中基座201的旋转和蜗杆202的举升,使偏振成像模块调 整到测量区域方位并测量。所述测量区域方位为偏振成像模块在其轴线呈水平的位置上,以 及其轴线与水平呈45度夹角的位置上,分别以正北为O度,从O度开始旋转,每转过60度所得 到的朝向,包括天顶方位,共13个测量区域方位,在每一次测量中,同时记录由亮度采集模 块获取的亮度信息。
c、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为(U,由偏振 成像模块对应得到一组包含天空大气偏振信息的偏振强度图像/(0);
d、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为^,由偏振 成像模块对应得到另一组包含天空大气偏振信息的偏振强度图像/(^{);
e、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为乂,由偏振成像模块对应得到又一组包含天空大气偏振信息的偏振强度图像/(^);
f、 入射光的偏振状态由四个斯托克斯参数I、 Q、 U、 V来完全描述,其中I为总光强度, Q为O度方向直线偏振光分量,U为45度方向直线偏振光分量,V为右旋圆偏振光分量,右旋 圆偏振光分量在测量中忽略;入射光的I、 Q、 U与检测得到包含天空大气偏振信息的偏振强 度图像关系如下-
<formula>formula see original document page 9</formula>
尸=(22+"2)1/2〃 (2)
偏振椭圆方位角
9-丄arctan(f7/g)
2 (3)
完成对一个天空区域偏振模式的获取;
g、 重复步骤b至f直至检测出所有13块待测天空区域;
h、 对得到13块天空区域的偏振度、偏振椭圆方位角图片,按照13块天空区域所在实际 方位进行拼接,得到完整的大气偏振模式信息。
9
权利要求
1、全自动大气偏振模式图像获取系统,其特征是系统构成包括偏振成像模块、机械运动模块、亮度采集模块以及系统控制与处理中心;所述偏振成像模块为筒状体,在所述偏振成像模块的筒体内,沿射入光轴线同轴依次设置干涉滤光片(207)、可调节相位延迟器(206)、偏振片(205)、短焦镜头(204)及彩色数字CCD相机(203);对所述可调节相位延迟器(206)的波片施加对应于不同延迟量的交流电压,获取不同的延迟量;所述机械运动模块具有可在水平面上360度旋转的基座(201),呈筒状体的偏振成像模块设置在基座上,所述偏振成像模块是以其筒体底部在基座(201)上以销轴铰接;在所述基座(201)上设置可升降的蜗杆(202),以所述蜗杆(202)对偏振成像模块的筒体形成三角支撑;所述亮度采集模块由光强检测器构成,所述光强检测器固定设置在基座(201)上,由所述光强检测器获取的光强信息在系统控制与处理中心中得到记录;所述系统控制与处理中心通过控制器分别控制所述机械运动模块中基座(201)的旋转角度和蜗杆(202)的举升高度;并对由所述光强检测器获取的光强信息,由所述偏振成像模块在CCD相机(203)中获取的天空区域的偏振图像在所述系统控制与处理中心中进行记录和信息处理。
2、 一种权利要求l所述全自动大气偏振模式图像获取系统的控制方式,其特征是按如下 过程进行a、 系统上电启动;b、 由控制器控制机械运动模块中基座(201)的旋转和蜗杆(202)的举升,使偏振成 像模块调整到测量区域方位并测量;所述测量区域方位为偏振成像模块在其轴线呈水平的位 置上,以及其轴线与水平呈45度夹角的位置上,分别以正北为O度,从O度开始旋转,每转过 60度所达到的朝向,包括天顶方位,共13个测量区域方位,在每一次测量中,同时记录由亮 度采集模块获取的亮度信息;c、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为(U,由偏振成像模块对应得到一组包含天空大气偏振信息的偏振强度图像/(0);d、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为^,由偏振 成像模块对应得到另一组包含天空大气偏振信息的偏振强度图像/(《);e、 控制可调节相位延迟器的端电压值,使可调节相位延迟器的延迟分量为^,由偏振 成像模块对应得到又一组包含天空大气偏振信息的偏振强度图像/(^);f、 入射光的偏振状态由四个斯托克斯参数I、 Q、 U、 V来完全描述,其中I为总光强度, Q为O度方向直线偏振光分量,U为45度方向直线偏振光分量,V为右旋圆偏振光分量,右旋 圆偏振光分量在测量中忽略;入射光的I、 Q、 U与检测得到包含天空大气偏振信息的偏振强度图像关系如下<formula>formula see original document page 3</formula>令偏振度为户、偏振椭圆方位角为e,则有<formula>formula see original document page 3</formula>偏振椭圆方位角<formula>formula see original document page 3</formula>完成对一个天空区域偏振模式的获取;g、 重复步骤b至f直至检测出所有13块待测天空区域;h、 对得到13块天空区域的偏振度、偏振椭圆方位角图片,按照13块天空区域所在实际 方位进行拼接,得到完整的大气偏振模式信息。
全文摘要
全自动大气偏振模式图像获取系统及系统控制方式,其特征是系统构成包括偏振成像模块、机械运动模块、亮度采集模块以及系统控制与处理中心;系统控制与处理中心通过控制器分别控制机械运动模块中基座的旋转角度和蜗杆的举升高度,并对由光强检测器获取的光强信息、由偏振成像模块在CCD相机中获取的天空区域的偏振图像进行记录和信息处理。本发明简单易行、测量结果准确易校准,测量过程无需机械旋转偏振片。
文档编号G01J1/42GK101539458SQ20091011667
公开日2009年9月23日 申请日期2009年4月30日 优先权日2009年4月30日
发明者吴良海, 帅 崔, 潘登凯, 范之国, 隽 高 申请人:合肥工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1